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Abstract—With the popularity of Node.js, asynchronous, event-
driven programming has become widespread in server-side ap-
plications. While conceptually simple, event-based programming
can be tedious and error-prone. The complex semantics of
the Node.js event loop, coupled with the different flavors of
asynchronous execution in JavaScript, easily leads to bugs. This
paper introduces a new model called Async Graph to reason
about the runtime behavior of applications and their interactions
with the Node.js event loop. Based on the model, we have
developed AsyncG, a tool to automatically build and analyze the
Async Graph of a running application, and to identify bugs related
to all sources of asynchronous execution in Node.js. AsyncG is
compatible with the latest ECMAScript language features and
can be (de)activated at runtime. In our evaluation, we show
how AsyncG can be used to identify bugs in real-world Node.js
applications.

Index Terms—JavaScript, Dynamic Analysis, Event-driven
Programming, AsyncG

I. INTRODUCTION

Node.js [1] has become a major platform for server-side
Web development. One key reason for its success is its non-
blocking I/O runtime, backed by a high-level, event-driven,
asynchronous programming model. Thanks to Node.js, such an
event-driven programming model has emerged as a dominant
programming abstraction for server-side Web development,
and has recently also been adopted in other major platforms
such as Java (via the new Reactive Streams API [2]), Swift [3],
and Go [4].

Event-driven programming with an event loop [5] is concep-
tually simple: the event loop listens for events and triggers an
event handler (e.g., callback functions) when an event occurs.
The event loop in Node.js itself is executed by a single thread,
but it can poll events from other threads (e.g., native threads for
I/O), and thus makes Node.js capable of handling thousands
of concurrent client requests.

Despite the simplicity of the model, the exact semantics
of the Node.js event loop for different APIs is quite complex

and can easily lead to bugs. For example, a simplified version
of a common Node.js bug reported on StackOverflow (SO)1

is depicted in Fig. 1. The problematic code line causing the
bug is highlighted in red (-), while a possible fix replacing
the buggy line is highlighted in green (+). The application
creates an HTTP server to listen for incoming connections
and performs some computation in the compute function. The
developer splits the execution of the entire computation into
multiple recursive steps, and uses process.nextTick to defer
successive calls to compute to be executed in the “future”.
The overall goal is to avoid blocking the request processing
of the server by scheduling some of the computations for a
later iteration of the event loop, such that an incoming HTTP
request can be handled in between. However, the server started
by this code ends up in an infinite recursion of the function
compute, and is unable to process any incoming request.
The fix is to replace nextTick with setImmediate. While
nextTick and setImmediate both provide ways to schedule a
callback function for future execution, internally they interact
with different event queues: tasks created with setImmediate
are processed fairly with respect to incoming HTTP requests,
while tasks created using nextTick are processed with the
highest priority as soon as they are produced. Given such
different scheduling semantics, the event loop will process
only calls to compute, without allowing the HTTP server to
process any incoming request.

In addition, developers can build complex execution pat-
terns combining different asynchronous APIs such as simple
task dispatch (e.g., nextTick, setImmediate, timers), non-
blocking I/O, as well as those to manage asynchrony such as
EventEmitter [6], Promise (introduced since ECMAScript
6 [7]) and async/await (introduced since ECMAScript 8 [8]).
Because of the subtle difference in the scheduling semantics

Artifact available at: https://doi.org/10.5281/zenodo.2328360
1https://stackoverflow.com/questions/33330277
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1 const http = require(’http’);

2 function compute() {

3 performSomeComputation();

4 // recursive nextTick blocking event loop

5 - process.nextTick(compute);

5 + setImmediate(compute);

6 }

7 http.createServer((request, response) => {

8 response.end(’Hello World!’);

9 }).listen(5000);

10 compute();

Fig. 1. Simplified SO-33330277 bug of a misuse of nextTick instead of
setImmediate

and complicated execution patterns, debugging event-based,
asynchronous applications is notoriously hard and tedious.
Static analysis is used in [9], [10] to identify problematic
code patterns in Node.js with significant limitations [11] due
to the dynamic nature of JavaScript. Other tools visualizing
callback executions [12]–[14] do not support all the language
features (e.g., event emitters, promises, or async/await), and
cannot reflect the complicated callback scheduling of the event
loop, which is important to pinpoint API misuses due to
misunderstanding the event loop.

In this paper, we introduce a graph-based model of asyn-
chronous, event-based Node.js applications, called Async

Graph (AG). The AG of an application models all callback
scheduling in the Node.js event loop and can be used by
developers or automated tools to reason about the actual
execution of a Node.js application. Based on the model, we
have developed a tool (called AsyncG) to automatically build
the AG using instrumentation techniques. AsyncG can track
all kinds of asynchrony sources, and is able to automatically
identify certain kinds of bugs related to event scheduling in an
application at runtime. To the best of our knowledge, AsyncG
is the first tool to detect bugs in Node.js applications caused
by the misuse of a combination of different event-based APIs.
AsyncG is pluggable, and can be enabled/disabled at runtime.
When enabled, it introduces an overhead that is compatible
with that of an application debugger.

In summary, the paper makes the following contributions:
• We introduce a new model, Async Graph, to reason about

the execution of event-driven Node.js applications.
• We implement AsyncG, an instrumentation-based tool

which can build the AG of a running application at
runtime.

• AsyncG is able to automatically analyze the AG of an
application and report warnings about potential bugs and
code smells.

• AsyncG can detect common Node.js event-related bugs,
including well-known programming mistakes [10], [15]
as well as newly-found bug patterns.

II. BACKGROUND

In this section, we provide a detailed introduction to differ-
ent kinds of asynchronous execution and the event-loop model
of Node.js.

A. Sources of Asynchronous Execution

In essence, a Node.js application can be considered a set
of JavaScript callback functions, executed by a single thread
called event loop. The execution of callbacks is determined by
the Node.js event loop based on the application state and its
interaction with the underlying Operating System (OS). More
precisely, callbacks can be executed as a consequence of one
of the following two sources of asynchronous execution:

• Self-scheduling. The application has deferred the exe-
cution of a given callback function using a JavaScript
or Node.js API including promises, process.nextTick(),
and setImmediate. Depending on the API, the applica-
tion has different guarantees on when a deferred callback
will be executed.

• External scheduling. The application has registered a
callback for execution upon an event happening in the OS.
It can be I/O related, e.g., an application may register a
callback to be executed whenever a new client connects to
a TCP port. It can also be timing related, e.g., a callback
can be registered to be executed after a given time
(setTimeout). Such callbacks are scheduled by the OS,
which interacts with the Node.js event loop by notifying
it, providing event-specific data.

Besides these two sources of asynchronous execution,
Node.js also offers the EventEmitter API [6] for explicit
event emission on special objects called emitters. An emitter
object can register callbacks (listeners) on named events, and
such listeners will be called when such events are emitted.
Event emission happens either via explicit function calls or
via built-in (runtime) mechanisms. Events are widely used in
I/O-related asynchronous APIs [6], e.g., the net.Server built-
in object emits a “connect” event each time a new connection
is established. Applications can simply register event listeners
for “connect” events to handle incoming data.

It is common that asynchronous execution APIs are used to-
gether, leading to a chain of callback registrations, scheduling,
and execution. A simple example is shown in the following
code snippet:

1 http.createServer(function accept(req, res) {

2 let body = [];

3 req.on(’data’, function data(chunk) {

4 body.push(chunk);

5 }).on(’end’, function() {

6 setImmediate(function defer(){

7 res.end(process(body));

8 }

9 });

10 });

The code defines a simple HTTP server that accepts data
from an incoming request and replies after processing the input
data. The code exercises several APIs. First, createServer is
an I/O scheduling API, which (internally) creates an emitter
listening to the “request” event from the OS when an HTTP
request is received. Second, every HTTP request is also
modeled as an emitter to receive data from the connection,
and after the data has been received (and stored in body), the
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(a) Event-loop queues (b) Micro-task queues

Fig. 2. Callback execution phases in the Node.js event loop

“end” event is emitted. Then, the application defers the poten-
tially heavy processing of the input data with self-scheduling
(setImmediate), allowing other I/O events to be scheduled,
and finally the server will respond with the processed data.
Here, we see that multiple asynchronous APIs can be mixed
with a processing chain ( http-request → data receiving →

setImmediate → data processing → response ).

B. Node.js Event-loop Dispatch

External and self-scheduling callbacks are executed by the
Node.js event loop following different event processing strate-
gies that greatly depend on the API that is being used to reg-
ister the callback. As shown in Fig. 2, the Node.js event loop
internally handles several task queues, used by external and
self-scheduling sources of asynchronous execution to register

callbacks. These queues are polled by the event loop, and when
an entry is found in the queue, the corresponding callback
is executed by the JavaScript execution engine. The queues
are not processed in round-robin order. Instead, the Node.js
event loop performs multiple processing phases as depicted
in Fig. 2(a). A Node.js application starts in a main phase,
where the JavaScript engine executes the main application
code, which can register callbacks and push new tasks into
the queues. If there are no pending tasks in the current phase,
the event loop will move to the next phase. Between each
run of the event loop, Node.js checks whether it is waiting
for some asynchronous I/O or timer events, and terminates if
there are none [5]. The details of each phase are discussed
below. A complete formal description of the Node.js event
loop semantics can be found in [16].

• Micro tasks: Micro tasks have higher priority than all
other tasks and can be scheduled between any other
phases by the Node.js event loop. There are two kinds
of microtasks: nextTick (callbacks scheduled via pro-
cess.nextTick) and promise (callbacks scheduled via
promise resolve or reject [7]). As shown in Fig. 2(b),
nextTick tasks have higher priority than promise tasks,
while both tasks can schedule each other.

• Timers: The timers phase processes callbacks scheduled
by setTimeout once after a timeout, while setInterval
schedules callbacks repeatedly (after each elapsed time
interval).

• Immediates: The immediates phase deals with callbacks
scheduled with the setImmediate API.

• I/O: External events that map to interactions with the OS
are scheduled in the I/O phase. Examples of callbacks
associated with this queue are functions to read data from
a file, to accept an incoming connection, etc.

• Close Handlers: This phase deals with cleanup and low-
priority operations, such as callbacks registered using the
on(‘close’) event handler [6]. Such events are typically
related to external interactions with the OS (e.g., a socket
disconnection), but are treated with the lowest priority by
the event loop.

III. MOTIVATION AND CHALLENGES

In this section, we motivate the need for a unified model
to reason about asynchronous execution in Node.js, and we
discuss the related challenges.

A. Motivation

The complex semantics of the Node.js event loop and
the different user-level APIs enabling callback scheduling
can easily result in bugs. Hence, our primary motivation is
to help programmers understand the timing of the event-
loop scheduling and find out the relations between callback
registration and execution. As described in the example of
Fig. 1, misusing an asynchronous API (e.g., due to lack of
knowledge of the event-loop scheduling) can lead to program
failures. Bugs can result from a scheduling of callbacks that
is not expected by the programmer, as in the following code
snippet.

1 let foo;

2 Promise.resolve({}).then( (v) => {

3 foo = v;

4 });

5 setTimeout(() => {

6 foo.bar = function() { /* ... */ };

7 }, 0);

8 process.nextTick(() => {

9 foo.bar();

10 });

This code snippet results in a program crash caused by
the (wrong) assumption that the callbacks would be executed
in the registration order: promise (L2) – setTimeout (L5)
– nextTick (L8), whereas the real execution order of the
callbacks is L8 – L2 – L5.

Another motivation is to find bugs related to promises and
emitters, which are two widely used APIs in Node.js applica-
tions. Different from other asynchronous APIs, both promises
and emitters have their own ways of scheduling callbacks.
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Fig. 3. AG for the code example in Fig. 1

Finding bugs related to promises requires knowledge of how
they are chained [15], while emitters manage callbacks in
named events and are widely used for handling I/O events.
Understanding promises and emitters helps find bugs in server-
side Node.js applications [10], [15].

B. Challenges

The ultimate goal of our research is to empower developers
with a debugger to reason about the runtime behavior of
Node.js applications, allowing them to understand the actual
order of callback execution in an application, and to identify

(potential) sources of bugs or code smells. Understanding
the callback execution order is crucial, as a wrong execution
order is the main source of bugs related to asynchronous
execution [11], [17], [18]. There are four main challenges in
developing such a tool:

• Formalization. The tool needs to represent asynchronous
executions using a new abstraction, since traditional rep-
resentations of program execution (such as call trees and
application execution stacks) do not allow one to reason
about callback scheduling and its relation with APIs such
as promises and emitters.

• Visualization. A proper visual representation of the ex-
ecution of asynchronous callbacks is crucial to clearly
illustrate the event loop scheduling of an application
execution.

• Implementation. The tool needs to be able to track all
sources of asynchronous execution in an application (such
as e.g. API calls and external events) and map them to the
corresponding event queue. The implementation should
be transparent to the application so that it causes no side-
effects to the application execution.

• Automatic Bug Detection. The tool should be able to
identify bugs which cannot be easily found with existing
tools, especially the bugs which need understanding of
the event loop scheduling and bugs involving promises
and emitters.

Our research aims at solving these challenges. In the follow-
ing section we introduce AG, corresponding to our proposed
solution to both formalization and visualization, while Sec-
tion V presents the implementation of our tool AsyncG and
Section VI shows the bugs that can be detected.

IV. ASYNC GRAPH (AG)

An Async Graph is a time-oriented graph that explicitly
describes the asynchronous flow of execution in a Node.js
application. Each node in the graph belongs to a specific
event-loop tick, which encodes “when” a specific application
event happens with regards to the global execution flow of
the application. Each node is also related to a source-code
location, which corresponds to “where” the event originates
in the application such that readers of the graph can map each
node to the originating code location.

A. Graph Structure

Event-loop ticks are displayed using vertical lines that
“split” the graph into multiple blocks: each tick corresponds
to a single execution of an event-loop phase as described in
Section II-B. We name the ticks as ti ∶ PhaseName, where
t1 ∶ main is the first tick corresponding to the start of a
program. Each tick may contain one or more nodes of the
following types:

• ⬜ – a Callback Registration (CR) node represents an API
use which registers one or more callbacks to be executed.
Depending on the API (self-scheduling or external), the
callback may be executed instantly (e.g., the execution of
a promise constructor), in the following micro-task tick
(promise, nextTick), or in successive ticks of the event
loop (I/O, timers, immediates).

• ◯ – a Callback Execution (CE) node corresponds to the
actual execution of a callback. A CE node is positioned in
the event-tick block corresponding to where it happens.

• ★ – a Callback Trigger (CT) node stands for an API
use that explicitly leads to the execution of a (previously
registered) callback. A CT node can be either an event
emission (using the emitter API) or a promise action
(resolve or reject).

• � – an Object Binding (OB) node corresponds to the
creation of a promise or emitter object.

Two different kinds of edges are possible between node α

and node β in the graph:
• A direct edge (expressed as α → β) means that α causes

the execution of β:
– ⬜∣★ → ◯: a CE is always caused by its registra-

tion (⬜ → ◯), while a CE can also be caused by a
CT (★ → ◯) in the case of a promise resolve/reject
action or event emission.
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– ◯ → : this “happens-in” edge is used to show
the relation between a CE and any nodes that are
executed during this CE.

• A dashed connection (expressed as α ⇠ β) describes the
following relations between α and β:

– ⬜ ⇠ ◯: this edge shows the binding between a CR
and the corresponding CE. With this edge, ⬜ → ◯

for emitters and promises can be inferred from the
chain ★ → ◯ ⇢ ⬜ and thus can be omitted in the
graph.

– � �

relation
����� : the edge shows the “relation” in the

label between a node with a promise or emitter OB
(�). For example, adding a new listener for an emit-
ter object will be represented by � �

connection
������� ⬜,

where connection is the name of the event. Relations
between a promise created by another promise via
APIs (such as then,catch,all and race) can be shown
in edges like � �

p
�� �, where p is the name of

the promise API. In addition, � �

link
��� � is used

to join the promise returned from a then callback to
the corresponding promise chain.

B. Examples

AGs describe both the asynchronous execution flow of an
application (i.e., when a callback is executed), as well as the
relations between callbacks (i.e., why a callback is executed,
and what causes its execution). Such information is crucial
to understand bugs related to the scheduling of asynchronous
code in Node.js. In the following sections, we demonstrate
how bugs can be identified using an AG. For clarity, each
node in the graph has a name starting with the line number of
the associated source-code location (e.g., L3, or ∗ for internal
libraries). Warnings are highlighted with � next to the node.

1) Example 1: The AG for code in Fig. 1 tested with
a client sending new requests is depicted in Fig. 3(a). As
the graph grows infinitely due to the recursive nextTick bug,
we only show the first 3 ticks which suffice to illustrate the
problem.

In t1, CR (⬜−L7 ∶ createServer) registers the callback to
handle incoming connections. In Node.js, http.createServer
registers the callback with an internal event emitter (∗ ∶ E1) on
the named event “request”. As the callback is never executed
although there are incoming connections, a warning of Dead

Listener is reported. Warnings about recursive nextTick are
given in the following ticks starting from t2, where nextTick
is used for registering the same function in a nextTick phase.

The AG for a fixed version of the application is shown in
Fig. 3(b). Using setImmediate instead of process.nextTick,
the callback will be scheduled for execution in an immediate
phase (e.g., t2, t3 and t5). Unlike the micro task introduced
in Section II which is always scheduled first, the immediate
queue will allow I/O events to be scheduled in between, e.g.,
createServer is scheduled in t3 when there is an incoming
connection.

2) Example 2: The second example corresponds to a more
complicated application combining emitters and promises. The
code with the fix and the AGs are shown in Fig. 4 and Fig. 5.

1 var ee = new EventEmitter();

2 var p = new Promise(

3 resolve => { resolve(0); }

4 );

5
6 //resolved in a different loop

7 p.then(() => {

8 //unused listener

9 ee.on(’foo’, () => {

10 //...

11 })

12 -}); //missing exception handler

12 +}).catch((err)=>{});

13
14 //dead emit

15 -ee.emit(’foo’);

15 +setImmediate(()=> {ee.emit(’foo’)});

Fig. 4. Example 2: combination of promises and emitters

The bug in the example results from the misunderstanding
of the implicit event-loop scheduling of promises: although the
promise is constructed (⬜−L2) and resolved (★−L3) in t1,
the reaction of the promise registered via then (◯ − L7) is
scheduled in the successive tick. As a result, the “foo” event
is emitted (★ − L15) for the emitter (� − L1) before the
listener (⬜−L9) is registered. Thus, a dead-emit error (L15)
and a dead-listener warning (L9) can be automatically found
and highlighted in the graph.

As shown in Fig. 4, the fix for this bug is to delay the event
emission using setImmediate, which has a lower priority
than the promise (micro-task) queue. Fig. 4 also illustrates the
ability of AGs to model the promise chain [15] with object-
binding nodes. Promise P2 is chained from another promise
P1 via P1.then in line 7. The resolve action (★ − L3)
reveals that the value is passed from p1 to p2 during the
CE (◯ − L2) scheduled instantly after the CR(⬜ − L2) of
the promise constructor. As shown in Fig. 4(a), a missing-
exception-handling warning is reported for p2, as there is no
catch or any exception handler registered at the end of a
promise chain. AsyncG analyzes the structure of the promise
chain and is able to raise such warnings without the need to
have an actual exception thrown during the execution.

V. BUILDING AG WITH ASYNCG

Here, we describe AsyncG, an automatic debugging tool
that dynamically builds and analyzes the AG of a running ap-
plication to identify potential bugs. AsyncG relies on runtime
instrumentation of a Node.js application. First, we introduce
the instrumentation technique we are using. Then, we discuss
the main steps to build an AG and visualize it.

A. Instrumentation

AsyncG is based on NodeProf [19], an instrumentation
framework for Graal.js [20]. Using NodeProf instead of a
source-code instrumentation framework such as Jalangi [21] or
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Fig. 5. AGs for the code example in Fig. 4

API rewriting [12], [13], [22] has several benefits: (1) Node-
Prof directly instruments the internal Abstract Syntax Tree
(AST) representation in the JavaScript engine, and is trans-
parent to the application, whereas other approaches need to
wrap the original source code, resulting in extra frames on the
call stack that are observable by the application. (2) In contrast
to other approaches, NodeProf supports the instrumentation of
internal libraries of Node.js, allowing us to track the use of
asynchronous APIs within library code. (3) NodeProf supports
the latest Node.js features, such as e.g. async/await, which are
currently not covered by any other framework.

B. Algorithms for Building AG

AsyncG uses NodeProf to intercept all the function calls of
the monitored Node.js application. To this end, AsyncG exe-
cutes the callback functionEnter(func, receiver, args), before
each function call (where func is the function being called,
receiver is the receiver object, and args is the argument
array). The callback functionExit(func, retVal) is executed at
the end of a function call (where retVal is the function’s return
value). The algorithms below show how AsyncG processes
function calls to build the AG. Due to space limitations, we
only show the main algorithms for identifying event-loop ticks,
asynchronous callback registration, and mapping a callback
execution to the corresponding callback registration.

Algorithm 1 Shadow stack
1: procedure FUNCTIONENTER(func, receiver, args)
2: if sstack.isEmpty() then

3: type ← getIterType(func)
4: curTick ← new Tick(curTick.idx+1, type)
5: sstack.push(func)
6: procedure FUNCTIONEXIT(func, retVal)
7: popped ← sstack.pop()
8: assertEqual(poped, func)
9: if sstack.empty() and !curTick.nodes.empty() then

10: graph.appendIter(curTick)

1) Identifying Event-loop Ticks: Thanks to the ability to
instrument Node.js internal libraries, AsyncG is able to iden-
tify the start of an event-loop tick by maintaining a shadow

stack, based on the fact that a new event-loop tick ti starts only
when such a shadow stack is empty. As shown in Algorithm 1,
the shadow stack is stored in sstack, and the current active
tick is stored in curTick, which are global variables exposed
also to the other algorithms. If AsyncG is enabled in the
middle of the run when the real stack might not be empty, it
refers to the current stack trace provided by Node.js, e.g., via
console.trace, and finds out when the current tick will finish.
Then it will construct the shadow stack from the following
tick.

Algorithm 2 Callback registration
1: procedure FUNCTIONENTER(func, receiver, args)
2: if isAsyncAPI(func) then

3: template ← getAsyncTemplate(func)
4: regInfo ← template.process(func,receiver,args)
5: crNode ← createCR(regInfo, ⬜)
6: curTick.addNode(crNode)
7: foreach cb ∈ regInfo.cbs do

8: L
cb
pending .add(crNode)

9: end foreach

2) Callback Registration: Algorithm 2 shows the opera-
tions performed by AsyncG for each callback registration.
Function isAsyncAPI (line 2) is used to check whether func
is an asynchronous API. The common information needed for
callback registration is similar, including: (1) which argument
refers to the callback function; (2) in which event-loop phase
will the callback be scheduled; (3) will the callback be
scheduled exactly once (e.g., setImmediate) or can it be
scheduled multiple times (e.g., emitter.on); (4) is the function
call bound to an emitter or promise object. In AsyncG, we
implement different templates for different APIs to fetch such
information (lines 3 and 4). Then, a CR (⬜) node crNode is
created (line 5) and included in the current tick curTick of the
graph (line 6). Finally, the newly created CR node is pushed
to a pending list Lcb

pending , which will be used in Algorithm 3
to map a CE to the corresponding CR.

3) Callback Execution: The last part of the graph building
process is to map a callback execution to the corresponding
registration, as shown in Algorithm 3. A context validator is
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applied to check if the current execution context (e.g., the type
of the current tick, current shadow stack, emitters or promises
bound to this function call) matches any pending callback
registration in the list L

func

pending . If such a valid registration
node crNode exists, it means the current function call is
registered by crNode. Then, a new CE node ceNode is
created and included in curTick, and an edge (⇠) is created
starting from ceNode to crNode showing the registration
relation. Another edge (→) to ceNode (showing the causal
relation) is also created from crNode or the trigger node (★),
if any. Finally, crNode will be removed from L

func

pending if its
callback is supposed to be executed only once.

Algorithm 3 Callback execution and registration mapping
1: procedure FUNCTIONENTER(func, receiver, args)
2: foreach crNode ∈ L

func

pending do

3: if validator.isValid(crNode, sstack, func, receiver,
args) then

4: ceNode ←createCE(crNode)
5: curTick.addNode(ceNode, ◯)
6: createEdge(ceNode, crNode, ⇠ )
7: ctNode = validator.getTriggerNode(crNode)
8: if ctNode ≠ null then

9: curTick.addNode(ctNode, ★)
10: createEdge(ctNode, ceNode, →)
11: else

12: createEdge(crNode, ceNode, →)
13: if crNode.scheduleOnce() then

14: L
func

pending .remove(crNode)

15: break
16: end foreach

C. Visualization

AsyncG can visualize the AG using the DOT language [23],
or with a JavaScript library such as D3.js [24] to show the
graph in the browser. The graphs shown in Section IV-B are
equivalent to the ones generated by AsyncG, but have been
manually adjusted to better fit in this paper.

VI. BUG DETECTION WITH ASYNCG

AsyncG builds and analyzes the AG of any running applica-
tion. Some bugs can be identified automatically by analyzing
the AG on the fly while other problematic code patterns
may need application-specific knowledge to be detected, and
AsyncG provides a visual representation of the AG to support
debugging.

A. Automatic Bug Detection

AsyncG can automatically detect bugs that belong to the
following categories:

• Scheduling bugs related to misuse of event-scheduling
APIs.

• Emitter bugs related to emitter objects.
• Promise bugs related to promises and async/await.

A description of bugs in each category is given in the
following subsections.

1) Scheduling Bugs:

a) Recursive Micro-tasks: As micro-tasks (nextTick,
promise) have a higher priority than any other task, recursively
scheduling a micro-task can lead to a scenario where callbacks
in other phases would never get scheduled. E.g., this kind
of bug occurs in line 5 of the example in Fig. 1. It can
be identified by tracking the consecutively scheduled micro-
tasks and reporting when a cycle is detected (e.g., recursively
scheduling the same callback using the process.nextTick
API).

b) Mixing Similar APIs: APIs such as
process.nextTick, setTimeout(0), or setImmediate
are similar but have different scheduling priorities. Mixing
the use of these APIs without knowing their slightly different
semantics can lead to unexpected behaviors such as the code
shown in Section III. AsyncG reports warnings when uses of
such APIs within the same tick can lead to a wrong event
execution order.

c) Unexpected Timeout Execution Order: Depending on
the internal state of the event loop, setTimeout callbacks may
be scheduled with an order that is different from the one
expected by the developer. For example, consider the following
callbacks:

1 setTimeout(foo, 101);

2 setTimeout(bar, 100);

The programmer might expect foo to be scheduled after bar
with a higher wait time. However, this is not always the case,
because the timer phase may be scheduled after both callbacks
have timed out, and the earlier registered callback (foo) will
be executed first. The proper way to schedule such callbacks
would be to use the same timeout value and make sure the
registration of foo comes after bar. AsyncG can report a
warning when two setTimeout calls are used in the same tick
and the callback registered with a higher timeout is scheduled
before any other.

2) Emitter Bugs: AsyncG automatically identifies the fol-
lowing types of bugs related to emitters. While Dead Emits

and Dead Listeners have been introduced in [10], the other
problematic code patterns are new, and are identified only by
AsyncG.

a) Dead Listeners: This code pattern happens when a
developer registers a listener on an emitter that never emits
such an event. AsyncG can provide a warning about a dead
listener to reveal unexecuted listener callbacks. For example,
this kind of bug happens in line 9 of the example in Fig. 4.

b) Dead Emits: When an event is emitted while no
listeners have been registered for it, AsyncG reports a bug.
This happens when an event has been emitted without a
listener, or before the listener is added to the emitter, or the
emitted event is illegal. For example, this kind of bug happens
in line 15 of the example in Fig. 4.

c) Invalid Listener Removal: The e.removeListener
API can be used to remove a given listener from an emitter
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object e. As discussed on SO-10444077 , a common mistake is
that a programmer may try to remove an event listener passing
a wrong function, which appears to be the same as the function
to be removed. AsyncG detects such invalid listener removals.

d) Duplicate Listeners: This is a warning reported when
the same function is registered as a listener for the same event
multiple times. It is unlikely developers would intend to do
so, and AsyncG warns developers of this bug.

e) Add Listener within Listener: AsyncG reports a warn-
ing when an event listener la is registered during the execution
of another listener lb of the same emitter. la could be lost
(never registered) if lb is never executed. A typical example
can be found in SO-17894000.

3) Promise Bugs: AsyncG detects all promise-related bugs
introduced in [15]. In addition, AsyncG detects promise bugs
related to async/await.

a) Dead Promise: AsyncG detects dead promise objects,
namely promises that are never resolved or rejected during the
current execution.

b) Missing Reaction: AsyncG detects a promise that is
resolved or rejected without any promise reaction (e.g., then,
catch, await).

c) Missing Exceptional Reject Reaction: Exceptions that
are thrown when executing a promise must be caught by regis-
tering an exception handler in the promise chain. AsyncG finds
missing exception handlers in promise chains even when the
execution does not throw any exception, by always checking
that all promise chains end with a reject reaction. This kind
of bug happens e.g. in line 12 in Fig. 4.

d) Missing Return: As the return value of the callback
registered by Promise.then will be used to resolve the next
promise in the chain, not explicitly returning in such callbacks
would return a default JavaScript undefined object. AsyncG
automatically detects such bugs by checking the return value
of the reaction of a promise.

e) Double Resolve or Reject: Once a promise is resolved
or rejected, further resolving or rejecting this promise will not
take any effect. AsyncG detects such promises with double
resolve or reject.

B. Bug Detection Using the AG

Some patterns are not necessarily leading to a bug, and
more information is required to debug the root cause. Such
bugs can be manually detected by checking the AG produced
by AsyncG.

1) Expecting Callbacks to Run Synchronously: A common
mistake of asynchronous programming with callbacks is that
a programmer can call an asynchronous API and then do
something else immediately after the asynchronous call. As the
callback will be executed in the successive event-loop ticks,
the program may not work as expected. As the execution order
can be inferred with the AG, AsyncG reveals such bugs by
visualizing the event-loop scheduling.

2) Broken Promise Chain / Unnecessary Promise: Al-
though an application may not show any of the aforementioned
bug patterns, its promises may be chained in a wrong way.

TABLE I
DETECTED BUGS

Bug name Categories
SO-38140113 Dead Emits
SO-32559324 Dead Emits
SO-33330277 Recursive Micro Tasks
SO-30515037 Recursive Micro Tasks
SO-50996870 Brokend Promise Chain
SO-28830663 Mixing Similar APIs
SO-30724625 Dead Emits
SO-43422932 Missing Reaction
SO-10444077 Invalid Listener Removal
SO-45881685 Duplicate Listeners
SO-31978347 Expect Sync Callback
GH-vuex-22 Missing Return In Then
GH-flock-133 Missing Exceptional Reaction
GH-npm-127544 Recursive Micro Tasks

Users can refer to the promise chain built by AsyncG to
identify such bugs.

VII. EVALUTION

In this section, we first discuss our experience with bug
detection using AsyncG. Then, we evaluate the performance of
AsyncG on the Node.js server-side benchmark AcmeAir [25].

A. Case Study

We validate AsyncG with common mistakes of
programmers, including 33 questions from SO reported
in previous work [10], [15], and 11 other SO questions plus 3
GitHub (GH) issues as shown in Table I. AsyncG locates the
cause of these bugs and gives detailed warnings referring to
the corresponding code locations. Below we discuss a subset
of bugs identified by us:

GH-npm-12754: This Github issue reports a recursive
nextTick bug similar to the one in Fig. 1. Such a bug
can be detected by AsyncG and the fix is to replace
process.nextTick with setImmediate.

SO-28830663: The programmer has problems
distinguishing the difference between calling a function
directly, using nextTick, or using setImmediate. AsyncG
is able to build the AG of the provided code and illustrates
the different event-loop ticks in which the callback is executed.

SO-17894000: This is a bug case which adds a listener
within another listener when using the network APIs. The
problem in the code is that the listener for the “close” event
is defined within the “data” event listener. If the connection
closes before any data has arrived, the “close” listener will
never be executed (as it has not been registered). AsyncG

2https://github.com/takefumi-yoshii/vuex-aggregate/issues/2
3https://github.com/gradealabs/flock/issues/13
4https://github.com/npm/npm/issues/12754
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Fig. 6. Running AcmeAir with AsyncG

automatically detects such a pattern.

SO-38140113: The programmer provides two similar
code snippets and asks why their behaviors are different.
Within both snippets, the programmer defines a constructor
function MyEmitter extending EventEmitter and emits
an event by calling this.emit(“e”) within the constructor.
Then, the developer defines a listener for the “e” outside the
constructor. The difference between the snippets is that the
first one directly calls this.emit(“e”), while the second calls
it inside a nextTick callback. AsyncG detects that in the first
case, the this.emit(“e”) is a dead emit because it is called
before the listener is registered. The second snippet does not
suffer from this bug because the event emission happens in
the following tick after the listener registration.

SO-50996870: The programmer uses promises for database
accesses. However, the promise chain is broken due to a
missing return in one of the reaction callbacks. AsyncG
automatically locates the reaction callback without return,
and pinpoints it in the promise chain.

SO-43422983: The programmer forgets to add the keyword
await when calling the async function which fetches a JSON
object after a timeout. Thus, the promise object instead of the
JSON value to be resolved by the promise is used by mistake
for further processing. AsyncG is able to report a missing
reaction bug for the promise returned by the async function
which is never resolved, rejected, or awaited.

GH-vuex-2: The programmer creates a list of functions,
each of them executes multiple asynchronous tasks and
creates a single promise. However, the programmer forgot to
use such promises. AsyncG reports the bug by locating these
promises without any reaction.

B. AcmeAir Benchmark

We evaluate the overhead of AsyncG with the Node.js
server-side benchmark AcmeAir [25]. AcmeAir is a flight
booking system with a server-side backend implemented in
Node.js. AcmeAir is a good benchmark to evaluate AsyncG,
as it mixes the use of different asynchronous APIs. By default,
AcmeAir uses no promises. To evaluate the promise feature
of AsyncG, we slightly modify AcmeAir’s source code to

use the promise-version interface for mongodb [27] access.
The measurements are collected with the JMeter [28] test
suite of AcmeAir simulating realistic workloads on the server.
Our evaluation is performed on an Intel(R) Xeon(R) E5-
2680 CPU with 8 physical cores (16 virtual cores) running at
2.7 GHz, equipped with 128 GB RAM, running Ubuntu Server
release 16.04 (kernel version 4.4.0-112-generic). AsyncG uses
NodeProf (August 2018) [29] with GraalVM 1.00-rc5 [30].

We evaluate the performance by measuring the throughput
of the server in terms of the number of client requests
processed per second. The result is shown in Fig. 6(a). We
can see that running AsyncG tracking all asynchronous APIs
makes the server 10 times slower, while excluding promise-
related features introduces around 2 times overhead. As the
server is heavily exercising asynchronous APIs, the overhead
caused by the dynamic analysis to build and analyze the
AG is significant. Such performance overhead is expected,
and we consider it comparable with the overhead of other
debugging tools. Moreover, such overhead has to be paid
only when AsyncG is enabled. Since AsyncG is pluggable,
it can be enabled/disabled at runtime. Once disabled, AsyncG
introduces no overhead thanks to NodeProf [19].

Fig. 6(b) shows how frequently asynchrounous APIs are
used with the average number of callback executions per
client request for the most used asynchronous APIs: pro-
cess.nextTick, emitter, and promise. On average, a client
request requires 1.31 promises for database accesses, 4.31
emitter executions for I/O, and about 8.70 nextTick executions
during the database access and I/O.

VIII. RELATED WORK

In this section, we differentiate our work from other related
approaches.

A formalization of the semantics of the Node.js event loop
is presented in [16]. Our work relies on such a formalization,
and AsyncG can be used to generate a visual representation
of such a model for a given Node.js application.

Other graph-based visualizations of Node.js applications
have been proposed. In [15], the authors propose Promise

Graphs as a model to reason about Node.js promises. Based
on promise graphs, PromiseKeeper [26] is a tool that can
automatically find promise-related bugs. Compared to such
approaches, our work is not limited to promises, and is able
to capture all sources of asynchronous executions in Node.js.
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TABLE II
COMPARISON WITH RELATED WORK

Work Methods
Event
Loop Emitter Promise Async/

Await
Tool

Availability
Full

Coverage
Automatic

Bug Detection
Semantics [16] Modelling Y N N N / / N

PromiseKeeper [26] Dynamic N N Y N Y N Y
Radar [10] Static N Y N N N Y Y

Clematis [22] Dynamic N N N N Y N N
Sahand [12] Dynamic N N N N Y N N
Domino [13] Dynamic N N Y N N N N
Jardis [14] Dynamic N Y Y N Y Y N

AsyncG Dynamic Y Y Y Y Y Y Y

In [10] the tool Radar is introduced. Radar uses static
analysis to build an event-based call graph to model the event-
driven control-flow of asynchronous JavaScript applications.
The model does not differentiate asynchronous API uses ac-
cording to the event-loop semantics. In addition, as JavaScript
is a dynamic language, static analysis approach like Radar can
over-estimate potential interleavings and face the problem of
state explosion in larger applications.

Clematis [22] is the first tool using dynamic analysis for
visualizing the event-based interactions in JavaScript web
application. Compared to AsyncG, Clematis focuses only
on client-side applications without covering the complexity
of the Node.js event loop. Sahand [12] and Domino [13]
are similar tools to visualize interactions between client and
server JavaScript applications. They rewrite (wrap) some of
the JavaScript APIs to track asynchronous callback execution
and show the interactions between client and server with
timelines in their graph. Jardis [14] is a debugger extension for
Visual Studio Code IDE [31]. Jardis provides only call-stack
information within the IDE. These tools cannot tell different
event-loop phases in their graph to find bugs related to the
complicated event-loop scheduling, and they do not model the
promises and emitters as we do in AsyncG. In addition, none
of these tools is able to instrument the Node.js internal libraries
and thus cannot detect internal asynchronous executions.

A detailed comparison of the tools is shown in Table II.
In summary, (1) We not only provide a model for the asyn-
chronous events in Node.js, but also a tool implementing the
model. (2) AsyncG is a dynamic analysis tool which is able
to deal with the dynamic nature of JavaScript. (3) Compared
to existing tools, AsyncG is able to visualize the event-loop
scheduling and supports more APIs such as emitter, promise
and async/await.

IX. CONCLUSION

In this paper, we have introduced Async Graph, a novel
model that allows one to reason about the asynchronous
control flow of Node.js applications. We have introduced
AsyncG, a tool that automatically builds the AG of a Node.js
application at runtime. AsyncG is a debugger that helps de-
velopers understand the asynchronous control flow of Node.js

applications. AsyncG analyzes the built AG to automatically
detect bugs related to all sources of asynchronous execution.

In ongoing research, we are extending AsyncG with data
flow analysis to automatically detect race conditions caused
by non-deterministic event ordering in Node.js.

ARTIFACT APPENDIX

A. Abstract

In this artifact, we provide AsyncG both as a binary
executable integrated with a customized GraalVM (which
includes our open-source dynamic instrumentation framework
NodeProf) and as an open-source release, together with the
scripts to reproduce the data for the graphs in the paper.
We have also set up a website to visualize the generated
Async Graphs (AGs) based on the output of AsyncG. The
website not only includes a few examples illustrating the
bug categories mentioned in the paper, but also allows one
to upload the output generated by AsyncG when analyzing
any custom Node.js application. The open-source release and
more detailed information can be found on GitHub: https:
//github.com/Haiyang-Sun/AsyncG.

B. Artifact Check-list

• Program: We provide AsyncG both as a binary and as an
open-source release. As mentioned in the paper, the AcmeAir
benchmark has been slightly modified to use the promise
interface of mongodb. The code is available on GitHub: https:
//github.com/Haiyang-Sun/acmeair-nodejs.

• Binary: We build the AsyncG implementation together with the
GraalVM [30]. This customized GraalVM, which also includes
our instrumentation framework NodeProf [19], [29], can run
AsyncG by simply setting some environment variables. The user
can run AsyncG for any Node.js program, producing an AG. The
AG can be visualized in our tool’s website: https://asyncgraph.
github.io/. The website is fully static, so the user may download
it and deploy it on his own server.

• Data Set:

1) We provide a list of code examples (including two exam-
ples similar to those used in the paper) with generated AGs
on our website. The user may reproduce the same AG by
running the example code with AsyncG and submitting
the output log to the website.

2) For the AcmeAir benchmark, we use the default data set
from the AcmeAir benchmark driver to run with JMeter.

• Run-time Environment:
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1) System: The provided AsyncG binary is for Linux
(Ubuntu 16.04 or Ubuntu 18.04 is recommended) x86-64.

2) To run our script for the AcmeAir benchmark, the follow-
ing software has to be installed: curl, mongodb, gnuplot.

3) JMeter 4.0 is used to run the AcmeAir benchmark driver.
• Hardware: A machine equiped with at least 16 GB memory

is recommended. (We have repeated our experiments with three
different machines with different specs.)

• Execution: A script is given to run AsyncG on any Node.js
source code to dump the AG into a log file. The log file can be
uploaded to our website for visualization. The website includes
several pre-configured examples which can be evaluated directly
online. To run the AcmeAir benchmark, the user has to start the
server first, and then use JMeter to generate the workload input.
To reproduce Fig. 6(a), the user has to measure three different
settings (each will take about 10 minutes), and integrate the
measurements into a single figure. To reproduce Fig. 6(b), the
user needs the API usage information dumped by the server
process and the JMeter log with detailed HTTP client request.

• Metrics: The throughput shown in Fig. 6(a) is the number
of requests processed per second, and the API usage shown in
Fig. 6(b) is the number of API callback executions per client
request.

• Output: The graphs for the example code are dumped into
logs and can be visualized on the website. Our script will
automatically execute the benchmark and generate Fig. 6(a) and
Fig. 6(b).

• Experiments: The evaluation is divided into two parts: the first
part shows the AGs generated by AsyncG; the second part is to
reproduce Fig. 6.

• Disk Space Required: At least 2 GB of disk space is
recommended to store the binary and the dumped log.

• Time Needed to Prepare the Workflow: About 10 minutes,
depending on the network speed.

• Time Needed to Complete the Experiments: About half an
hour.

• Public Availability: Yes. The tool is open-source and more
detailed information can be found on GitHub: https://github.
com/Haiyang-Sun/AsyncG.

C. Description

1) How Delivered: Information and scripts needed to run
AsyncG are available in our GitHub repository: https://github.com/
Haiyang-Sun/AsyncG.

2) Hardware Dependencies: We recommend testing on a ma-
chine with at least 16 GB memory.

3) Software Dependencies: We evaluate our script on our
servers running Ubuntu 16.04 or 18.04 x86-64. The following soft-
ware needs to be installed: curl, mongodb, JDK 8, and gnuplot.
Other dependencies such as JMeter will be downloaded by the script
setup.sh (included in our GitHub repository).

4) Data Sets: The default data set of the AcmeAir benchmark
is used to measure throughput. A set of code examples can be found
in code-examples in our repository.

D. Installation

1 sudo apt-get install curl mongodb gnuplot

2 git clone https://github.com/Haiyang-Sun/AsyncG.

git

3 cd AsyncG

4 ./setup.sh

E. Experiment Workflow

The visualization of a list of code examples can be found on
our website: https://asyncgraph.github.io/. The code examples can be

found in code-examples in our repository. To reproduce the AGs
generated for these examples, simply run ./scripts/runExamples.sh.
The resulting logs together with the source code in the same folder
can be uploaded and visualized on our website.

To reproduce Fig. 6(a) and Fig. 6(b), simply run ./scripts/fig-
ure6.sh. The script will run the AcmeAir benchmark with the three
different settings. The raw logs are saved in ./logs (starting with three
settings’ names, i.e., baseline, nopromise, withpromise). Each setting
will need about 10 minutes to finish, so the overall execution of this
script will be about 30 minutes. Finally, the script will use the logs
generated to plot the two figures in eps format and save them in the
figures directory.

F. Evaluation and Expected Result

The website can visualize the AGs as described in the paper. The
website not only shows the AGs, but also highlights some of the
warnings.

The throughput figure generated (figures/figure6a.eps) should re-
veal the peak throughput with a slowdown of around 10x when
using AsyncG with the promise feature enabled. Please note that
we have added some extra features to AsyncG and upgraded the
version of GraalVM. In addition, hardware configurations may affect
the performance experiments. Hence, the performance numbers can
be somewhat different from the paper.

Fig. 6(b) should reveal similar numbers of the asynchrnous events
per request as in the paper.

We also include the figures of the results obtained by us on
three different machines in the folder provided results of our GitHub
repository:

1) x1carbon has 16 GB memory and an Intel 4-core CPU i7-
8650U (1.9 GHz) running Ubuntu 18.04 x86-64 Desktop LTS.

2) p51 has 16 GB memory and an Intel 4-core CPU E3-1505M
(3.0 GHz) running Ubuntu 18.04 x86-64 Desktop LTS.

3) dellserver has 128 GB memory and an Intel 8-core CPU E5-
2680 (2.7 GHz) running Ubuntu 14.04 Server LTS.

G. Experiment Customization

The customization of the AcmeAir benchmark can be found on
GitHub: https://github.com/acmeair/acmeair-driver. The user can run
AsyncG with any valid Node.js code, upload the log, and check the
AG as visualized on the website.
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