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Abstract
Dynamic taint analysis is a program analysis technique in
which data is marked and its propagation is tracked while the
program is executing. It is applied to solve problems in many
fields, especially in software security. Current taint analysis
platforms are limited to a single programming language, and
therefore cannot support programs which, as is common
today, are implemented in multiple programming languages.
Current implementations of dynamic taint analysis also incur
a significant performance overhead.
In this paper we address both these limitations (1) by

presenting our vision of a multi-language dynamic taint
analysis platform, which is built around a language-agnostic
core framework that is extended by language-specific front-
ends and (2) by discussing the use of speculative optimization
and dynamic compilation to reduce the execution overhead
of dynamic taint analysis applications. An implementation of
such a platformwould enable dynamic taint analyses that can
target multiple languages in one analysis implementation
and can track tainted data across language boundaries. We
describe this approach in the context of the GraalVM runtime
and its included JIT compiler, Graal, which allows us to target
both dynamic and static languages.

CCS Concepts • Software and its engineering → In-
terpreters; Software defect analysis; • Security and pri-
vacy→ Software security engineering.

Keywords Multi-Language Taint Analysis, Cross-Language
Taint Analysis, Dynamic Taint Analysis, GraalVM, Sulong,
LLVM, Node.js, JavaScript, Native Extensions
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1 Introduction
Dynamic Taint Analysis [30, 39], which is often also referred
to as dynamic taint tracking, is a program analysis technique
in which taint labels are attached to sensitive values, marking
them as tainted, and their propagation through the program
is tracked during execution. An application of this analysis
technique defines taint sources, i.e., locations within the pro-
gram where data is marked as tainted, and it also defines
taint sinks, i.e., locations in the program at which the anal-
ysis needs to detect the presence of tainted data and has to
react to it. Dynamic taint analysis has been applied to solve
problems of many fields such as software vulnerability detec-
tion [11, 29, 33], software testing [12, 14], and debugging [16].
It is commonly implemented on top of binary analysis plat-
forms [26, 39] or within interpreters for a single dynamic
programming language [30]. Such an approach, however,
introduces two problems which our research addresses.

The first problem we want to address is the limited scope
of taint analyses implemented on a platform that supports
only a single target language. Dynamic languages such as
Ruby or frameworks such as Node.js typically contain a for-
eign function interface which enables programs to invoke
native extensions, i.e., libraries implemented in a lower-level
programming language such as C [19] and compiled to na-
tive code. An analysis implemented on a language-specific
platform can only target either the native extensions or the
dynamic language, and cannot propagate taint across lan-
guages. Similarly, an analysis for one language would need to
be re-implemented entirely on another analysis platform to
support another language. To address this problem, we pro-
pose a design for a taint analysis platform that supports taint
tracking within an extensible set of programming languages.
This platform would be based on a common core taint frame-
work, which aggregates language-agnostic functionality for
taint propagation, and which can be reused by multiple ex-
tensions that integrate language-specific runtimes.
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The second problem we want to address with our research
is the often significant execution time overhead of dynamic
taint analysis, which is caused by instrumenting each pro-
gram instruction to perform taint propagation [15, 26].While
taint tracking platforms have been proposed that exhibit low
overhead as long as the analyzed program does not actually
operate on tainted data [17, 37], full taint propagation can
increase execution time significantly. For example, LIFT [37]
and libDFT [26], two platforms for taint analysis in x86 bi-
naries that claim to implement taint propagation efficiently,
increase execution time by up to 10x and 6x, respectively, for
some applications. Performance also remains a significant
challenge for taint tracking in dynamic languages [30]. To
tackle this challenge, we are investigating the potential of
designing dynamic taint analysis to be optimized by generic
compiler optimizations and to leverage speculative execu-
tion, which a state-of-the-art JIT compiler is already capable
of.
We plan to implement our ideas in GraalVM1 [46], a vir-

tual machine which can execute and instrument programs
implemented in various dynamic programming languages
such as JavaScript, Ruby and Python, as well as in languages
such as C and C++ that are typically compiled statically.
GraalVM also supports interoperability between these lan-
guages, and includes the Graal optimizing JIT compiler to
improve execution performance.

2 Motivation
In complex software systems, tight interactions between
multiple programming languages happen frequently. This
includes user-provided native extensions used by dynamic
language programs [19], but also language embeddings, that
is, software systems that embed one or more language run-
times to enable advanced functionality such as scripting
capabilities, stored procedures execution, etc. A notable ex-
ample of a language embedding is Node.js [4], a popular web
programming framework for server-side applications devel-
opment in JavaScript. In Node.js, much of the functionality
exposed as JavaScript APIs is actually implemented in C++.
This includes all modules that expose operating system func-
tionality, such as interaction with the file system or network,
and Node.js even exposes the native heap to JavaScript in the
form of buffer objects [5]. As a result, many JavaScript ob-
jects do not reside in the JavaScript engine’s memory space,
but rather in native memory. Traditional taint tracking tech-
niques for Node.js (e.g., Karim et al. [25]) are restricted to
JavaScript code and therefore cannot observe changes to such
objects within native code. Because of this restriction, mali-
cious native code could circumvent a dynamic taint analysis
trying to detect software vulnerabilities in JavaScript code.
Such malicious code could be injected by insecure Npm [6]
modules, which are increasingly common [7].

1Releases and documentation can be found at https://www.graalvm.org/
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Figure 1. Composition of the proposed taint tracking plat-
form in GraalVM.

In our paper, we are proposing a platform that is capable of
tracking taint in multiple programming languages, including
those used to implement native extensions. Besides increas-
ing the effictiveness of previous taint analysis applications,
such a platform would also help researchers to implement
and evaluate new applications of dynamic taint analysis for
multiple languages without targeting multiple analysis plat-
forms. In order to make these analyses feasible in production
environments, we are also investigating strategies to reduce
their performance impact.

3 Efficient, Multi-Language Dynamic Taint
Analysis in GraalVM

The goal of our research is to create a platform for the im-
plementation of dynamic taint analyses that are capable
of targeting multiple programming languages and of prop-
agating taint when data crosses language boundaries. To
achieve this we propose to design our taint analysis platform
around language-agnostic abstractions which can be used
by concrete taint analyses as well as by front-ends targeting
individual languages. To reduce the runtime overhead of
such analyses, we plan to investigate how these abstractions
can be implemented in such a way that speculative execution
and runtime optimizations by a dynamic JIT compiler can
be leveraged. We plan to integrate these abstractions and
techniques as a taint tracking platform in GraalVM and to
use this platform to implement concrete taint analyses that
operate on both dynamic language code and native exten-
sions used by it. An overview of the proposed platform in the
context of GraalVM can be seen in Figure 1. In the following
sub-sections we will further describe this platform and our
approach to making it efficient and extensible.

3.1 Background: Truffle & GraalVM
We have chosen GraalVM [46], a multi-language virtual ma-
chine, as a basis for our proposed taint tracking platform.
As Figure 1 shows, GraalVM contains multiple language
runtimes which are based on the Truffle framework.

Graal.js [1] is GraalVM’s runtime for JavaScript code. Sim-
ilarly, Sulong [38] can execute LLVM IR [28], which is an
intermediate representation into which C and C++ programs
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can be compiled by, e.g., the Clang2 compiler. Additional
Truffle-based language implementations exist for dynamic
languages such as Ruby, Python and R [2], and also for x86
native code [35]. These runtimes use Sulong to execute na-
tive extensions of dynamic language programs they execute.
Truffle-based language runtimes parse programs of their

respective languages into this framework’s common abstract
syntax tree representation. We refer to a function parsed
into this representation as a Truffle AST. Truffle ASTs are
in principle language-independent, and Truffle further pro-
vides an API for language interoperability. Together, these
features enable programs executed on separate Truffle-based
runtimes to share functions and even complex, structured
values. These capabilities for language interoperability can
also be used by Truffle-based runtimes to efficiently imple-
ment foreign function interfaces by executing native exten-
sions on Sulong. Truffle also contains a framework for effi-
cient, language-independent program instrumentation [44].
GraalVM further includes the Graal Just-In-Time compiler,
and uses it to dynamically compile programs it executes,
even instrumented ones, to efficient machine code.

3.2 Multi-Language Taint Tracking
The central idea of our proposed platform is the separation
of taint analysis functionality into (1) language-independent,
(2) language-specific, and (3) analysis-specific components.
We plan to implement these components in GraalVM as
shown in Figure 1. In the following, we describe them in
more detail.

Language-Independent Components The taint frame-
work forms the core of our proposed platform. It aggregates
language-independent functionality for taint tracking, such
as allocating shadow memory, persisting the taint labels for
local and global variables, and setting, propagating and re-
trieving the taint labels attached to execution values as the
program executes. By aggregating common functionality in
one reusable component we aim to avoid code duplication
in analysis implementations and limit the taint extensions
to implementing only aspects of taint propagation that are
specific to a language implementation.
As shown in Figure 1, we plan to implement the taint

framework in part by using Truffle’s API for program instru-
mentation [44]. Using this API, we intend to insert nodes
that perform taint propagation into the Truffle AST, which is
also shown in Figure 4. The process of propagating the taint
labels attached to a value from the expression that produced
it to an expression that consumes it is in principle indepen-
dent of any language semantics. It can thus be used in Truffle
ASTs produced from any language runtime and also works
between Truffle ASTs produced from different language run-
times. One way to implement this is for the first expression
to write the taint labels into a buffer in shadow memory
2Clang is available at https://clang.llvm.org/
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Figure 2. Structure of instrumentation nodes.

which is then read by the second expression. However, we
are also investigating more efficient ways to perform this
propagation.
Figure 2 shows the general structure of the nodes that

perform taint propagation. Truffle provides a base class for
nodes that receive execution events from an instrumented
node. This base class provides the functionality of access-
ing both the values flowing into the instrumented node and
the value produced by executing it. The taint framework
implements this base class in an abstract taint propagation
node, which contains the logic for retrieving the taint labels
attached to the instrumented node’s input values and for
propagating the taint label of its return value to its parent.
Taint computation nodes extend such a propagation node
with the strategy to compute the taint label of the return
value, or to perform other taint propagation actions such as
propagating taint through native memory. These computa-
tion nodes are implemented by language-specific extensions
or concrete analyses, but they can also make use of language-
agnostic functionality, such as allocating shadow memory,
which is provided as part of the taint framework’s library.

Language-Specific Components A taint extension inte-
grates a specific language runtime into the taint framework
by defining default strategies for taint propagation and stor-
age. To this end, it can reuse functionality provided by the
taint framework, such as strategies to store the taint labels
for local variables, but can also opt to implement this func-
tionality itself to, e.g., achieve better performance. Since
language-specific functionality is kept separate from the core
taint framework, our proposed platform can be extended to
support additional languages by implementing taint exten-
sions for their language runtimes. As shown in Figure 1,
we intend to implement such taint extensions for multiple
Truffle-based runtimes.

First, a taint extension implements taint propagation
nodes to provide a default strategy for taint propagation

87

https://clang.llvm.org/


MPLR ’19, October 21–22, 2019, Athens, Greece Jacob Kreindl, Daniele Bonetta, and Hanspeter Mössenböck

within the semantic features of the language targeted by
the runtime. To this end, the language runtime must define
instrumentation tags [44] to describe the semantic features
of the supported language, and attach these tags to each
of its AST nodes that represent such a feature. The taint
framework maintains a mapping between these tags and
the corresponding taint propagation node implementation.
While taint extensions define the default mapping, the taint
framework provides an API to analysis implementations for
changing this default.
Each taint extension essentially defines a taint analysis

specific to the language it supports, and the taint frame-
work defines the interfaces needed to integrate multiple
such language-specific taint analyses. This design enables
taint extensions to instrument their supported language at
the level of its features, which results in less taint propaga-
tion events than a lower-level instrumentation would exhibit.
This comes at the expense of analysis implementers having
to understand the semantics of each language they want to
support in case they deem the default propagation semantics
insufficient. In contrast, a low-level instrumentation, such
as on native code or on LLVM IR [3], would represent each
language feature by potentially multiple instructions, and
exhibit higher analysis overhead as it needs to propagate
taint for each of these instructions. In a Truffle AST, a se-
mantic feature of the encoded language may be represented
by a subtree rather than a single node. Truffle’s instrumenta-
tion framework instruments the entire subtree, rather than
each node, and propagates input events accordingly [42].
However, even for high-level instrumentation, compiler op-
timizations are still required to further optimize and avoid
redundant taint propagation.
A taint extension also implements the strategy to store

and access taint labels within complex objects produced by
the respective runtime, such as structured objects or arrays.
The taint extension registers this strategy with the taint
framework upon application startup, and the taint frame-
work exposes it to other taint extensions, enabling them to
also propagate taint for complex objects of another language.
By separating the storage strategy from the taint framework,
this storage can be optimized to the value implementation.
For example, an object with a fixed set of members may pro-
vide a slot for each of these members in which its taint labels
are stored. In contrast, a low-level program representation
like LLVM IR may instead store taint in one common shadow
memory for the stack and the heap.

Analysis-Specific Components A taint analysis applica-
tion defines aspects of taint propagation that are specific to
a concrete analysis, such as taint sources and sinks, and con-
crete data types to be used as taint labels. Where the default
semantics of taint propagation are sufficient, taint analysis
applications should be implementable on our proposed plat-
form in a language-independentmanner.While taint analysis

applications that require a deviation from these default se-
mantics need to target specific languages, developers of such
applications could still re-use the existing analysis code and
the knowledge of the analysis platform when applying the
application to another language.

Analysis implementers can define taint sources and sinks
by implementing suitable taint propagation nodes and replac-
ing the default nodes for the according language constructs.
For example, by implementing a taint propagation node for
function calls that marks the call’s return value as tainted if
the name of the called function has a specific name, an anal-
ysis implementation can define the function with that name
as a taint source. Analysis implementations can use this to,
e.g., define taint sources and sinks according to a policy that
is external to the program, but they may also expose taint
control as a language-specific API that the analyzed pro-
grams may access. Similarly, the analysis implementer could
change default taint propagation semantics by implementing
taint propagation nodes that check an expression’s input or
output values to determine whether the output value should
be tainted or other taint propagation actions need to be taken.
This will also enable our framework to be used for evalu-
ating and comparing different taint propagation strategies,
as, e.g., Araujo et al. [8] have done. Most notably however,
this leaves the choice of whether to consider implicit taint
flows [39] up to the analysis application rather than defining
it already at the framework-level. The default taint propa-
gation semantics may ignore implicit taint flows to avoid
over-tainting, but the analysis application may instead opt
to consider implicit flows to avoid under-tainting.
Taint analysis applications can define their own repre-

sentation of taint labels, based on a base type provided by
the taint framework. The main purpose of this base type
is to provide a reference to a strategy for merging multi-
ple taint labels, which is used, e.g., when multiple tainted
values flow into a taint propagation node to compute the
output taint. While this merge strategy may be as simple
as a binary or if only boolean flags are used as taint labels,
such as in SwordDTA [11], other analysis applications that
require more complex taint tags, such as Penumbra [16],
may instead require creating a new taint label altogether.
The taint framework can provide default implementations
for commonly used types of taint labels, such as boolean
flags [34, 37, 45, 47] or distinct objects [10, 15, 27, 33]. To this
end, we are also looking into how these types of taint labels
and merging strategies can be implemented to benefit from
compiler optimizations such as escape analysis3 or partial
evaluation4.

Challenges We see a number of challenges for our re-
search, some of which we provide here. We expect new chal-
lenges to arise as we implement our proposed framework.
3An optimization that aims to avoid object allocations [41].
4Executing parts of the program already at compile time [46].
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• The main challenge of our work is to determine which
functionality should be part of the taint framework
and how it can be implemented to suit different kinds
of languages and taint analysis applications.The im-
plementation of this functionality should be adapt-
able enough to enable multiple taint extensions to
use them to model the semantics of taint propagation
within their respective target languages. One part of
this challenge is the granularity to which values can
be tainted. Taint analyses for dynamic languages often
taint data at the granularity of values and object mem-
bers [25, 27, 32], while taint analyses for lower-level
program representations rather use finer granularity,
such as individual bytes [10, 15, 47] or bits [22, 31].

• Another challenge is to design abstractions for retriev-
ing and assigning taint labels that enable a taint exten-
sion for one language to access and store taint labels
for values that have been created in another language
runtime. For example, it is common in Node.js pro-
grams that values which are used in JavaScript code
to actually reside on the native heap. In GraalVM, this
problem is exacerbated since code and values of differ-
ent languages can be mixed arbitrarily, enabling, e.g.,
JavaScript code to operate on Python objects and to
call functions implemented in Ruby. The interaction
between native pointers and dynamic languages is of
particular interest here. While native memory may be
modified arbitrarily, a dynamic language may not have
a concept of a value being partially tainted.

• A third challenge is to design abstractions in the taint
framework that are generic enough to enable dynamic
taint analysis applications to be implemented in a
language-independent manner. This entails not only
an abstraction of different language semantics, but also
of common sources and sinks of taint such as network
or file system interaction.

3.3 Speculative Optimizations and Dynamic
Compilation for Efficient Taint Tracking

We are investigating strategies for using the Graal JIT com-
piler to reduce the execution time overhead of taint analysis
applications implemented on our proposed platform. Graal
aggressively performs optimizations such as inlining, partial
evaluation and escape analysis on any program. Graal also
has special knowledge of Truffle ASTs, which enables the
compiler to compile such ASTs to efficient machine code.
Furthermore, Truffle-based language runtimes can direct
the compiler to speculate on assumptions about values and
conditions within the code. If these assumptions are invali-
dated during execution, code that was compiled under these
assumptions is deoptimized. We are researching how both
generic compiler optimizations and explicit speculation can
be used to reduce the execution overhead of taint analysis
applications implemented on our proposed platform.

1 int a = foo(); int b = 1;

2 sensitiveOp(a + b);

Figure 3. Example Program

+

a b

foo() 1
taint safe

sensitiveOp

onTaint()

(a) Unoptimized AST

+

foo() 1
taint

onTaint()

sensitiveOp

(b) Optimized AST

Figure 4. Optimizing taint propagation for the program of
Figure 3 with Graal.

Similar to static taint tracking, optimizing compilers al-
ready analyze the flow of data through a program to find
opportunities for simplification. We believe that such simpli-
fications can also be applied to optimize away instructions
for taint propagation. To illustrate this, consider the exam-
ple program shown in Figure 3. In this program, a number
returned from the function foo and a constant are assigned
to local variables a and b, respectively. While foo may re-
turn a tainted value, the constant cannot be tainted. These
local variables are then added, and their sum is passed to
a sensitive function, which is instrumented as a taint sink.
A Truffle-based interpreter may represent this program as
shown in Figure 4a, where continuous lines represent con-
trol flow and dotted lines represent the flow of taint. As the
Figure shows, taint labels need to be propagated through
the assignments to any subsequent reads from the local vari-
ables. However, a compiler can reduce the size of this AST
significantly by removing the ultimately unnecessary assign-
ments5. Furthermore, if the taint labels consist of a boolean
flag, which is true for tainted data and false otherwise, and
if the result of the addition operation is tainted if either of its
inputs are, then constant propagation enables the compiler
to see that the second operand is never tainted. By evaluat-
ing the resulting taint tracking logic statically, as is done in
the partial evaluation optimization, the compiler is able to
determine that the taint label of the value returned by foo
is also the taint label of the value flowing into the sensitive
operation. Such an optimized AST is shown in Figure 4b. In
this example, both taint labels and their merging strategy are
highly amenable to common compiler optimizations. One

5In the code, the local variables are only used once and as soon as they are
written. An optimizing compiler can use this fact to remove the assignments
to a named symbol, which may involve pushing a value onto a specific slot
on the stack, and instead inline the expressions that produced the values
into the expression that uses them.
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challenge of our research is how to implement complex taint
labels, attach them to execution values, and merge them in a
manner that Graal can similarly optimize.
While we believe common compiler optimizations to be

effective at reducing the overhead of taint propagation, the
compiler may require additional hints to enable them. In the
presented example, the compiler is able to partially evalu-
ate the taint propagation logic. This relies on the compiler’s
ability to first inline both the taint propagation logic and
the logic for merging taint labels. As we have described in
Section 3.2, the concrete strategy for merging taint labels is
defined by the analysis application and encoded in the taint
labels themselves. Using Truffle, we can direct the compiler
to speculate on the same strategy being used for all taint
labels seen at a particular code location, and thus inline it.
We expect partial evaluation to be most effective at avoiding
redundant taint propagation, but also other common opti-
mizations to be effective at reducing the overhead of taint
propagation. For example, escape analysis [41] could poten-
tially avoid the allocation of complex taint labels. However,
we are also investigating whether we can provide additional
hints to the compiler to enable it to better optimize the code
for taint propagation.
Implementations of dynamic taint analysis applications

can also benefit from speculative optimizations. For example,
dynamically enabling taint tracking on-demand has been
explored to allow for an application to more effectively serve
as a honeypot [36], i.e., to deliberately make the application
appear vulnerable in order to attract the attention of attack-
ers and to observe their attack methodology. The code of
such a taint analysis may be compiled by Graal under the
assumption that taint tracking is inactive, and therefore no
taint propagation is performed. This compiled code would
then be deoptimized once the assumption is invalidated by
enabling taint propagation, after which the code could be
compiled again with included taint propagation. Similarly, a
taint analysis application may support multiple, run-time-
configurable policies for taint propagation and how to handle
tainted data in taint sinks. Such an application may direct the
compiler to assume the currently active policy as constant
and explicitly deoptimize the compiled code once the policy
is changed, rather than continuously polling the currently
active policy. Consider also a system like SwordDTA [11],
which detects and taints the values produced by, e.g., arith-
metic expressions that resulted in an integer overflow. By
profiling values flowing into the respective expressions, such
a system may detect that some of these values are in practice
constant and avoid doing expensive checks for whether the
result may be tainted in these cases. We are exploring these
and other approaches to leverage program specialization in
concrete applications of dynamic taint analysis.

1 void *concat(void *a, void *b) {

2 uint64_t aSize =

3 polyglot_get_string_size(a);

4 char *cStrA = malloc(aSize + 1);

5 uint64_t cLenA = polyglot_as_string(

6 a, cStrA , aSize , "utf -8");

7 // conversion is omitted for b

8 uint64_t cLen = cLenA + cLenB;

9 char *cStr = malloc(cLen);

10 memmove(cStr , cStrA , cLenA);

11 memmove(cStr + cLenA ,

12 cStrB , cLenB);

13 void *ab = polyglot_from_string_n(

14 cStr , cLen , "utf -8");

15 free(cStrA); free(cStrB); free(cStr);

16 return ab; }

Figure 5. C function that concatenates two strings for an-
other language such as JavaScript.

1 var tainted = 'tainted '

2 taint.taintValue(tainted)

3 var c = Polyglot.evalFile(

4 "llvm", "concat.bc");

5 var n = c.concat("also ", tainted)

6 assert(taint.tainted(n))

Figure 6. JavaScript code using the Polyglot module pro-
vided by Graal.js to load the concat function from Figure 5,
compiled to LLVM IR, and executing it on Sulong.

4 Evaluation of Feasibility
We show the feasibility of implementing cross-language
taint analysis in GraalVM using the example JavaScript code
shown in Figure 6, which calls the C function shown in
Figure 5. We implemented a simple taint analysis using Truf-
fle instrumentation [44] and used it to track tainted strings
across the language boundary.
Figure 6 shows JavaScript code that first uses the taint

module, which is provided by our taint analysis, to mark a
string as tainted (at line 2). It then uses the Polyglotmodule,
which is provided by Graal.js, to load an LLVM IR file that
contains the concat function (at line 3). The JavaScript code
finally calls this function with the tainted string and another,
untainted string as arguments (at line 5), and uses the taint
module to check that the returned value is tainted (at line 6).

The concat function shown in Figure 5 uses polyglot_*
functions, which are provided by Sulong as part of its support
for Truffle language interoperability, to copy the contents of
the JavaScript string objects it received as arguments into
native memory it allocates using malloc (at lines 2-7). It then
allocates another block of native memory large enough to
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hold the contents of both strings (at lines 8-9). concat then
uses C’s memmove function to copy the now native strings
into that new block (at lines 10-12), which it subsequently
converts back to a String representation that can be used
by Graal.js (at lines 13-14). Finally, after releasing the native
memory it allocated, concat returns this concatenated string
(at lines 15-16). concat is a simplified version of the actual
C++ code that implements the Buffer.concat JavaScript
function6 in Node.js, which is used to concatenate two buffer
objects that are used, e.g., when interacting with the network.

Our simple taint analysis maintains a global hash-set con-
taining all currently tainted JavaScript strings as well as the
addresses of each byte of native memory that contains a part
of a tainted string. We used Truffle instrumentation to re-
ceive execution events when a function is invoked that may
influence the taint status of strings or native memory, such
as Sulong’s polyglot_* intrinsic functions or the memmove
function, which may propagate tainted data. Based on these
execution events, our taint analysis updates the global hash-
set accordingly. Our taint analysis also provides the taint
module used in Figure 6 to set and check whether a string
is tainted. Other Truffle language implementations, such as
Sulong, could also use the module via Truffle language inter-
operability. We have verified that our simple taint analysis
is capable of supporting this scenario.
In addition to showing functional feasibility of tracking

taint between different languages, we also used the code of
Figures 5 and 6 as a micro-benchmark. To this end, we mea-
sured the peak performance of 60 runs, in each of which the
code is executed 100000 times. We define peak performance
as the mean of the execution times of the last 45 runs, using
the first 15 runs as warmup to give Graal the opportunity to
collect runtime information and compile the instrumented
code. Compared to a baseline of executing the code without
any instrumentation, registering empty callbacks for all exe-
cution events supported by Truffle instrumentation slowed
down peak performance by only ~0.3%. Van de Vanter et
al. [44] describe how Truffle’s instrumentation framework
leverages Graal’s dynamic optimization capabilities to ensure
the pure act of relaying execution events to instrumentation
code has near-zero impact on peak performance. The in-
strumentation code itself is further inlined and optimized
by Graal, which causes empty callbacks to be effectively
discarded. As a result, the execution overhead of a taint anal-
ysis based on Truffle instrumentation depends only on the
analysis implementation itself. In contrast, tools like LIFT
or libDFT are based on instrumentation frameworks that do
incur overhead even for empty execution callbacks. Since we
did not optimize our simple taint analysis for performance,
it introduces a considerable overhead of ~5.5x compared to
uninstrumented execution.

6The full C++ implementation of this function can be found at: https://
github.com/nodejs/node/blob/master/src/node_buffer.cc

5 Related Work
Much research in the area of dynamic taint analysis has fo-
cused on reducing its impact on execution time for specific
programming languages or analysis platforms. However, de-
spite its potential value, hardly any work has been done
in the field of multi-language taint analysis, which we be-
lieve can at least partially be attributed to a lack of suitable
analysis platforms. In the following, we discuss this related
work.

The LLVM DataFlowSanitizer (DFSan) [3] is a taint analy-
sis framework built into LLVM and relates to both areas of
research. DFSan provides an API to attach user-defined taint
labels to application memory, and instruments the LLVM IR
into which the analyzed program was compiled by adding in-
structions to propagate these taint labels. As a result, DFSan
is agnostic to the analyzed program’s source language, but
the lower-level instrumentation also increases the amount
of taint propagation actions to be taken. While LLVM can
optimize the inserted taint propagation logic together with
the program, the optimizer does not have access to runtime
profiling information and therefore cannot perform specula-
tive optimizations to the same extent as a dynamic compiler
like Graal could. In contrast to our proposed framework, the
analyzed program must be modified to call the functions of
DFSan’s API to explicitly introduce taint. Besides altering
program semantics, this API accessibility makes DFSan un-
suitable for analysis of adversarial code which could use it
to detect and disable the analysis. Like our proposed frame-
work, DFSan supports analysis-defined taint labels and is
per default limited to tracking only explicit data flow and
propagate taint at byte-level, but could in concrete analysis
implementations be extended to support also implicit flows
and other propagation granularities. Based on DFSan, dif-
ferent tools have been implemented, such as the Angora
fuzzer [13] or Araujo et al. [8].

5.1 Multi-Language Taint Tracking
Previous work on taint tracking in dynamic languages re-
quires developers to manually provide models for the propa-
gation of data in native extensions [20, 21, 25, 40]. However,
creating and maintaining such models requires a substantial
amount of work, especially for large or frequently changing
libraries. Besides, it is subject to human error. Similarly, lan-
guages that support native extensions and taint tracking as
a first-class feature, such as Ruby [43], rely on programmers
to manually maintain the taint status of objects that cross
the language boundary.

One could execute both native extensions and the engine
running the dynamic language program that uses them on
a taint analysis platform for native x86 code [15, 26, 37].
However, this would produce a different semantic fact as
for the dynamic language program not its actual code is
analyzed, but rather the interpreter executing it. Even though
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the analysis could be implemented to recover the executed
statements of the interpreted code, doing so would again
restrict the analysis to a single language and even to a specific
interpreter. Similar arguments also apply to the possibility
of compiling both high-level code and native extensions to a
common intermediate representation like LLVM IR.
Azadmanesh et al. [9] have implemented a language-

independent information-flow tracking engine on top of
Truffle to enable the implementation of program compre-
hension tools.Their tool records the data-flow within an
application execution, which can then be used for offline
analysis. Our work instead aims to enable taint propagation
while the analyzed program is running.

5.2 Optimizing Performance of Taint Propagation
Previouswork has attempted to reduce the performance over-
head of taint propagation by dynamically switching from
instrumented program code to uninstrumented code when-
ever taint propagation is not required. Qin et al. [37] check
whether any data flowing into a sequence of instructions
or any variables modified by these instructions are tainted.
If not, they execute the sequence in uninstrumented mode.
Ho et al. [23] and Ermolinsky et al. [18] switch the execu-
tion of an entire system from a hypervisor, in which taint
is not propagated, to a taint tracking emulator whenever
the hypervisor accesses tainted data, and switch back once
the emulator has not operated on tainted data for a given
time. Compared to our approach of taking advantage of a JIT
compiler, these approaches exhibit overhead from frequent
context switches, rather than being able to optimize taint
propagation in the context of the actual program.

DECAF++ [17] similarly switches between instrumented
and uninstrumented execution. Being based on whole-
system emulation, it avoids context switches to a hyper-
visor by instead dynamically enabling and disabling taint
propagation in an emulator. If taint propagation is disabled,
DECAF++ instruments taint sources, such as memory loads,
to check if tainted data is accessed and, if so, enable taint
propagation. When all registers are clear of tainted data, DE-
CAF++ disables taint propagation again. In case no tainted
data is introduced, DECAF++ exhibits only 4% overhead,
compared to the baseline execution overhead of the emula-
tor it is based on, but performance degrades the more taint is
introduced. Our proposed framework could similarly be im-
plemented to specialize the instrumentation to such modes,
and it additionally benefits from a JIT compiler dynamically
optimizing the executing program together with the taint
propagation logic, which an emulation-based platform like
DECAF++ might not be capable of. What is more, dynamic
language programs would exhibit less execution overhead
on our proposed platform due to higher-level instrumenta-
tion which also targets the program itself rather than the
interpreter executing it.

Kangkook et al. [24] manually apply well-known compiler
optimizations to the taint tracking logic introduced by the
analysis. Kerschbaumer et al. [27] modified a JIT compiler
to perform optimized taint propagation in JavaScript pro-
grams, complementing an already taint-tracking interpreter.
In contrast to that, we propose to use an existing JIT com-
piler already capable of these and other optimizations and
perform them on both the instrumented program and the
inserted taint tracking logic together.
Some approaches restrict dynamic taint propagation to

those parts of the program, in which static taint analysis
is unable to precisely determine the flow of taint [30, 47].
In contrast to that, our proposed framework guides a dy-
namic JIT compiler to detect and remove unnecessary taint
propagation while the program is executing.
Minemu [10] and libDFT [26] both claim to achieve low-

overhead dynamic taint analysis for x86 binary code. How-
ever, they both achieve this by either taking advantage of
features specific to the binary analysis platform they are im-
plemented on or by optimizing themselves for specific CPU
architectures. Our approach is more high-level and applies
to multiple languages.

6 Conclusion
In this paper we have outlined our proposal for designing a
dynamic taint analysis platform that is able to propagate taint
across language boundaries and can be extended with sup-
port for additional programming languages. The proposed
platform leverages dynamic compilation and optimization
capabilities already available in the Graal compiler in order
to reduce its runtime overhead. By building this platform
around a re-usable framework for taint tracking, support
for additional programming languages can be added. We
have implemented these ideas in an early proof-of-concept
dynamic taint analysis on top of GraalVM and used it to
demonstrate the feasibility of our approach. The evaluation
of this proof-of-concept analysis shows that it is able to prop-
agate taint between code inmultiple programming languages.
We believe that our proposed platform will enable dynamic
taint analysis to perform more detailed taint tracking than
previous approaches.
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