
NodeMOP: Runtime Verification for Node.js Applications
Filippo Schiavio
Haiyang Sun

filippo.schiavio@usi.ch
haiyang.sun@usi.ch

Università della Svizzera Italiana
(USI), Switzerland

Daniele Bonetta
Oracle Labs, USA

daniele.bonetta@oracle.com

Andrea Rosà
Walter Binder

andrea.rosa@usi.ch
walter.binder@usi.ch

Università della Svizzera Italiana
(USI), Switzerland

ABSTRACT
Node.js has become one of themost popular frameworks for general-
purpose and server-side application development in JavaScript.
However, due to its dynamic, asynchronous, event-driven program-
ming model, Node.js applications are considered error-prone, and
their correctness is hard to verify. Monitoring-Oriented Program-
ming (MOP) is a Runtime Verification (RV) paradigm that aims at
improving the safety and reliability of a software system. To the best
of our knowledge, no practical RV framework targets JavaScript
and Node.js applications.

In this paper, we introduce NodeMOP, a novel RV framework
for JavaScript that allows one to apply RV to Node.js applications.
Using NodeMOP, we have formalized two properties related to
popular asynchronous APIs based on the Node.js documentation,
one from the file-system module and the other from the HTTP
module. NodeMOP also supports error recovery by allowing devel-
opers to define custom handlers in case of property violations. We
showcase NodeMOP with our specified properties on examples of
Node.js API misuse. We also evaluate the overhead of NodeMOP
with benchmarks based on the introduced examples.

CCS CONCEPTS
• Software and its engineering→Correctness; •General and
reference → Verification;

KEYWORDS
RuntimeVerification,Monitoring-Oriented Programming, JavaScript,
Node.js, Dynamic Analysis, Software Verification, Self-Healing Sys-
tems.

ACM Reference Format:
Filippo Schiavio, Haiyang Sun, Daniele Bonetta, Andrea Rosà, and Walter
Binder. 2019. NodeMOP: Runtime Verification for Node.js Applications. In
The 34th ACM/SIGAPP Symposium on Applied Computing (SAC ’19), April
8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3297280.3297456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297456

1 INTRODUCTION
With the growing popularity of Node.js [16], JavaScript has become
one of the most popular programming languages, and its popularity
goes beyond client-side web development, towards server-side and
general-purpose applications (e.g., databases, desktop and mobile
applications, Internet of Things, etc.).

Despite its popularity, programming in JavaScript is known to
be error-prone [1]. The asynchronous, event-driven, programming
model of Node.js often leads to subtle bugs and unexpected appli-
cation behaviors. Though executed in a single thread, JavaScript
code is not free of nondeterminism and race conditions [22, 36].
Furthermore, even though the JavaScript syntax is simple and easy
to learn, the language semantics is complex and often counter-
intuitive [2, 28]. The JavaScript language is highly dynamic (e.g.,
developers can evaluate code at runtime, use several forms of meta-
programming, etc.) and permissive (e.g., no-crash philosophy [7],
automatic type coercion [37], etc.) Although such properties are
often considered as advantages by JavaScript developers, they can
also easily hide errors [7]. Furthermore, thanks to the NPM mod-
ule ecosystem [34], developers often build complex applications
by using hundreds of existing, ready-to-use, third-party software
components. Unfortunately, such appealing modularity often leads
to issues, as developers need to rely on the correctness of such
third-party code that may introduce unexpected bugs. Based on
these considerations, we believe it is crucial to have a system that
allows Node.js developers to verify the correctness of programs
and modules they depend on.

Runtime Verification (RV) is a dynamic software analysis tech-
nique that deals with how to verify that the observable behaviour
of a program execution satisfies certain (given) formal correctness
properties [27]. Runtime execution monitoring is used in RV to de-
tect the violations of such properties, as well as to take appropriate
reactions to avoid system failures (e.g., by adopting error recovery
strategies). Monitoring-Oriented Programming (MOP) [10, 12] is a
popular approach to RV where developers are required to specify
complex correctness properties about certain aspects of an applica-
tion. Such properties can be specified using different formalisms
(which may vary between MOP implementations), together with
some executable code to be executed when a running application
violates (or adheres to) the given specification. MOP frameworks
usually allow one to define formal specifications with the support
of a domain-specific language, and rely on instrumentation tech-
niques to verify that applications do not violate such specifications.
As an example, the JavaMOP RV framework [11, 12] allows the
developer to define specifications based on different formalisms,

1794

https://doi.org/10.1145/3297280.3297456
https://doi.org/10.1145/3297280.3297456
https://doi.org/10.1145/3297280.3297456
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3297280.3297456&domain=pdf&date_stamp=2019-04-08

namely: finite state machines (FSM), regular expressions (RE), linear
temporal logic (LTL), and string rewriting systems (SRS).

Existing MOP frameworks target statically-typed languages, and
rely on instrumentation techniques to weave the original applica-
tion code with a layer that verifies the given properties at runtime,
eventually triggering appropriate error recovery actions in order to
prevent system failures. As an example, MOP tools that target the
Java programming language weave the monitoring code at com-
pilation time1 using the AspectJ weaver [23], an Aspect-Oriented
Programming (AOP) [15] framework for the Java Virtual Machine
(JVM).

Given the wide adoption of JavaScript in server-side applica-
tions, we believe that a MOP framework for Node.js could bring
several benefits to new and existing applications. Example usages
of a MOP framework for Node.js could include enforcing coding
practices, web services self-healing [8, 9], as well as automatic bug
detection [21]. Moreover, monitoring the execution of Node.js ap-
plications can ensure security constraints that are challenging to
verify, e.g., dynamic taint analysis [33].

In this paper, we introduce NodeMOP, a practical MOP frame-
work for Node.js applications. NodeMOP can be used to perform
RV of existing Node.js applications, and supports the full JavaScript
specification, allowing developers to specify monitors targeting all
Node.js built-in APIs. NodeMOP is implemented on top of Node-
Prof [39], an efficient dynamic program analysis framework for
Node.js based on Graal.js [26, 45], an ECMA2018-compatible Java-
Script engine included in the GraalVM [25] polyglot language run-
time with full support for Node.js applications. Furthermore, Node-
MOP offers a set of high-level, JavaScript-specific, execution events
that can be monitored, and allows developers to define custom
actions to be executed when a property specification is violated,
enabling automatic recovery from a detected flawed code pattern
to prevent a failure.

This paper makes the following contributions:
• We introduce NodeMOP, the first practical MOP framework
supporting event-driven programming in JavaScript and
Node.js applications.

• Wedefine two correctness properties derived from theNode.js
documentation [17, 18] and we provide NodeMOP monitor
implementations that verify such properties, together with
an error recovery strategy.

• We provide a preliminary evaluation of NodeMOP, con-
ducted on a set of benchmarks including both correct and
flawed code patterns, showing that the lowest slowdown
factor we have collected is 1.039x and the average is 1.261x.

This paper is structured as follows. Section 2 provides back-
ground information on RV and MOP. Section 3 motivates the need
of NodeMOP and presents two use cases. Section 4 discusses the
NodeMOP API and provides a monitor implementation for the in-
troduced examples. Section 5 shows how monitors can be used
to handle a potential application crash through specific recovery
actions and presents preliminary evaluation results. Section 6 com-
pares NodeMOP with related works. Finally, Section 7 discusses
future research directions and concludes.

1JavaMOP can also weave the code at load-time using a Java Agent; however, such
approach has worse performance than compilation-time weaving [44].

2 BACKGROUND

Runtime Verification (RV). RV is a dynamic software analysis
technique that aims at improving software safety and reliability,
complementing static verification and testing. RV dynamically veri-
fies whether a trace (i.e., the observed runtime behavior of a running
program) conforms to a given property (formally specified using
one or more formalisms). Such properties are verified by means
of monitors, automatic code generation, and instrumentation. A
monitor is a runtime event listener which is generated by the MOP
framework according to a given specification and is automatically
attached to the monitored code by means of instrumentation. In
this way, monitors are able to observe all runtime values and events
that are required in order to verify the correct behaviour of the
application.

Parametric Runtime Verification. Parametricity [32] is an impor-
tant property of RV systems, meaning that traces are sliced [13]
based on parametric properties of the specification (i.e., properties
that are bound to values intercepted at runtime). Specifically, para-
metric RV systems maintain a separate trace for each parameter
binding and verify that each trace, taken singularly, verifies the
specification.

JavaScript Instrumentation. Runtime instrumentation is used in
RV frameworks to generate correct monitors and check for runtime
events efficiently. NodeMOP is built on NodeProf [39], a Node.js
instrumentation framework for GraalVM [25] that provides the
following properties:

(1) Performance. In contrast to other approaches based on source-
code transformations (e.g., Jalangi [38] or Java ASM [42]),
NodeProf’s instrumentation overhead is proportional to the
size of the instrumented code. Monitoring a few selected
functions leads to minimal runtime overhead.

(2) Coverage. NodeProf is able to cover all executed code, in-
cluding Node.js internal code. In this way, NodeMOP can
monitor APIs related to file system, networking, etc.

(3) ECMAScript features supported.NodeProf is based on Graal.js
and is up-to-date with the latest ECMA2018 features [43].

3 MOTIVATING EXAMPLE
Manually verifying the correctness of asynchronous programs can
be hard and tedious. Hence, it is crucial to provide an RV framework
for JavaScript and Node.js applications to enforce the proper usage
of APIs. In this section, we discuss two examples of improper usage
of Node.js asynchronous APIs, and we use them throughout the
paper to illustrate the design of NodeMOP, showing how RV can be
applied to prevent runtime failures. The two problematic examples
could both be fixed by ensuring that the Node.js asynchronous
APIs are used as prescribed by the Node.js documentation. In other
words, both issues would be solved if both examples would respect
a formally-specified set of execution constraints for such Node.js
APIs.

3.1 Example 1: Asynchronous file writes
The code in Figure 1 attempts to write a sequence of numbers

to a file. It first opens a file descriptor (line 4) and then uses the

1795

1 const fs = require('fs')

2 const limit = 2**24;

3
4 fs.open(tmp , 'w', (err , fd) => {

5 if (! err)

6 for (let i=0; i<limit; i++)

7 fs.write(fd, i+'\n', () => {})

8 fs.close(fd, () => {})

9 })

Figure 1: Flawed fs.write usage [6].

Node.js asynchronous fs.write API multiple times to write each
number (line 7). The code is problematic according to the Node.js
API documentation of the file-system module [17], stating that “it
is unsafe to use fs.write multiple times on the same file without
waiting for the callback” [6].

In detail, the code in Figure 1 presents multiple issues:
(1) Due to the interaction with the OS, the order of the asyn-

chronous write operations is unpredictable, and thus the
program’s behaviour is nondeterministic.

(2) The asynchronous close operation may be executed before
the last write. Such out-of-order execution would raise a
runtime exception that might crash the Node.js process and
thus lead to an abrupt service termination.

(3) The program might also crash due to an out-of-memory
error, because too many asynchronous calls are registered
on the Node.js’ event loop.

Note that the second and the third of the above issues are critical
even if the first one (i.e., nondeterministic order of writes) might
not be considered problematic for some specific applications (e.g.,
such order may not be important in cases where the order in which
values are saved is not important). This simple example highlights
some of the issues that Node.js developers face. Here, enforcing and
verifying a correct usage of the fs API [17] would help developers
identify potential bugs.

Using NodeMOP, developers can implement monitors to detect
the flawed code patterns. Moreover, they can specify an error re-
covery strategy for each pattern. Specifically, a recovery monitor
could solve the issue in Example 1 by automatically invoking the
synchronous version of fs.write (i.e., fs.writeSync) in place of
fs.write. A property specification in NodeMOP could then be
used to detect asynchronous invocations of the fs.write func-
tion targeting the same file descriptor2 and correlate the respective
callbacks together on the same monitor instance.

More formally, the correct API usage pattern for writing the same
file multiple times can be formalized with the following regular
expression:

(write writeCB)∗

where thewrite event represents the invocation of fs.write, and
writeCB represents the execution of the fs.write callback.

2The monitor can be extended to handle multiple file descriptors pointing to the same
file (i.e., symlinks). We omit the code for such monitor due to space constraints.

1 function sendRequest () {

2 http.get('http :// localhost :8080', (res) => {

3 const { statusCode } = res;

4 if (statusCode !== 200) {

5 console.error("Request Failed");

6 }

7 });

8 }

Figure 2: Flawed http.get usage.

Note that the provided regular expression by itself is not expres-
sive enough to model the correct behavior in case that an applica-
tion writes to two or more different files. For example, consider the
following sequence of file write operations:

write(1) write(2) writeCB(1) writeCB(2)

where 1 and 2 denote different file descriptors that point to different
files. Without taking into account the parameter value, the provided
RE rejects the above string, since:

write write writeCB writeCB < (write writeCB)∗

To capture the correct behaviour, the RV implementation needs
to be parametric with respect to the function arguments [12]. As
introduced in Section 2, parametric traces are sliced based on the
binding parameters and verified singularly. Taking into account
the parametric property, the sequence above generates two equals
strings (write writeCB) and both of them satisfy the specification
(write writeCB)∗. The next section describes how these parametric
properties can be intercepted with NodeMOP.

3.2 Example 2: HTTP client response
The code in Figure 2 performs an HTTP GET request (line 2), and

verifies that the request has succeeded by checking that the HTTP
response status code is 200 (line 4). The application in the figure
contains a potential memory leak. Asmentioned in the Node.js http
module API documentation [18]: “if a ‘response’ event handler is
added, then the data from the response object must be consumed
[...]. Also, until the data is read it will consume memory that can
eventually lead to a ‘process out of memory’ error.” Indeed, Figure 2
is an example of such a flawed code pattern. The underlying problem
is that the garbage collector cannot clean the data buffer, causing a
memory leak.

This example of flawed code could be fixed in different ways.
Specifically, the Node.js API documentation says that there are three
different ways for reading the data from an HTTP response within
the respective callback: adding the .on("data") event listener or
calling either .read() or .resume() [18]. Therefore, NodeMOP
needs to be able to detect multiple API usage patterns. This can be
formalized in NodeMOP with the following regular expression:

req reqCbPre (read | resume | listener)+ reqCbPost

where req is the event associated with the asynchronous function
call to http.get; reqCbPre and reqCbPost are the enter and exit
events of the related callback execution, and read , resume , listener

1796

are the events related to the three different ways of reading the
response data as described in the Node.js documentation.

In order to recover from the issues caused by executing a flawed
code pattern, a monitor implementation can automatically exe-
cute method resume() on the response object when a flawed code
pattern is detected.

4 API DESCRIPTION AND USAGE EXAMPLES
Here, we first introduce the NodeMOP syntax for event and monitor
definition. Then, we show how to define a monitor in NodeMOP
that can detect and recover from the flawed code patterns presented
in the previous section.

4.1 NodeMOP API
The events that NodeMOP is able to track are related to function
invocation and execution. NodeMOP monitors can be developed
targeting the following runtime events:

• invokeFunPre: executed on the call site, before function call;
• invokeFunPost: executed on the call site, after function call;
• execFunPre: executed before the function body;
• execFunPost: executed after the function body;
• invokeAsyncFunPre: variation of invokeFunPre that allows
tracking callbacks;

• invokeAsyncFunPost: variation of invokeFunPost that al-
lows tracking callbacks;

• execCallBackPre: variation of execFunPre that allows track-
ing the callback executions of asynchronous functions which
are tracked with invokeAsyncFun[Pre|Post];

• execCallBackPost: variation of execFunPost that allows
tracking the callbacks execution of asynchronous functions
which are tracked with invokeAsyncFun[Pre|Post].

Except for callback executions events (i.e., execCallBackPre
and execCallBackPost), all event tracking APIs in NodeMOP take
two arguments, namely the function object that shall be instru-
mented (as a shortcut, it can be a single function or an array of func-
tions), and an object which specifies different optional attributes,
as listed below:

• id: function object which uniquely identifies the monitor
instance that shall receive the event, based on the intercepted
function’s arguments;

• target: function object which identifies the set of monitor
instances that shall receive the event, based on the inter-
cepted receiver of the call;

• condition: function object which returns true if the event
has to be fired;

• action: function object which defines an optional action to
be executed when the event is fired.

The id and target attributes are provided to manage parametric
properties. The next subsection exemplifies how the attributes id
and target can be used to intercept the parametric properties.

The callback execution events (execCallBackPre and execCall-
BackPost) are special cases. Instead of a function object they take
a string as first argument, specifying the name of the related asyn-
chronous invocation event. This design choice allows to track all
the callback executions even without a reference to the function

<RE Syntax> ::=
<Event Name>

| <RE Syntax> "*" // zero or more
| <RE Syntax> "+" // one or more
| <RE Syntax> <RE Syntax> // concatenation
| <RE Syntax> "|" <RE Syntax> // union
| "(" <RE Syntax> ")" // grouping

Figure 3: Grammar defining the NodeMOP RE syntax. Op-
erators are listed in descending order with respect to their
precedence

that has to be woven, e.g., anonymous functions directly passed
as callback parameter. The second argument is an object which
defines the condition and action functions as introduced above.
Note that callback events do not need to specify the id and target
functions, because the monitor instances which shall receive the
events can be obtained from the related asynchronous invocation
event.

Monitor definitions in NodeMOP consist of a JavaScript object
with the following attributes:

• events: an object inwhich each attribute represents an event.
The attribute name defines the event name and the corre-
sponding value is an event definition as explained above.

• re: monitor specification as RE, defined by the grammar in
Figure 3;

• fsm: monitor specification as FSM, defined as a JavaScript
object with two attributes: transitions and finals. FSM
states are represented as integers, the final states as an array
of integers and the transitions as an array of objects in the
form {event_name: next_state}, where the nth position
of the array specifies the outgoing transitions from the state
n;

• fail: function object defining the action to be executed if
the specification is violated;

• match: function object defining the action to be executed if
the specification is validated.

Among the attributes listed above only events is mandatory.
Furthermore, only one specification can be defined, either re or
fsm. It is also possible not to define a specification, in this case
the user can manage the monitor behavior by defining JavaScript
function using the action attribute in the definition of events.

Both functions fail and matchmay return an object that allows
the monitor to alter the original application control flow. In this
way, a monitor can skip the execution of the original instrumented
function that causes a violation or validation of the specification,
or return a different value (only if the execution has been skipped).
These features can be used by returning an object with the attributes
{skip: true} and, optionally, {ret: <value>}. Developers can
also manually dispose monitor instances if they are not useful
anymore, by calling monitor.destroy() within event actions or
within functions fail and match.

4.2 Usage Examples
Two examples of monitors are provided in Figure 4 and Figure 5.
The code examples show how to define a NodeMOP monitor for

1797

detecting and recovering from the flawed code patterns introduced
in the previous section.

In this paragraph we describe the NodeMOP monitor imple-
mentation reported in Figure 4, which can detect and recover the
problematic code pattern introduced in Example 1. In order to
monitor such code pattern, two events need to be tracked, i.e., the
asynchronous invocation of function fs.write (line 5) and its as-
sociated callback (line 9). Furthermore, the monitored events need
to be parametric on the file descriptor (i.e., the first argument of the
function fs.write). This parametric property is identified using
the id attribute (line 7), which defines a function that returns the
first argument of the function fs.write, that is the file descriptor.
The function fail (lines 15-29) defines the error recovery strat-
egy. As introduced in Section 3.1, the flawed code is recovered
by invoking function fs.writeSync instead of function fs.write.
Furthermore, the original callback must be called to preserve the
original application semantics. Such callback, obtained from the
original function invocation arguments (line 17), is manually called
after the invocation of fs.writeSync (line 21).

The problematic code pattern introduced in Example 2 is detected
and recovered with the monitor shown in Figure 5 and described
in this paragraph. As introduced in Section 3.2, the events that
have to be tracked are the invocation of the asynchronous function
http.get (line 6), the beginning (line 8) and the end (line 27) of
the execution of the related callback, and the invocation of func-
tions read (line 14), resume (line 17) and on(’data’) (line 21) on
the response object. In this example, the parametric property is
the response object, that is passed as first argument to the callback
function. Such argument is intercepted and stored using the action
attribute (lines 9-11). Considering that such response object is the
receiver of calls read, resume or on(’data’), the monitor imple-
mentation should intercept it using the target attribute in place
of id (lines 15, 18 and 24).

5 EVALUATION
In this section, we provide a preliminary evaluation of NodeMOP
based on the two case studies discussed in Section 3. We first show
the effectiveness of NodeMOP to recover errors from flawed code,
and then we evaluate the NodeMOP instrumentation overhead. All
measurements are performed on an Intel(R) Xeon(R) CPU E3-1505M
v6 @ 3.00GHz with 16GB RAM, running Ubuntu Desktop 18.04
with NodeProf (September 2018) on GraalVM vm-1.0.0-rc3 CE.

5.1 Error Recovery
When executing the flawed Example 1, the virtual machine of-
ten crashes after several minutes with an out-of-memory error.
NodeMOP can detect such memory leaks related to API misusages,
leading to a correct program termination.

Regarding Example 2, when the HTTP request completes each al-
located object should become unreachable, so the garbage collector
should be able to bring back the amount of memory usage almost
at the same level as when the application started. Figure 6 shows
the Node.js heap usage over time when executing multiple times
the code presented in Example 2. Each steep descent in the figure
represents the garbage collector activity. As the figure shows, the

1 SafeFileWriteAsync = {

2
3 events: {

4 // Definition of the parametric event write

5 write: invokeAsyncFunPre(fs.write , {

6 // Parametric property: file descriptor

7 id: ({args}) => args [0]

8 }),

9 writeCB: execCallBackPre("write")

10 },

11
12 re: "(write writeCB)*",

13
14 // Error recovery action:

15 fail: function ({event , args}) {

16 if (event.name === "write"){

17 const callback = args.pop();

18 var err , written;

19 try{

20 // Execute the synchronous API version

21 written = fs.writeSync (... args)

22 } catch(exception) {

23 err = exception;

24 }

25 callback(err , written);

26 // Skip the original invocation

27 return {skip: true}

28 }

29 }

30 }

Figure 4:Monitor implementation for detecting and recover-
ing the flawed fs.write usage pattern introduced in Exam-
ple 1.

garbage collector cannot reclaim the memory used by completed
HTTP requests, leading to a process out-of-memory error.

As can be seen from the monitor code (i.e., the fail function
at line 26), NodeMOP can be used to recover from the flawed API
usage by calling resume() on the response object, causing leaked
(open) connections to be correctly disposed. Figure 7 shows the
memory usage of the application introduced in Example 2 executed
together with the NodeMOP monitor. As the picture shows, the
monitor is able to recover from the developer’s mistake, allowing
the garbage collector to reclaim the whole memory when activated.

5.2 Instrumentation Overhead
To assess the instrumentation overhead imposed by NodeMOP
monitors, we derive two benchmarks from the flawed applications,
and measure the overall execution using the following benchmark
configurations:

(1) Fixed: Uninstrumented application, manually fixed to re-
move the problematic code pattern.We use this configuration
as a baseline for our experiments;

1798

1 const {get ,IncomingMessage ,ClientRequest} = require('http');

2
3 HttpResponseMemoryLeak = {

4 events: {

5 // Track the invocation of the asynchronous function http.get (the event named req)

6 req: invokeAsyncFunPre(get),

7 // Track the beginning of the execution of the http.get function callback (the event named 'req ')

8 reqCbPre: execCallBackPre('req', {

9 action: ({monitor , args}) => { // Define the action to be executed when the event is tracked

10 monitor.data.response = args [0]; // Store the intercepted http response object to identify

the monitor that shall receive the read , resume and listener events

11 }

12 }),

13 // Track the invocation of the functions read and resume applied to the response object

previously stored

14 read: execFunPre(IncomingMessage.prototype.read , {

15 target: ({ monitor }) => monitor.data.response

16 }),

17 resume: execFunPre(IncomingMessage.prototype.resume , {

18 target: ({ monitor }) => monitor.data.response

19 }),

20 // Track the listener registration on the response object

21 listener: execFunPre(ClientRequest.prototype.on, {

22 // Condition that filters only the registration of the listener named 'data'

23 condition: ({args}) => args [0] === 'data',

24 target: ({ monitor }) => monitor.data.response

25 }),

26 // Track the end of the execution of the http.get function callback (the event named 'req ')

27 reqCbPost: execCallBackPost('req')

28 },

29
30 re: "req reqCbPre (read|resume|listener)+ reqCbPost",

31
32 fail: function ({ monitor }) { // Error recovery action:

33 monitor.data.response.resume ();

34 monitor.destroy () // Dispose the related monitor instance

35 },

36
37 match: function ({ monitor }) { // Action to be performed if the specification is validated

38 monitor.destroy () // Dispose the related monitor instance

39 }

40 }

Figure 5: Monitor implementation for detecting and recovering the flawed http.get usage pattern introduced in Example 2.

(2) Fixed+MOP: Same application as the Fixed configuration,
monitored with NodeMOP. Since the application is fixed
this configuration allow us to measure the instrumentation
overhead introduced by the property verification;

(3) Flawed+MOP: Flawed applications as reported in Example 1
and Example 2, monitored and recovered with NodeMOP.
This configuration allow us to measure the instrumentation
overhead together with the execution time of the recovery
operation.

We evaluate the instrumentation overhead as slowdown fac-
tor, i.e., the ratio between the execution time of the instrumented
configurations and the Fixed configuration. As the flawed ver-
sions eventually lead to VM crashes, their execution time cannot
be measured without the error recovering operation provided by
NodeMOP.

As introduced in Section 3, we fixed the flawed code intro-
duced in Example 1 by replacing the call to fs.write with a call
to fs.writeSync. With this modification, no monitor instances
are allocated by NodeMOP, because the property specification

1799

0 10 20 30 40 50 600

100

200

300

Time (seconds)

M
em

or
y
(M

B)

Figure 6: Memory usage of the flawed http request intro-
duced in Example 2. Steep descents represent garbage col-
lector activity.

0 10 20 30 40 50 600

100

200

300

Time (seconds)

M
em

or
y
(M

B)

Figure 7: Memory usage of flawed http-request introduced
in Example 2 recovered with NodeMOP. Steep descents rep-
resent garbage collector activity.

traces all invocations to fs.write, but does not monitor calls to
fs.writeSync. Figure 8 shows the performance of the fs.write
example as the mean of the slowdown factors collected in 20 runs.
The slowdown factor introduced by the Fixed+MOP version is as low
as 1.039x. This is expected, since NodeMOP does not instrument
functions that are not targeted by its formal specification. When the
flawed application is executed, the slowdown factor introduced by
the NodeMOP instrumentation together with recovery operations
is 1.439x.

Recovering the flawed code in Example 2, a monitor instance
is created for each request and destroyed with the .destroy()
function call3. In this case NodeMOP instruments calls to the http
APIs. Therefore, the slowdown factor introduced by the Fixed+MOP
version is 1.189x and 1.377x by the Flawed+MOP version.

Hence, our initial evaluation shows that NodeMOP allows devel-
opers to monitor applications introducing an average slowdown
factor of 1.114x and to recover from flawed applications introduc-
ing an average slowdown factor of 1.408x. Although the collected
instrumentation overhead is significant we do not consider it pro-
hibitive for most applications.

6 RELATED WORK
Prevailing RV frameworks rely on AOP [24] with AspectJ [23] to
weave the monitoring logic into the observed program. Because

3To reduce the instrumentation overhead it is possible to reuse monitor instances
instead of instantiate and destroy one monitor for each request. We omit the code for
such more complex monitor definition due to space constraints.

Fixed+MOP Flawed+MOP
1

1.1

1.2

1.3

1.4

1.5

1.039x

1.439x

Sl
ow

do
w
n
Fa
ct
or

Figure 8: NodeMOP slowdown for Example 1.

Fixed+MOP Flawed+MOP
1

1.1

1.2

1.3

1.4

1.5

1.189x

1.377x

Sl
ow

do
w
n
Fa
ct
or

Figure 9: NodeMOP slowdown for Example 2.

AspectJ supports weaving of Java source code and/or bytecode
only, the aforementioned RV frameworks are limited to Java [11]
or Android [40, 41] applications, or to code that is compiled to Java
bytecode (e.g., Scala). More advanced approaches are presented in
the literature to support runtime verification in distributed [29, 31]
and multi-language [30] systems. Even in these approaches, the
target languages are compiled and statically typed, so the instru-
mentation is based on compilation-time weaving techniques. Hence,
prevailing RV frameworks are not applicable to dynamically typed
languages. Although RV is very important in such a context due to
complex (and error-prone) programmingmodels, frameworks weav-
ing monitoring code at compilation-time cannot help developers
since they are limited to compiled languages.

Runtime verification has been largely and successfully applied
in the context of web services [14, 19, 20]. Instead of monitoring
the JavaScript control flow, existing approaches provide a MOP
specification in order to verify that the data exchanged between
clients and servers (e.g., XML or JSON messages) satisfy a given
protocol.

In a recent work, Ancona et al. [6] introduced the first RV tool
that target Node.js, based on the parametric trace expressions
model [5], an extension to trace expressions [3, 4] expressly de-
signed for parametric RV. Although the formal approach is elegant
and the parametric trace expression formalism is well suited for
RV, the proposed tool is limited to error detection and it does not
offer error recovery strategies that are usually integrated in MOP
tools, like NodeMOP. Furthermore, their tool is based on Jalangi,
which is known to be inefficient compared to NodeProf [39], besides
not supporting the latest ECMA2018 features [43]. To the best of
our knowledge, NodeMOP is the first MOP tool that targets the
JavaScript language and Node.js applications.

1800

7 CONCLUSIONS
In this paper, we have introduced NodeMOP, the first practical
MOP framework for Node.js applications. NodeMOP is built on top
of NodeProf, an efficient dynamic analysis framework for Node.js.
NodeMOP allows the developer to specify properties in an intu-
itive way. NodeMOP supports error recovery procedures, allowing
developers to define custom actions to be executed when a speci-
fication is violated. Preliminary evaluation results show that the
slowdown factor introduced by NodeMOP when applied to a cor-
rect application is 1.039x if the application does not use monitored
functions and 1.439x if it does. Moreover, the slowdown factors that
we collected by recovering flawed applications with NodeMOP are
1.377x and 1.439x.

In ongoing research, we are extending NodeMOP with more for-
malisms (e.g., context-free grammars, linear temporal logic, string
rewriting system). We also plan to improve NodeMOP by defining
a high-level domain-specific language for JavaScript code weaving
and forMOP specifications, extending the generalMOP syntax [35].

ACKNOWLEDGMENTS
The work presented in this paper was supported by Oracle (ERO
project 1332). We thank the VM Research Group at Oracle for their
support. Oracle, Java, and HotSpot are trademarks of Oracle and/or
its affiliates. Other names may be trademarks of their respective
owners.

REFERENCES
[1] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,

Frank Tip, and Koushik Sen. 2017. Repairing Event Race Errors by Controlling
Nondeterminism (ICSE). IEEE Press, Piscataway, NJ, USA, 289–299.

[2] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. 2014.
Understanding JavaScript Event-based Interactions (ICSE). ACM, New York, NY,
USA, 367–377.

[3] Davide Ancona, Viviana Bono, and Mario Bravetti. 2016. Behavioral Types in
Programming Languages. Now Publishers Inc., Hanover, MA, USA.

[4] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2016. Comparing
Trace Expressions and Linear Temporal Logic for Runtime Verification. In Essays
Dedicated to Frank De Boer on Theory and Practice of Formal Methods - Volume
9660. Springer-Verlag, Berlin, Heidelberg, 47–64.

[5] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2017. Parametric
Runtime Verification of Multiagent Systems. In AAMAS ’17. 1457–1459.

[6] Davide Ancona, Luca Franceschini, Giorgio Delzanno, Maurizio Leotta, Marina
Ribaudo, and Filippo Ricca. 2017. Towards Runtime Monitoring of Node.js and
Its Application to the Internet of Things. In ALP4IoT. 27–42.

[7] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A Survey of Dynamic Analysis
and Test Generation for JavaScript. ACM Comput. Surv. 50, 5, Article 66 (Sept.
2017), 36 pages.

[8] Walter Binder, Daniele Bonetta, Cesare Pautasso, Achille Peternier, Diego Mi-
lano, Heiko Schuldt, Nenad Stojnic, Boi Faltings, and Immanuel Trummer. 2011.
Towards self-organizing service-oriented architectures. In SERVICES 2011. IEEE,
115–121.

[9] Daniele Bonetta, Achille Peternier, Cesare Pautasso, and Walter Binder. 2010. A
multicore-aware runtime architecture for scalable service composition (APSCC
’10). IEEE, 83–90.

[10] Feng Chen and Grigore Roşu. 2003. Towards Monitoring-Oriented Programming:
A Paradigm Combining Specification and Implementation (Electronic Notes in
Theoretical Computer Science. RV ’03), Vol. 89(2). Elsevier, 108–127.

[11] Feng Chen and Grigore Roşu. 2005. Java-MOP: A Monitoring Oriented Program-
ming Environment for Java. In TACAS ’05 (LNCS), Vol. 3440. Springer-Verlag,
546–550.

[12] Feng Chen and Grigore Roşu. 2007. MOP: An Efficient and Generic Runtime
Verification Framework. In OOPSLA. ACM press, 569–588.

[13] Feng Chen and Grigore Roşu. 2009. Parametric Trace Slicing and Monitoring
(TACAS ’09). Springer-Verlag, Berlin, Heidelberg, 246–261.

[14] Normann Decker, Franziska Kühn, and Daniel Thoma. 2014. Runtime Verification
of Web Services for Interconnected Medical Devices (ISSRE ’14). 235–244.

[15] Tzilla Elrad, Robert E. Filman, and Atef Bader. 2001. Aspect-oriented Program-
ming: Introduction. Commun. ACM 44, 10 (Oct. 2001), 29–32.

[16] Node.js Foundation. 2018. About | Node.js. https://nodejs.org/en/about/
[17] Node.js Foundation. 2018. File System | Node.js v8.11.3 Documentation. https:

//nodejs.org/docs/latest-v8.x/api/fs.html
[18] Node.js Foundation. 2018. HTTP | Node.js v8.11.3 Documentation. https:

//nodejs.org/docs/latest-v8.x/api/http.html
[19] Sylvain Hallé, Tevfik Bultan, Graham Hughes, Muath Alkhalaf, and Roger Ville-

maire. 2010. Runtime Verification of Web Service Interface Contracts. IEEE
Computer 43, 3 (2010), 59–66.

[20] Sylvain Hallé and Roger Villemaire. 2010. Runtime Verification for the Web. In
Runtime Verification, Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus
Havelund, Insup Lee, Gordon Pace, Grigore Roşu, Oleg Sokolsky, and Nikolai
Tillmann (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 106–121.

[21] Quinn Hanam, Fernando S. de M. Brito, and Ali Mesbah. 2016. Discovering Bug
Patterns in JavaScript (FSE 2016). 144–156.

[22] Casper S. Jensen, Anders Møller, Veselin Raychev, Dimitar Dimitrov, and Martin
Vechev. 2015. Stateless Model Checking of Event-driven Applications (OOPSLA).
ACM, New York, NY, USA, 57–73.

[23] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ (ECOOP). Springer-Verlag,
London, UK, UK, 327–353.

[24] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-Oriented Programming. In
ECOOP. 220–242.

[25] Oracle Labs. 2018. GraalVM. https://www.graalvm.org/
[26] Oracle Labs. 2018. graalvm/graaljs: A Javascript implementation built on

GraalVM. https://github.com/graalvm/graaljs
[27] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime

verification. The Journal of Logic and Algebraic Programming 78, 5 (2009), 293 –
303. The 1st Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS).

[28] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for Reasoning
About JavaScript Promises. Proc. ACM Program. Lang. 1, OOPSLA, Article 86
(2017), 24 pages.

[29] S. Malakuti, M. Aksit, and C. Bockisch. 2011. Distribution-Transparency in
Runtime Verification. 328–335.

[30] S. Malakuti, C. Bockisch, and M. Aksit. 2009. Applying the Composition Filter
Model for Runtime Verification ofMultiple-Language Software (ISSRE ’09). 31–40.

[31] Somayeh Malakuti Khah Olun Abadi, Jong Hyuk Park, Mohammad Obaidat,
Mehmet Aksit, and Christoph Bockisch. 2011. Runtime Verification in Distributed
Computing. Journal of convergence 2, 1 (30 6 2011), 1–10.

[32] P. O. Meredith, D. Jin, F. Chen, and G. Rosu. 2008. Efficient Monitoring of
Parametric Context-Free Patterns (ASE ’08). IEEE Computer Society, Washington,
DC, USA, 148–157.

[33] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and SignatureGeneration of Exploits on Commodity
Software. In NDSS.

[34] npm Inc. 2018. npm. https://www.npmjs.com/
[35] Formal Systems Laboratory (FSL) of the Department of Computer Science at the

University of Illinois. 2018. MOP4 Syntax. http://fsl.cs.illinois.edu/index.php/
MOP4_Syntax

[36] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012. Race
Detection for Web Applications. SIGPLAN Not. 47, 6 (June 2012), 251–262.

[37] Michael Pradel and Koushik Sen. 2015. The Good, the Bad, and the Ugly: An
Empirical Study of Implicit Type Conversions in JavaScript. In ECOOP, John Tang
Boyland (Ed.), Vol. 37. Dagstuhl, Germany, 519–541.

[38] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework for
JavaScript (ESEC/FSE). ACM, New York, NY, USA, 488–498.

[39] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Effi-
cient Dynamic Analysis for Node.Js (CC). ACM, New York, NY, USA, 196–206.

[40] Haiyang Sun, Alexander North, and Walter Binder. 2017. Multi-Process Runtime
Verification for Android (APSEC ’17). 701–706.

[41] Haiyang Sun, Andrea Rosà, Omar Javed, and Walter Binder. 2017. ADRENALIN-
RV: Android Runtime Verification Using Load-TimeWeaving (ICST ’17). 532–539.

[42] ASM Team. 2018. ASM. https://asm.ow2.io/
[43] ECMAScript Team. 2018. ECMAScript®2018 Language Specification. https:

//www.ecma-international.org/ecma-262/9.0/index.html
[44] JavaMOP Team. 2018. Javamop/Usage.md at master - runtimeverification/java-

mop. https://github.com/runtimeverification/javamop/blob/master/docs/Usage.
md

[45] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical Partial Evaluation for High-performance Dynamic Language Runtimes.
SIGPLAN Not. 52, 6 (June 2017), 662–676.

1801

https://nodejs.org/en/about/
https://nodejs.org/docs/latest-v8.x/api/fs.html
https://nodejs.org/docs/latest-v8.x/api/fs.html
https://nodejs.org/docs/latest-v8.x/api/http.html
https://nodejs.org/docs/latest-v8.x/api/http.html
https://www.graalvm.org/
https://github.com/graalvm/graaljs
https://www.npmjs.com/
http://fsl.cs.illinois.edu/index.php/MOP4_Syntax
http://fsl.cs.illinois.edu/index.php/MOP4_Syntax
https://asm.ow2.io/
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://github.com/runtimeverification/javamop/blob/master/docs/Usage.md
https://github.com/runtimeverification/javamop/blob/master/docs/Usage.md

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20190107091858
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

