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Abstract
Due to its popularity, there is an urgent need for dynamic

program-analysis tools for Node.js, helping developers find

bugs, performance bottlenecks, and bad coding practices.

Frameworks based on code-level instrumentation enable dy-

namic analyses close to program semantics and are more flex-

ible than Node.js built-in profiling tools. However, existing

code-level instrumentation frameworks for JavaScript suffer

from enormous overheads and difficulties in instrumenting

the built-in module library of Node.js. In this paper, we in-

troduce a new dynamic analysis framework for JavaScript

and Node.js called NodeProf. While offering similar flexi-

bility as code-level instrumentation frameworks, NodeProf

significantly improves analysis performance while ensuring

comprehensive code coverage. NodeProf supports runtime

(de)activation of analyses and incurs zero overhead when no

analysis is active. NodeProf is based on dynamic instrumenta-

tion of the JavaScript runtime and leverages automatic partial

evaluation to generate efficient machine code. In addition,

NodeProf makes use of the language interoperability pro-

vided by the runtime and thus allows dynamic analyses to be

written in Java and JavaScript with compatibility to Jalangi, a

state-of-the-art code-level JavaScript instrumentation frame-

work. Our experiments show that the peak performance of

running the same dynamic analyses using NodeProf can be

up to three orders of magnitude faster than Jalangi.

CCS Concepts • Software and its engineering→ Run-
time environments; Dynamic compilers;
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1 Introduction
JavaScript is the most popular programming language on

the Web. Thanks to Node.js [25], it has been widely used

for server-side applications, too. There are several reasons

behind the success of JavaScript and Node.js. Amongst oth-

ers, Node.js offers a convenient trade-off between developer

productivity and application performance, allowing develop-

ers to quickly build applications ready for production using

thousands of modules in the NPM package repository [19].

One of the main drawbacks of Node.js, however, is the

lack of efficient tools to analyze program behavior and per-

formance. Dynamic language runtimes such as JavaScript

engines (e.g., V8 [6]) do not support code instrumentation at

runtime. Nevertheless, the ability to instrument applications

is a key requirement for modern language runtimes, as it en-

ables essential functionalities such as profiling [8], analyses

to locate bad coding practice [9], data-race detection [5, 22],

memory-utilization profiling [14], etc. The lack of instru-

mentation capabilities is particularly stringent in Node.js,

where applications typically make use of third-party mod-

ules imported via NPM. As applications grow in the number

of external packages they import, it is crucial to be able to

dynamically analyze NPM modules as well, to ensure that

the application does not suffer from penalties introduced by

third-party code.

The urgent need for dynamic analysis tools in Node.js has

motivated several research and industrial projects aimed at

providing extensible support for the analysis of Node.js appli-

cations. A notable example of such a framework is Samsung’s

Jalangi [24], a state-of-art dynamic analysis framework for

JavaScript based on fine-grained runtime event profiling.

Jalangi heavily instruments the application source code and

provides developers with several hooks over JavaScript exe-

cution events (e.g., property reads or function calls) that can

196

https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3178372.3179527
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3178372.3179527&domain=pdf&date_stamp=2018-02-24


CC’18, February 24–25, 2018, Vienna, Austria Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder

be leveraged to develop complex runtime analyses such as

taint tracking [18], non-contiguous object accesses tracing,

etc. Despite being popular, Jalangi incurs high performance-

overheads: typical dynamic analyses to identify bad coding

practices can slow down an application by up to 3 orders of

magnitude. All existing frameworks based on Jalangi [3, 4,

24] suffer from such an excessive overhead, which can be a

major limitation when running Node.js server-side applica-

tions that need high throughput and fast response time. In

addition, for analyses requiring full tracing of the application

such as data flow analysis, these frameworks fall short in

instrumenting the built-in modules library of Node.js. More-

over, dynamic analyses using code-level instrumentation are

irreversible, meaning that the analyzed application pays the

performance overhead for its entire execution life.

In this paper, we introduce a new instrumentation frame-

work for JavaScript and Node.js applications called NodeProf

that overcomes the limitations of existing dynamic anal-

ysis frameworks like Jalangi. NodeProf relies on efficient

runtime instrumentation that leverages VM-internal compo-

nents such as the JavaScript just-in-time (JIT) compiler to

deliver high performance. NodeProf is implemented on top

of Graal.js [28], a Java-based Node.js engine included in the

GraalVM [10] polyglot language runtime, allowing analyses

to be implemented using Java. In addition, NodeProf also

provides language interoperability with JavaScript, thus giv-

ing NodeProf compatibility with analyses developed using

Jalangi. Both for analyses written in Java or in JavaScript, re-

spectively, NodeProf can be up to three orders of magnitude

faster than Jalangi.

NodeProf does not rely on code-level instrumentation, and

is fully transparent to the instrumented application. This al-

lows analyses to be hot plugged at runtime, incurring zero

overhead when they are not enabled. Zero-overhead hot

plugging is a key feature for monitoring server-side applica-

tions, and is particularly convenient for cloud-based Node.js

deployments.

This paper makes the following contributions:

1. We introduce NodeProf, a practical solution for the

dynamic analysis of Node.js server applications of-

fering significantly better runtime performance than

code-level instrumentation tools.

2. NodeProf enables the dynamic instrumentation of the

entire JavaScript source code of an application, includ-

ing the Node.js built-in library and NPM modules. To

the best of our knowledge, NodeProf is the only ex-

isting dynamic analysis tool for Node.js that is capa-

ble of instrumenting all JavaScript code used by an

application, as other frameworks cannot instrument

dynamically-loaded or built-in modules.

3. Original Jalangi analyses written in JavaScript can be

executed on NodeProf without modifications. We also

support Java as an alternative language for developing

dynamic analyses.

4. NodeProf is hot-pluggable. Instrumentations can be

selectively enabled at runtime, and incur no overhead

when disabled.

This paper is structured as follows: Section 2 provides

background information on Jalangi, and on the technology

underlying NodeProf. Section 3 describes the motivation

of NodeProf. Section 4 shows the design and overview of

NodeProf and Section 5 further introduces the programming

models provided. Section 6 explains in detail the algorithm

used in NodeProf to support event profiling. Section 7 evalu-

ates the performance of NodeProf. Section 8 discussed related

work and Section 9 concludes.

2 Background: Jalangi and GraalVM
In this section, we discuss how dynamic analyses can be

developed with Jalangi, a state-of-the-art code-level instru-

mentation tool and GraalVM which NodeProf is built on.

2.1 Jalangi
Initially developed at UC Berkeley and now maintained by

Samsung, Jalangi [24] is based on code-level instrumenta-

tion to provide fine-grained execution hooks that developers
can leverage to intercept runtime events. Examples of such

events include object-level access operations (e.g., property

reads on a given object), function calls, binary and unary

operations, as well as control flow instructions.
1

By tracking specific runtime events during the execution

of a JavaScript application, it is possible to implement pro-

gram analyses capable of identifying potential performance

bottlenecks. A notable class of such analyses is JIT-compiler
profiling (JITProf [8]) to identify bad coding practices that

could lead to inefficient code generation by the JavaScript JIT

compiler. One example of such bad coding practices is non-
contiguous access to elements of a JavaScript array: as soon

as an array is accessed in a non-contiguous way (e.g., writing

to a non-existing index), its in-memory runtime represen-

tation could change from a dense, uniform, data structure

(e.g., an array of small integers) to a sparse, less-efficient,

data structure (e.g., a hash map). Arrays accessed using such

non-contiguous patterns often miss the opportunity to be

optimized by the JavaScript JIT compiler.

Detecting such inefficient access patterns requires track-

ing all array writes. The Jalangi code introduced in JIT-

Prof [8] for the analysis is depicted in Figure 1. Jalangi anal-

yses consist of a set of event callbacks that map to specific

runtime events. The runtime ensures that when such events

happens, the corresponding callback will be invoked.

1
A full list of the events Jalangi supports can be found at

https://github.com/Samsung/jalangi2/blob/master/src/js/runtime/
analysisCallbackTemplate.js
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function NonContiguousArray() {
/* some code omitted here */
var db = new RuntimeDB(); // a map to store results
function ifWriteOutsideArrBound(base,offset,iid) {
if (base.length < offset) {
//fetch and increment the counter from db for

the source code region identified by iid
db.addCountByIndexArr(['JIT-checker',

'non-cont-array',
sandbox.getGlobalIID(iid)]);

} }
// callback called before a property write.
this.putFieldPre = function (iid, base, offset,

val, isComputed, isOpAssign) {
if (base !== null && base !== undefined) {
if (Utils.isArr(base) &&

Utils.isNormalNumber(offset)) {
ifWriteOutsideArrBound(base, offset, iid);

} } };
}

Figure 1. Non-contiguous array-access analysis in Jalangi.

2.2 Graal.js, Truffle, and GraalVM
As discussed, NodeProf does not rely on code-level instru-

mentation. Rather, it is based on a tight integration with

the language execution runtime that enables dynamic code

generation and optimization. Specifically, NodeProf is im-

plemented using the Truffle [29] framework, and runs on

top of Graal.js [28], a Node.js-compatible JavaScript exe-

cution engine that relies on the Graal dynamic compiler.

Truffle, Graal.js, and the Graal compiler are packed in the

GraalVM [10], a polyglot language runtime containing a se-

lection of language execution engines implemented using

Truffle.
2
.

Truffle is a language implementation framework for the

development of high-performance language runtime sys-

tems. A Truffle-based language runtime is implemented in

the form of a self-optimizing Abstract-Syntax-Tree (AST) in-

terpreter [30]: like with typical AST interpreters, each node

in the tree corresponds to a specific runtime operation (e.g.,

reading a property from an object, performing a function

call, etc.), which Truffle can optimize by means of partial

evaluation [17]. At runtime, each AST node eagerly replaces

itself with a specialized version that relies on runtime as-

sumptions, leading to better performance. For example, node

rewriting specializes the AST nodes performing a property

lookup operation for the actual object types used by the ap-

plication, and relies on an inline cache [12] optimized for

such type. Truffle’s self-optimization via node rewriting can

2
GraalVM currently supports JavaScript, Ruby, R, Python, LLVM, and all

languages that compile to Java bytecode such as Java, Scala, and Kotlin

result in the elision of unnecessary generality, e.g., boxing

and complex dynamic dispatch mechanisms.

Compilation by means of automatic partial evaluation is

performed by the Graal dynamic compiler [10]. Graal com-

piles AST nodes to machine code when the execution profile

reaches a certain threshold. In case of speculation failures,

Graal performs deoptimization [27], replacing invalidated

machine code with less-optimized code.

The NodeProf dynamic analysis framework has been de-

signed to target Truffle-based language runtimes, with an ini-

tial focus on Graal.js, a high-performance JavaScript runtime

fully compatible with Node.js, and performance in line with

those of other JavaScript engines such as Google’s V8 [6].

3 Motivation
3.1 Limitations of code-level instrumentation
Due to the lack of VM-level support, code-level instrumenta-

tion is one of the few options to analyze JavaScript applica-

tions. Jalangi’s fine-grained execution events are collected

by instrumenting each instruction of a JavaScript application

via source-code-level rewriting. This means that every single

code location in the original application that corresponds to

a profiling event needs to be replaced with function calls to

perform the actual profiling.

Code-level instrumentationmay introduce enormous over-

heads. For a typical analysis [8], the slowdown can be up

to 3 orders of magnitude. Figure 3 gives some hints as to

why the runtime overhead for frameworks like Jalangi can

be high: to track each profiling event, a lot of extra code

needs to be injected even for a simple function like the one

in Figure 2. This voids many optimization opportunities,

as all language constructs (e.g., binary comparison opera-

tors, property reads, etc.) will be converted to function calls,

thus preventing the JIT compiler from applying common

optimizations such as canonicalization, inline caching [12],

escape analysis, and so on.

Besides the performance penalty, there are several other

limitations for code-level instrumentation tools. First, the

instrumentation is not transparent to the application. As a

result, the instrumented application may yield wrong results

when depending on dynamic information such as e.g. the call

stack. Secondly, they need to modify the source code files

and cannot be applied to the Node.js built-in library. Another

limitation is that all modifications to the original sources

are irreversible: code-level instrumentation is done before

execution, and will therefore affect application performance

for its entire execution.

3.2 Opportunities to use the GraalVM
Node.js applications in Graal.js are executed bymeans of AST

interpretation. During interpretation, the AST of a JavaScript

application self-specializes itself by replacing its nodes with
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function f(a,b,c) {
return a > b[c];

}

Figure 2. A simple JavaScript function

J$.iids = {"9":[2,10,2,11], //...Source code mapping
function f(a, b, c) {

try {
// Arguments handling
J$.Fe(57, arguments.callee, this, arguments);
arguments = J$.N(65, 'arguments', arguments, 4);
// Variable reads tracking
a = J$.N(73, 'a', a, 4);
b = J$.N(81, 'b', b, 4);
c = J$.N(89, 'c', c, 4);
// Binary operator tracking
return J$.X1(49, J$.Rt(41, J$.B(10, '<',

J$.R(9, 'a', a, 0), J$.G(33, J$.R(17, 'b',
b, 0), J$.R(25, 'c', c, 0), 4), 0)));

} catch (J$e) { J$.Ex(121, J$e); }
}

Figure 3. Code-level instrumentation applied by Jalangi to

the function in Figure 2 to enable runtime event tracking.

more optimized versions; such optimized ASTs are later au-

tomatically compiled to machine code by the Graal dynamic

compiler. Combining event tracking callbacks of a dynamic

analysis directly with AST nodes would allow the optimiza-

tions done by Truffle during partial evaluation. For example,

the AST node for a JavaScript property lookup operation can

be executed together with a NodeProf event callback. In this

way, the machine code produced for a NodeProf dynamic

analysis will be compiled by the Graal compiler in the same

compilation unit of the JavaScript operation. This approach

can lead to significantly reduced analysis overhead.

4 NodeProf
In this section, we give an overview of the design of NodeProf.

Section 4.1 introduces how NodeProf applies instrumenta-

tion at the level of AST nodes to generate various profiling

events. Section 4.2 explains how to efficiently pass dynamic

data among nodes needed for profiling events.

4.1 Dynamic AST-level Instrumentation
To deal with the limitations of code-level instrumentation as

discussed in Section 3.1, NodeProf dynamically instruments

the AST of the target application. One notable advantage of

AST-level instrumentation is that it preserves the original

structure of the application code. The AST intermediate form

allows one to map specific source-code regions to nodes

B. “>”

RD. “a” RP. “b[c]”

RD. “b” RD. “c”

Cast nodeProfiled node

F. “f”

B. “>”

RD. “a” RP. “b[c]”

RD. “b” RD. “c”

w1

w3

w4 w5

F. “f”

Wrapper node

w2

Child node pointer

(a) (b)

counter

local state

Figure 4. AST instrumentation for the example code

(A “local” counter is accessible in the wrapper)

in the tree, ensuring that the AST structure matches that

of the applications being executed. This makes dynamic

analyses of NodeProf as close to the application semantics

as those achieved by code-level instrumentation. Thanks to

this key property, it is possible to inject executable code into
a running AST interpreter by simply replacing some of its

nodeswithwrapper nodes that perform additional operations

before or after delegating execution to the original node they

are wrapping [23, 26].

An example of AST-node wrapping is depicted in Fig-

ure 4(a), where the AST representation of the code in Figure 2

is presented. The sources of the JavaScript function ‘‘f’’
have been parsed into an AST, including the function root

node (the ‘‘f’’ node), a binary node for the ‘‘>’’ operator,
three local-variable-read nodes, one property-read node, and

two helper nodes (represented using diamonds used to cast

node execution results into integers for comparison).
3

AST-node wrapping enables a convenient separation of

concerns, as nodes can be wrapped transparently to appli-

cations, requiring no changes to the original source code. It

also enables efficient execution, as instrumentation nodes

can potentially benefit from automatic compilation via par-

tial evaluation in the same way as all other JavaScript AST

nodes. Moreover, instrumentation nodes can have local state
that is relative to a specific source-code location, uniquely

mapped by the structure of the AST. The ability to bind state

to code locations can be conveniently used by analyses that

need to keep track of events happening at a specific location,

such as described in the example of Figure 1, where the anal-

ysis needs to increment a counter for every non-contiguous

array write. With code-level instrumentation frameworks

(like Jalangi), such a counter would need to be looked up

from a hash map at runtime. With NodeProf, the counter can

3
The ECMA JavaScript language specification prescribes that each value

must be converted to its integer value before executing the ‘‘>’’ operator.

Therefore, the AST has to convert both values before executing the binary

operation.
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be conveniently stored in the private state of the AST wrap-

per node, thus enabling constant-time access of the counter

during execution of the instrumented code. This is depicted

in Figure 4(b), where counter is the local state used by w3,
i.e., the wrapper node for the property read node.

Another advantage of the AST-level instrumentation of

NodeProf is that the instrumentation is done dynamically at

runtime and can be applied to any source code. Compared

to code-level instrumentation which needs to instrument

and replace every source file prior to execution, NodeProf

is more convenient because no modification of the original

source code is needed , and achieves higher code coverage

because also the built-in library can be instrumented.

NodeProf generates various profiling events at different

AST nodes called event nodes. Every event node needs to get

the dynamic data necessary for the profiling event. For ex-

ample, a property-read event needs the name of the property

being read and the object instance being accessed. Some dy-

namic data can be directly retrieved from the event node itself

such as the operator for a binary event, or from the runtime

stack such as the values of < this, f unction,arдuments >
needed for function calls ; we call such directly available data

local values. Event nodes also need to access other data that

is produced by other nodes; we call these values intermediate
values. The details of the events supported in NodeProf and

the dynamic data available for each event node are listed in

Table 1. While the retrieval of local values is trivial, handling

intermediate values can result in significant overhead as

such values may need to be stored in temporary variables. In

NodeProf we optimize the access to such values by providing

a specialized solution detailed below.

4.2 Intermediate-value Resolution
Since intermediate values are made available only to their

direct parent, AST wrapper nodes may not be able to access

their values directly, and therefore may need to store those

values in a temporary location (with some obvious overhead).

In the example in Figure 4, the binary event node for the

operator ’’>’’ can only access the results of its two children,
which are internal cast nodes used to convert any JavaScript

type to an integer value before comparison. Such conversion

is required by the JavaScript semantics; an event handler to

track the binary operator, however, would need to access the

JavaScript values before they are converted to numbers.

It is therefore crucial to be able to make such values avail-

able to the wrapper node before they are converted. NodeProf
leverages the notion of frame virtualization in Truffle [29]

to efficiently store and retrieve intermediate values from

the descendant node and make them available to the event

node. Truffle frame virtualization is an optimization tech-

nique enabled by the Graal compiler, and is commonly used

in Truffle-based language runtimes to optimize the perfor-

mance of local variable accesses. With frame virtualization,

Table 1. Profiling events and the dynamic data needed

(*) stands for <this, function, arguments>

Profiling Event Local Values Intermediate Values

Read (R) identifier /

Write (W) identifier value

ReadProperty (RP) / target, property

WriteProperty (WP) / target, property, value

Invoke (I) (*) /

New (N) (*) /

FunctionRoot (F) (*) /

Literal (L) / /

Binary (B) operator left, right

Conditional (C) / condition value

local variables are treated as entries of a map-like data struc-

ture. The Graal compiler has special knowledge of this data

structure, and performs several optimizations such as inlin-

ing and escape analysis over its entries, which very often

result in the allocation of such variables to CPU registries.

In NodeProf we leverage a similar optimization to store the

intermediate values produced by AST nodes into some vir-
tual slots of the same data structure and make them available

to the proper event nodes. In this way, NodeProf can effi-

ciently resolve intermediate values. This technique operates

as follows:

At parsing time: different event nodes in the AST are

tagged to be responsible to generate the profiling events

listed in the first column of Table 1. In addition, NodeProf

allocates one virtual slot for every node providing an in-

termediate value to an event node. The fewer virtual slots

allocated, the more likely they can be stored in CPU regis-

ters for fast access. In Section 6, we will present the detailed

algorithm used to achieve an optimal slot allocation.

At execution time: the AST nodes execute in a depth-

first order from left to right. So the nodes providing the

intermediate values will be executed before the event node

and store the intermediate values in the allocated virtual

slots. Afterwards, these intermediate values can be fetched

at the event node from the slots.

5 Programming Model
In this section, we introduce the programming model of

NodeProf for writing dynamic analyses. Sections 5.1 and 5.2

present NodeProf’s APIs in Java and JavaScript, respectively.

5.1 Profiling API in Java
As introduced, NodeProf analyses can be implemented using

Java. The benefit of writing analyses in Java is that we can

directly operate on AST nodes, and fully make use of all

optimizations enabled by the Truffle framework. Generally

speaking, the Java instrumentation API could also support

other languages based on GraalVM. However, the focus of

this paper is on JavaScript and Node.js.
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An example of a Java-based dynamic analysis in Node-

Prof is depicted in Figure 5, where the non-contiguous-array

example of Section 2 is presented. Every dynamic analy-

sis using the Java API is represented as a subtype of class

NodeProfAnalysis (i.e., NonContiguousArray, in this case). Dif-
ferent profiling events are handled with different callback

nodes. In this example, one WritePropertyNode (WP) will be

created for every write property event, and attached to the

wrapper of the corresponding property write node in the

AST. In order to setup these callbacks, a NodeProfAnalysis
needs to register the factories to create the callback nodes

as shown in method setupCallbacks: the callback node for

WP events is registered with the method onWriteProperty.
The callback node will be attached to the wrapper node at

instrumentation time, and will be invoked with the correct

event-specific runtime arguments. Such arguments are the

intermediate values retrieved from the slots computed from

the Minimum Indexing Algorithm described in Section 6. A

set of utility internal nodes is also provided to enable interac-

tion with JavaScript to fulfill the analysis logic. A few@Child
nodes are defined in this example: we use IsArrayNode to
check if a JavaScript object is an array, ArrayIndexNode to
convert a property value into an array index, and GetAr-
raySizeNode to get the size of a JavaScript array. The utility

nodes bridge the gap between JavaScript and Java, to ease

the development of dynamic analysis using the Java API.

Being able to closely interact with the AST, NodeProf can

fully benefit from optimizations like inlining, escape analysis,

and polymorphic inline caches. AST-node-local data can be

stored in the callback node created for every wrapper. In this

example, we keep a Report reference in the callback node and
benefit from constant-time access as discussed in Section 4.1.

Another optimization enabled by the Java API is caching.

For example, isArrayNode in Figure 5 is used to check if the

base object is an array. Without caching, we would need

to check whether base is an array for every property write

event. With a cache of the object reference, we first do a

cheap check whether the object remains the same, and only

do the expensive array check in the case of a cachemiss. Such

kind of optimizations are extremly useful in loops or other

hot code regions where base is more likely unchanged for

some time. These optimizations are not available in Jalangi.

Another advantage brought by NodeProf compared to

code-level instrumentation is the dynamic management of

different source-code regions. In the example, reports are cre-

ated for every source-code region where a non-contiguous

array access is found. To this end, an ID needs to be as-

signed to identify each code region. Jalangi achieves this by

hard-coding a map of code locations in each instrumented

source-code file. The size of this map can be several times

bigger than the original source code itself. In NodeProf, we

maintain a source code map in-memory and on demand,

i.e., we only keep track of source-code regions which are

actually referenced by the dynamic analysis at runtime. This

public class NonContiguousArray extends NodeProfAnalysis {
@Override
public void setupCallbacks() {
this.onWriteProperty(new

AnalysisFactory<WritePropertyNode>() {
public WritePropertyNode create(EventContext context){
return new WritePropertyNode(context) {
@Child IsArrayNode isArrayNode;
@Child ArrayIndexNode indexNode;
@Child GetArraySizeNode arraySizeNode;
final Report report = Report.get(getSourceID());
public void pre(VirtualFrame frame,

Object base, Object offset, Object val) {
if(!isArrayNode.executeIsArray(base))
return; //continue only when base is an array

//get the integer value out of offset
int idx = arrayIndexNode.executeIndex(offset);
//(e.g., 1, 1.0 and "1" are valid index)
if (idx >= 0) {
//read the array size
int arrSize = arraySizeNode.executeSize(base);
if (idx > arrSize) {
//increment the local counter
report.increCounter();

} } } }; } }, SourceFilter.appOnly);}
}

Figure 5. Using the Java API for the non-contiguous array-

access analysis

process is encapsulated in method getSourceID(), and allows

NodeProf to map execution events to source code locations

only for locations that are actually executed.

Finally, different analyses may need to instrument dif-

ferent scopes of source code. NodeProf allows for flexibly

configuring which source files will be instrumented. Devel-

opers can choose to instrument any of the application code,

the built-in library, or selected NPM modules. In the exam-

ple, the option appOnly is used to limit the instrumentation

scope to the application code.

5.2 Compatibility with Jalangi
As discussed, NodeProf is compatible with most Jalangi

features. In other words, many existing analyses written

in Jalangi can be executed without any modifications. To

achieve this, NodeProf implements a layer on top of its Java

API that can expose instrumentation events and callbacks to

Jalangi’s JavaScript-based hooks.

The compatibility is obtained by inlining a function call

node (i.e., a JavaScript call node) into the AST instrumenta-

tion wrapper as illustrated in Figure 6. We slightly modify

Jalangi’s library, such that NodeProf is aware of all Jalangi

analyses that are registered. When an event node is executed,

its wrapper node performs a direct call to the corresponding

callback defined in the Jalangi analysis. A special Truffle API

called DirectCallNode is used to ensure that the call is always
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B. “>”

RD. “a” RP. “b[c]”

RD. “b” RD. “c”
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w4 w5

F. “f”

F.  “jalangi.onBinary”

DirectCallNode

Figure 6. Call from wrapper to Jalangi via DirectCallNode

inlined. This API can pass values from the Java space to the

JavaScript environment, transparently, without introducing

boxing or conversion overheads. We currently support the

major features of Jalangi including the callbacks listed in

Table 1, and fully support the analyses we use for the eval-

uation. In contrast to Jalangi, we do not support changing

the return value of the instrumented code, because we focus

only on dynamic analyses that do not alter the semantics of

the observed program.

6 Minimum Indexing Algorithm
In this section, we explain the details of a Minimum Index-

ing Algorithm (MIA) used in NodeProf to allocate slots for

intermediate values. Section 6.1 defines the algorithm and

Section 6.2 gives a proof that MIA computes a correct and

optimal solution.

6.1 Definition
Every event node must get the correct intermediate values.

This poses two fundamental requirements for the correctness

of a slot allocation algorithm:

1. The nodes producing intermediate values for an event

node should be known and unchanged.

2. The intermediate values stored in the slots should

never be overwritten until they are retrieved by the

event node needing them.

We distinguish the nodes in two categories:

1. External nodes that have a source-code mapping.

Not all external nodes are event nodes, e.g., a block

representing a sequence of statements is external but

does not produce any profiling event. However, all

event nodes and nodes providing intermediate values

must be external.

2. Internal nodes which are not bound to any source

code. For example, the cast nodes of a binary node

in the previous example. Internal nodes are usually

helper nodes in the language implementation.

The first requirement can be satisfied for the fact that:

for every event node N in Graal.js, the nodes providing the

intermediate values for N are all the external nodes whose

first external ancestor node is N. We define this fixed set of

nodes for N as the intermediate-value-node set: ivnSet(N).
Assuming there are an infinite number of available slots,

allocating a unique slot for every intermediate value would

be a trivial solution to the second requirement. However, to

benefit from storing slots in CPU registers, NodeProf aims

at minimizing the number of used slots.

As a result, a minimum indexing approach is described in

the procedure AllocateSlots in Algorithm 1. Assume every

slot is identified by an integer index starting from 0. Allo-
cateSlots takes two input parameter: SubTree(N ) a subtree
of an AST whose root node is N , and startIndex which is

the minimum ID free to allocate. AllocateSlots allocates an
incremental unique ID, starting from startIndex , for each
node Ci from ivnSet(N ) and recursively allocates slots for

subtrees whose root isCi (i is the iteration number, the nodes

are traversed in the AST execution order which is post-order

from left to right).

Algorithm 1 Algorithm to allocate intermediate-value slots

1: procedure AllocateSlots
2: input:
3: Subtree N , an AST subtree whose root is node N
4: Integer star t Index , the minimum available index

5: output:
6: Integer r esult , the number of intermediate values found for N
7: body:
8: ivnSet (N ) ← external nodes whose first external ancestor is N
9: foreach Ci ∈ ivnSet (N ) (traversal in AST execution order) do
10: if N expects intermediate values then
11: AllocateSlots(Ci , star t Index + i)
12: Ci .setSlot Index (star t Index + i)
13: else
14: AllocateSlots(Ci , star t Index )
15: end foreach
16: return i

Our Minimum Indexing Algorithm is applied to all root

nodes representing JavaScript functions and the slot allo-

cation for the previous example is shown in Figure 7. In

the figure, we can see that three slots are needed to store

intermediate values. In this case, three slots are the best

solution because two slots have to be reserved at the time

when "b[c]" is executed, while slot 0 is still occupied by the
unfinished execution of the binary node ">".

6.2 Proof
We define the external depth e-depth of SubTree(N ) as the
most number of external nodes included between N and any

of its leaf nodes. It is clear that if the e-depth of SubTree(N )
is k + 1, all the subtrees whose root is in ivnSet(N ) are of e-
depth k . Then we can prove by induction that our algorithm

provides a correct slot allocation and the number of allocated

slots is minimal [2]:
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slot 1
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Figure 7. Slot assignment for a=b[c] using MIA

1. When applying AllocateSlots to any subtree whose e-
depth is one, meaning only node N is external, there

will be no intermediate values needed and our algo-

rithm gives the optimal result.

2. If AllocateSlots gives the correct solution for all sub-

trees whose e-depth is k , it also holds for any subtree

whose e-depth is k + 1: if the root does not need any

intermediate value, it is obvious that AssignSlots re-

turn the correct result 0; Otherwise, each intermediate

value node from ivnSet(N ) will get an incremental

ID in the for-each loop. Since the traversal is in AST

execution order, the slots assigned for Ci in the i-th
iteration are free to be used in the later iteration. So

there will be no conflicts for the slots allocated for N .

So the algorithm is correct.

3. Since the slot allocation for everyCi is already optimal,

our algorithm will always give the optimal result as

below:

Optimal(N ) = min

∀Ci ∈ivnSet (N )
{i +Optimal(Ci )} (1)

By induction, for any subtree of the input AST in any

e-depth (including the input AST itself), our algorithm gives

the optimal solution.

7 Evaluation
NodeProf has been designed for low overhead. In this section,

we first compare NodeProf with Jalangi, a state-of-the-art

code-level instrumentation framework. Then, we evaluate

the performance of NodeProf’s hot-plugging feature on a

real-world Node.js application.

7.1 Experimental Setup
All measurements were performed on an Intel(R) Core(TM)2

Quad CPU (Q9650) with 2 physical cores (4 virtual cores)

running at 3.0 GHz, 4 GByte main memory, running Ubuntu

Server release 16.04 (kernel version 4.4.0-59-generic). Node-

Prof runs on Graal.js v0.18 OTN release [10] and compares

against Jalangi [13] (last commit on April 5, 2017).

We evaluated six existing analyses originally developed

for Jalangi, namely:

Table 2. Analyses and events involved in the evaluation.

Analysis Profiling events involved

Typed arrays RP, WP, L, I, N

Non-contiguous arrays WP

Objects per allocation site L, I, N

Branch coverage C

Undefined offsets RP, WP

Concat Undefined to String B

1. Non-contiguous arrays (as described in Section 2): re-

ports non-contiguous writes to arrays that may cause

expensive deoptimizations.

2. Typed arrays: tracks non-numeric stores into numeric

arrays .

3. Objects per allocation site: reports the number of ob-

ject allocations per allocation site.

4. Branch coverage: profiles branch execution coverage.

5. Undefined offsets: finds any array read/write access to

an “undefined” offset.

6. Concat Undefined to String: finds cases where one

operand of “+” is undefined and the result is a string.

The analyses exercise different event hooks in NodeProf,

as summarized in Table 2. The original implementation and

description for each analysis can be found in Jalangi-related

publications [8, 9], and on GitHub [13, 15].

7.2 Octane Benchmarks
We first evaluate the cost of running a Jalangi analysis on the

popular JavaScript Octane [20] benchmark suite. The goal of

this evaluation is to measure the performance improvement

of NodeProf wrt. Jalangi. We compute the slowdown of the

peak performance as collected by the (unmodified) Graal.js

Octane benchmarking harness (included in the GraalVM

distribution [10]). The harness reports the average over 100

benchmark runs, collected after 100 warm-up iterations. The

warm-up phase is used to let the engine reach a steady state,

and is not counted for the final grade.

Since Jalangi cannot instrument the Node.js built-in li-

brary, for fairness, we configure NodeProf to instrument the

same parts of the code as Jalangi.

The performance of Jalangi, NodeProf’s JalangiAdaptor,

and its JavaAPI are shown in Figure 8. We report the slow-

down relative to the same baseline which is running the

benchmarks on Graal.js without any instrumentation en-

abled. Once its language runtime reaches a steady state, the

performance of Graal.js [28] is on par with other leading

JavaScript engines such as V8.

From the result, we can see that Jalangi always suffers

from excessive overhead. E.g., applying Typed Arrays for
the deltablue benchmark results in a slowdown of 3000x.

Conversely, the performance overhead is greatly reduced

with NodeProf: in most cases, NodeProf’s JalangiAdaptor

is one or two orders of magnitude faster than Jalangi, and
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(e) Undefined offsets (f) Concat Undefined to String

Figure 8. Slowdown factors (wrt. the uninstrumented Graal.js) for Jalangi, JalangiAdaptor, and JavaAPI running the same

analyses for Octane.

the Java API is two to three orders of magnitude faster than

Jalangi. The advantage can be very significant in some cases

where the Java API achieves almost no overhead.

This result is expected, as analyses written in JavaScript

(i.e., Jalangi) still pay the price of the dynamic nature of the

JavaScript semantics, whereas analyses expressed in the Java

API can be further optimized by the Graal compiler. More-

over, as discussed in Section 5, the Java API of NodeProf

enables optimized access to AST-local data structures (e.g.,

node-local counters) as well as caching of runtime references.

The effect of such optimizations can be seen e.g., in Figure 8

(a), where the Java API has almost zero overhead for raytrace.
In this case, the benchmark uses only a very limited number

of array objects. Therefore, the number of events detected

by the analysis (i.e., non-contiguous array accesses) is min-

imal: while Jalangi still instruments the entire source code

–even when events are never detected–, NodeProf’s Java API

allows one to efficiently check for object types, leading to

almost zero overhead when very few objects match the type

considered relevant for the analysis (i.e., array, in this case).

7.3 Hot-plugging for Acme Air
NodeProf makes profiling practical for long-running server-

side Node.js applications thanks to its hot-plugging feature.

In this section, we illustrate the performance impact of this

feature on a popular server-side Node.js benchmark called

Acme Air [1]. Acme Air is a complex benchmark that simu-

lates a flight booking system whose server-side backend is

implemented using Node.js. Performance is measured using

a JMeter [16] testing suite simulating realistic workloads,

collecting throughput and latency for the web server.

We deployed Acme Air using different machines for the

workload generator and the web server, to reduce measure-

ment perturbations. The two server machines are connected

with a network bandwidth of 100 Mb/s.

We report the performance impact of enabling (and dis-

abling) two dynamic analyses (Non-contiguous Arrays and

Branch Coverage) on a Graal.js web server running Acme

Air. The benchmark was executed changing the number of

workload threads (1 and 10) as well as the number of Node.js

built-in library modules to instrument. The results are de-

picted in Figure 9. We omit the performance numbers for

Jalangi on this benchmark, as the Jalangi framework failed to

instrument all of the 1833 JavaScript files used by the NPM

modules in the benchmark. On the contrary, NodeProf is able

to instrument the whole application: application code (App),

the NPM modules (NPM) it depends on, and the Node.js

built-in library (Built-in).

To demonstrate NodeProf’s hot-plugging feature, we mea-

sure the impact of an analysis on the throughput of the
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Figure 9. Hot plugging feature with the Acme Air benchmark and different levels of instrumentation for two dynamic analyses

.

running server. To this end, we first execute the Graal.js

server without instrumentation. Then, after 200 seconds, we

enable a NodeProf analysis, and we let it collect profiling

data for 200 additional seconds. Finally, after 400 seconds,

we disable the analysis. The throughputs along with time

are shown in Figure 9. The experiment reveals the following:

1. When the profiler is enabled, a performance drop is

detected (at around 200 s). This is because the newly

enabled analysis code has not been optimized by the

Graal.js JIT compiler. Still, the server is running and

accepts incoming requests. After a while, the perfor-

mance stablizes. The throughput of the web server is

lower than before, as now the analysis is enabled.

2. After disabling the analysis, the throughput of the

system recovers as before, showing that NodeProf can

be hot-plugged with no overhead when disabled.

8 Related Work
Prevailing approaches for program analysis written in dy-

namic languages such as JavaScript can be divided into two

main categories: frameworks based on code-level instrumen-

tation, and frameworks relying on VM-level support.

For what concerns VM-level support, common JavaScript

engines (e.g., V8 [6]) provide a basic built-in profiling module

that can collect minimal profiling data such as the number

of method executions [21]. Such built-in solutions offer low

overhead, but are not extensible, and enable only very lim-

ited analyses. Typically, developers can only diagnose prob-

lems using performance logs, and have no way to customize

analyses. As a consequence, many analyses—including those

described in this paper—cannot be expressed using built-in

profilers. Moreover, built-in profilers for Node.js cannot be

dynamically enabled/disabled. In contrast, NodeProf offers

the flexibility to define a wide variety of analyses for Node.js,

with the support for hot-plugging.

Jalangi [24] has already been discussed in this paper, and

is the most popular code-level instrumentation framework

for JavaScript. Several other examples using code-level in-

strumentation exist [3, 4], and many analyses [8, 9, 14] have

been built on top of them. As we have shown, the overhead

of code-level instrumentation can be excessive. Sampling can

be used [24] to mitigate this problem, but sampling-based

approaches sacrifice the accuracy of the analysis, and can-

not be used when total accuracy is critical (e.g., for taint

analysis [18]). Finally, code-level instrumentation solutions

have limitations with respect to code coverage: in the case

of Node.js, none of them can instrument the built-in library,

while special launchers or tools are required to instrument

NPM modules.

Other, less popular approaches exist. Goldshtein et al. [7]

gave a tutorial of several ways to use low-level system events

(e.g., SystemTap, perf, DTrace [11]) for Node.js profiling.

Such approaches have low overhead, but cannot easily map

low-level performance events to high-level JavaScript con-

structs. In comparison, NodeProf instruments the AST, which

is still a high-level representation of the application, and

can write analyses as flexible as code-level instrumentation

frameworks.

9 Conclusion
In this paper, we introduced NodeProf, a new dynamic analy-

sis framework for Node.js. Powered by the GraalVM polyglot

language runtime, NodeProf leverages automatic partial eval-

uation to generate efficient machine code. NodeProf relies
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on AST-level instrumentation with efficient profiling event

generation using frame virtualization. The instrumentation

is done at runtime and enables comprehensive coverage of

the whole Node.js application, including the Node.js built-in

library and all NPM modules.

NodeProf provides two programming models. First, it can

run Jalangi analyses in JavaScript out of the box. Second, dy-

namic analyses can be developed using a Java API, which can

further benefit from the AST-level optimizations performed

by the Graal compiler. With both APIs, NodeProf analyses

run up to three orders of magnitude faster than Jalangi.

In contrast to other approaches, NodeProf is hot-pluggable

such that dynamic analyses developed using NodeProf can

be enabled or disabled at runtime, and incur zero overhead

when disabled.

The focus of this paper was JavaScript and Node.js. Our

results show the great potential of writing dynamic analyses

with awareness of the language runtime. In the future, we

plan to extend NodeProf to support other GraalVM-based

languages such as R, Ruby, or Python.
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