
Elasticity in Graph Analytics? A Benchmarking
Framework for Elastic Graph Processing

Alexandru Uta§, Sietse Au∗, Alexey Ilyushkin∗, and Alexandru Iosup§∗
§Vrije Universiteit Amsterdam, ∗TU Delft

{a.uta, a.iosup}@vu.nl, s.t.au@student.tudelft.nl, a.s.ilyushkin@tudelft.nl

Abstract—Graphs are a natural fit for modeling concepts used
in solving diverse problems in science, commerce, engineering,
and governance. Responding to the diversity of graph data
and algorithms, many parallel and distributed graph-processing
systems exist. However, until now these platforms use a static
model of deployment: they only run on a pre-defined set of
machines. This raises many conceptual and pragmatic issues,
including misfit with the highly dynamic nature of graph pro-
cessing, and could lead to resource waste and high operational
costs. In contrast, in this work we explore the benefits and
drawbacks of the dynamic model of deployment. Building a three-
layer benchmarking framework for assessing elasticity in graph
analytics, we conduct an in-depth elasticity study of distributed
graph processing. Our framework is composed of state-of-
the-art workloads, autoscalers, and metrics, derived from the
LDBC Graphalytics benchmark and SPEC RG Cloud Group’s
elasticity metrics. We uncover the benefits and cost of elasticity in
graph processing: while elasticity allows for fine-grained resource
management, and does not degrade application performance, we
find that graph workloads are sensitive to data migration while
leasing or releasing resources. Moreover, we identify non-trivial
interactions between scaling policies and graph workloads, which
add an extra level of complexity to resource management and
scheduling for graph processing.

I. INTRODUCTION

To address the big data challenges raised by graph-data
and algorithms (trillions of edges and daily processing at
Facebook-scale [1]), our community has designed tens of
sophisticated graph-processing systems. Although capable and
high-performance, these systems use a static model of deploy-
ment, where the analytics platform runs on a fixed, statically
defined set of machines. The static model lacks conceptual
fit with the dynamicity of graph applications, and raises
pragmatic issues of resource-waste and system-availability.
Contrasting the many techniques focusing on dynamic work-
load partitioning [2]–[4] and re-partitioning [5]–[7] across a
static infrastructure, in this work we focus on studying a
dynamic model of deployment for distributed graph-processing.
Concretely, we investigate what tools to use for assessing the
benefits and cost of elastic graph analytics.

Indicating the increasing need for ever-larger computing
resources, graph-processing systems have already been de-
ployed on many types of infrastructure and offered as analytics
platforms, when commercialized as software and services. So
far, industry and academia have demonstrated the use for
graph processing on a variety of systems with static resource
deployment: private clusters [8]–[10], supercomputers [11],

heterogeneous CPU-GPU [12], and CPU and (multi-)GPU
systems [13], and public clouds [14]–[16].

The use of the static deployment model has negative con-
sequences. Conceptually, graph applications are a poor fit
for static, fixed-size infrastructure, because they have often
iterative, but highly irregular workloads [5], [7], [17]. Pragmat-
ically, even experts face difficult choices based on empirical
approaches to estimate the size of the needed infrastructure;
there are serious consequences when the choice is inaccurate,
ranging from system-wide crashing when resources are under-
provisioned [18], to possibly high resource waste and opera-
tional costs when the system is over-provisioned.

State-of-the-art graph analytics systems do not focus on
a dynamic model of deployment, where infrastructure can
grow and shrink to match the needs of the graph-processing
application. Elasticity promises to enable many opportunities
for improved, more efficient operation, for both public (e.g.,
cloud) and private infrastructure (e.g., clusters, supercomput-
ers, private-clouds). For public infrastructure, elasticity could
reduce operational costs by reducing resource waste [19], [20],
and improve the ability to meet Quality-of-Service guarantees
(such as high performance and availability) by using appropri-
ate auto-scaling policies [21]. For private infrastructure, elas-
ticity could reduce operational costs by increasing resource
utilization [22], or throttle throughput to meet demands across
applications [23].

Moreover, because elasticity allows system administrators
to change initial commitments of resources, it could be par-
ticularly important for the diverse field of graph processing.
Instead of estimating the number of machines needed to
run specific graph-processing jobs, which is an open chal-
lenge [24], harnessing elasticity allows deferring to runtime
decisions, when resources are transparently added or removed
as needed; thus, elasticity could reduce the risk of failure and
of over-provisioning. Consequence of the irregular, variable
use of resources that characterizes graph-processing (Sec-
tion II), elasticity promises to be a good conceptual fit by
adapting to the workload characteristics.

However promising, elasticity also has potential drawbacks.
Scaling introduces resource-management complexity: how to
make a system take smart decisions about leasing or releasing
resources (e.g., what, when, for how long)? How to uncover
the costs and benefits of elasticity in distributed graph process-
ing systems? To answer these research questions, we extend
our poster [25] by making the following contributions:

 1

 100

 10000

 1x10
6

 1x10
8

 0 2 4 6 8 10 12 14

A
c
ti
v
e

 V
e

rt
ic

e
s

Super-step

(a) BFS on Datagen-1000.

 1

 100

 10000

 1x10
6

 1x10
8

 0 2 4 6 8 10

A
c
ti
v
e

 V
e

rt
ic

e
s

Super-step

(b) PR on Datagen-1000.

 1

 100

 10000

 1x10
6

 1x10
8

 0 2 4 6 8

A
c
ti
v
e

 V
e

rt
ic

e
s

Super-step

(c) WCC on Datagen-1000.

 1

 100

 10000

 1x10
6

 1x10
8

 0 2 4 6 8 10 12 14 16 18 20 22 24

A
c
ti
v
e

 V
e

rt
ic

e
s

Super-step

(d) SSSP on Datagen-1000.

Fig. 1. Variability in graph-processing algorithms, exemplified through JoyGraph EGAP: (a)-(d) depict active vertices vs. algorithm super-step.

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS PR WCC SSSP

C
o

e
ff

ic
ie

n
t

o
f

V
a

ri
a

ti
o
n

Algorithm

EGAP Giraph

(a) Active Vertices.

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS PR WCC SSSP

C
o

e
ff

ic
ie

n
t

o
f

V
a

ri
a

ti
o
n

Algorithm

EGAP Giraph

(b) CPU Load.

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS PR WCC SSSP

C
o

e
ff

ic
ie

n
t

o
f

V
a

ri
a

ti
o
n

Algorithm

EGAP Giraph

(c) Memory.

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFS PR WCC SSSP

C
o

e
ff

ic
ie

n
t

o
f

V
a

ri
a

ti
o
n

Algorithm

EGAP Giraph

(d) Wallclock.

Fig. 2. Variability in graph processing systems, exemplified through JoyGraph EGAP and Giraph: the coefficient of variation of different metrics, computed
per node per super-step for the Datagen-1000 graph. The coefficient of variation is assessed for 4 graph processing algorithms: BFS, PR, WCC, and SSSP.

1) We show strong evidence that typical graph-processing
workloads exhibit significant variability in resource uti-
lization (Section II). Our empirical analysis focuses on
application- and system-level metrics, which goes beyond
what state-of-the-art graph-processing systems consider.

2) We propose the design of a three-layer, modular, elastic
graph processing benchmarking framework (Section III).
Our framework builds upon industry-grade graph pro-
cessing workloads, generic and novel system-level au-
toscalers, and state-of-the-art elasticity metrics. To show-
case the framework’s ability to capture elastic graph pro-
cessing behavior, we design and implement a reference
elastic graph-analytics system (Section IV).

3) We explore the benefits and cost of elasticity through
conducting an extensive performance study (Section VI).
Our evaluation shows that elasticity mechanisms do not
affect application throughput (our reference implemen-
tation performance is on-par with JVM-based graph-
processing systems). However, migrating data for each
lease or release of resources impacts the overall runtime.
Furthermore, the auto-scaling policies are able to save
resources otherwise wasted.

II. VARIABILITY IN GRAPH PROCESSING

In this section, we show evidence that the static deploy-
ment scheme of graph processing systems, when processing
typical graph processing workloads, leads to variable resource
consumption. If not counter-acted, for example through the
elastic scaling approach proposed in this work, this variability
could lead to significant resource waste or, worse, to system
crashes due to under-provisioning of resources.

The de-facto procedure for quantifying imbalances in graph-
processing is measuring the variability of graph-related met-
rics. Typically, when making a case for elasticity [26], [27] in
graph processing, only graph-related metrics are considered,

such as active vertices (i.e., the vertices that are exchanging
messages during a super-step, which represents the graph al-
gorithm unit of computation during a single iteration), or mes-
sages exchanged per super-step. Many complementary studies
present an analysis on how the number of active vertices af-
fects the algorithm efficiency. Direction-optimizing BFS [5] is
a technique motivated by the authors’ finding variable number
of active edges, per iteration. Mizan [7] analyzes runtime per
iteration, finds large imbalance. GraphReduce [28] finds large
variability in the number of active vertices (frontier size) for
two datasets and three algorithms. High workload imbalance
appears even between multiple designs and implementations
of the same algorithm running the same workload [17]. In
comparison, in this section we further analyze the impact
of workload imbalance on the consumption of system-level
resources.

Main finding: We find that considering only active vertices
as a measure for computation imbalance is insufficient, as it
does not capture the impact of the graph computation at the
system-level. Our results show that even algorithms that do
not suffer from active vertices variability (e.g., Pagerank -
Figure 1b) are impacted by significant system-level metrics
(e.g., CPU load, memory, wallclock time) variability. The
results in Figure 2 indicate the consequences can be signif-
icant imbalance in the utilization (consumption) of resources.
Therefore, active vertices is a metric that does not translate
proportionally into system-level metrics. This indicates there
is a need for dynamic mechanisms that can elastically grow
and shrink the number of active resources (e.g., machines) to
run graph-processing.

Experiment: We ran a set of experiments using as input
the Datagen scale factor 1000 graph (Datagen-1000). The
graph was generated using the Datagen tool [29]. For our
use-case, we used only the user vertices and the edges,
excluding the other Datagen data (i.e., comments, posts etc.).

The workloads used are typical graph processing algorithms:
breadth-first search (BFS), page-rank (PR), weakly-connected
components (WCC) and single-source shortest paths (SSSP).
These algorithms were run statically, on both JoyGraph
reference elastic graph analytics platform (EGAP), and the
well-established Giraph system [8]. We ensured that all the
results are correct using the Linked Data Benchmark Council
(LDBC) Graphalytics [24] validation tool. We describe in
detail the design and implementation of JoyGraph EGAP
in Section IV.

Metrics: To provide evidence of extensive resource variabil-
ity, during each algorithm run, we measured: active vertices,
CPU load, memory utilization, and wallclock time. Figure 1
plots the number of active vertices per super-step for each
algorithm. It is immediately apparent that for BFS (Figure 1a)
and SSSP (Figure 1d) there is a lot of room for elastically
scaling based on the number of active vertices. In contrast, for
PR (Figure 1b) and WCC (Figure 1c) the number of active
vertices does not vary much between super-steps. Based on
this metric, the only chance of reducing the number of nodes
is in the final super-steps of WCC.

Analysis: When analyzing the other three metrics (CPU,
memory, and wallclock time) we notice that the workloads
exhibit large amounts of variability. In Figure 2, we plotted
the coefficient of variation of the metrics measured per worker
node per super-step. In this fashion, we capture both the
imbalances of the worker nodes within a super-step, and also
between super-steps. When analyzing only active vertices,
one could infer that for the PR workload there is no chance
to exploit elasticity. However, when considering the other
metrics, we notice that even PR suffers significant resource
variability. Generally, we notice that most algorithms suffer
from significant resource variability. Therefore, we can con-
clude that by considering system metrics in addition to graph-
related metrics, there is a large optimization space for applying
elastic (auto)scaling policies. We provide an in-depth analysis
of such policies in Section VI.

III. JOYGRAPH BENCHMARKING FRAMEWORK

Policy-based elasticity for graph processing has not been
explored until now. Recently, we have seen that generic
autoscaling policies perform well with scientific workloads, al-
most on-par with workload-specific policies [21]. Encouraged
by such results, we propose to evaluate applying autoscaling
policies to graph processing.

In this section, we introduce the design of the JoyGraph
benchmark, our framework for benchmarking elasticity in
graph analytics. JoyGraph evaluates any elastic graph-
analytics platform (EGAPs), and compares the results against a
reference platform for elastic graph-analytics (see Section IV).
JoyGraph is novel: the focus on elasticity distinguishes
it from other graph-processing benchmarks, and the focus
on graph processing distinguishes it from other elasticity
benchmarks. In particular, JoyGraph introduces elasticity
mechanisms that consider both application-level (i.e., active

 (1) Workloads LDBC Graphalytics

 (2) Metrics
Accuracy, Wrong Provisioning,

Instability

 (3) Autoscalers Generic, System-level

 (4) Elastic Graph-Analytics Platform (ANY)

Fig. 3. Overview of the JoyGraph benchmarking framework for elastic
graph-processing platforms.

vertices), and system-level (i.e., CPU and network load, wall-
clock time etc.) metrics.

A. Design Overview

Figure 3 depicts the JoyGraph benchmarking framework,
which is comprised of: (1) Workloads, e.g., derived from
the LDBC Graphalytics workloads [24], (2) Metrics, e.g.,
elasticity metrics proposed by the SPEC RG Cloud group [21]
and performability metrics, (3) Autoscalers, of various type,
grouped into two classes, and (4) the Harness for testing any
elastic graph-analytics platform.

The JoyGraph benchmarking framework is designed to
be generic and provide meaningful results for a wide range
of graph analytics engines. Workloads must be representative
of both industry and academia state of practice, and must be
renewed periodically. Elasticity metrics should be indepen-
dent of the granularity and type of resources (e.g., physical
machines, virtual machines, containers, microservices), and
should characterize the autoscaler quality in terms of how
much the resource supply deviates from the workload demand.
Finally, the autoscalers need be agnostic of the underlying
resources, and minimize the latency of taking decisions to
lease or release resources.

Generic graph-analytics engines offer iterative programming
models, such as Pregel [30], push-pull [10], gather-apply-
scatter [3], sparse matrix operations [31], in which users ex-
press general-purpose graph computations. Although generic
and widely-used in both academia and industry, the systems
that implement such models are not elastic. Therefore, to
explore the costs and benefits of elasticity for graph-analytics,
in this work we design a general-purpose, Pregel-based, elastic
graph-analytics engine, the JoyGraph EGAP, which serves
as a reference implementation of a generic EGAP.

The JoyGraph benchmarking framework serves three
main purposes. First, it tries to answer the question of whether
elasticity benefits graph-analytics engines, and what are its cost
and drawbacks. Second, it provides a framework for in-depth
comparisons of future elastic graph-analytics platforms. Third,
it provides a reference EGAP implementation.

B. Benchmarking Workload

For the evaluation of EGAPs, JoyGraph uses the work-
loads of the LDBC Graphalytics [24] benchmark suite for

TABLE I
REAL-WORLD DATASETS IN THE LDBC GRAPHALYTICS WORKLOAD.

ID Name |V | |E| Scale Type
R1(2XS) wiki-talk [32] 2.39 M 5.02 M 6.9 Real-world
R2(XS) kgs [32] 0.83 M 17.9 M 7.3 Real-world
R3(XS) cit-patents [32] 3.77 M 16.5 M 7.3 Real-world
R4(S) dota-league [33] 0.61 M 50.9 M 7.7 Real-world
D300(L) datagen-300 4.35 M 304 M 8.5 Synthetic
D1000(XL) datagen-1000 12.8 M 1.01 B 9.0 Synthetic
G22(S) graph500-22 2.40 M 64.2 M 7.8 Synthetic
G23(M) graph500-23 4.61 M 129 M 8.1 Synthetic
G24(M) graph500-24 8.87 M 260 M 8.4 Synthetic
G25(L) graph500-25 17.1 M 524 M 8.7 Synthetic
G26(XL) graph500-26 32.8 M 1.05 B 9.0 Synthetic

(general) graph-analytics platforms. The algorithms that gener-
ate these workloads are: breadth-first search (BFS), page-rank
(PR), weakly-connected components (WCC), single-source
shortest paths (SSSP), local clustering coefficient (LCC), and
community detection using label propagation (CDLP). For the
latter, we use the label propagation algorithm described in [34].

The JoyGraph benchmark uses as input-graphs a subset
of the datasets described in LDBC Graphalytics [24]. These
datasets are categorized by the Graphalytics benchmark by
their scale (order of magnitude, or scale of |V | + |E|, i.e.,
the approximation, through log10, of the number of digits of
|V | + |E|). For simplicity, JoyGraph assigns T-shirt sizes
to describe its datasets, ranging from 2XS (smallest graphs)
to XL (largest graphs). Table I describes the JoyGraph
datasets. Overall, the datasets span both synthetic and real-
world datasets and different orders of magnitude in scale,
ranging from XS to XL. Moreover, in accordance with the
work of Broido and Clauset, who recently found that scale-
free networks are rare [35], JoyGraph includes both scale-
free (Graph500) and non-scale free graphs (Datagen).

C. Elastic Autoscaling

At the core of any elastic system are its autoscaling policies,
which take automatically decisions of elasticity: when, what,
and where to scale. Consistently with modern design practices
for large-scale distributed systems, the JoyGraph benchmark
considers a separation of mechanism from policy, and proposes
that each EGAP should be able to run any autoscaling policy,
albeit, leading to different performance in practice.

The JoyGraph benchmark considers explicitly two classes
of autoscaling policies: the set of generic autoscaling poli-
cies provided by the reference platform (introduced in Sec-
tion sec:design:elasticity) and a new set of system-level poli-
cies we have designed for these experiments. (We envision that
more classes will be added later, as the community matures.)

Generic Autoscaling Policies: JoyGraph mandates the
following set, which is derived from the set of commonly
used autoscalers identified by the SPEC RG Cloud group:
React [36], AKTE [37], ConPaaS [38],Reg [39], Hist [40].
For a detailed description of the generic autoscalers, we refer
the reader to [21].

System-level Autoscaling Policies: The metrics used for
system-level autoscaling are derived from our findings pre-
sented in Section II.

• CPU Load Policy (CPU): Average worker CPU-load can
be used to generate a new partition function to redistribute
graph vertices as follows: the worker(s) with the highest
load(s) will be distributed if λ < cσ. Here, c ∈ (0, 1] is a
user-defined constant, λ is the average CPU-load in a given
worker, and σ is the standard deviation of the average load
of all nodes.

• Wallclock Time Policy (WCP): We compute the wallclock
time of each worker for each super-step. This is then used to
see how much each worker deviates: workers that take more
time than the average will distribute part of their vertices to
new workers. The number of new workers is calculated as
the

∑
1 − Wi−W

W
, where Wi is the wallclock of worker i,

and W is the average wallclock for all workers.
• Network Load Policy (NP): Load unbalances may not al-

ways be captured by wallclock time nor by memory usage.
The network traffic for certain nodes may deviate from other
nodes. Similar to the WCP, we compute instead the network
bytes sent of each worker for each super-step:

∑
1− ni−n

n ,
where ni is the network bandwidth for worker i, and n is
the average bandwidth for all workers.

D. Elasticity Metrics

JoyGraph uses a subset of the elasticity metrics presented
by the SPEC Cloud Research Group to evaluate the elastic
properties of the system, grouped in three classes.

Accuracy Metrics: The accuracy metrics show how fast
the system adapts to the changes in supply and demand.
The values of these metrics should be as small as possible.
Assuming demand at time t is dt, and resource supply st, the
accuracy metrics are defined as follows:
1) aU : the average under-provisioning accuracy metric which

measures the area in which the demand exceeds the sup-
ply and it is defined as aU = 1

T ·R
∑T

t=1(dt − st)
+∆t,

where T is the total duration of the experiment in time
steps, and R is the total number of available resources,
(x)+ = max(x, 0), and ∆t is the time elapsed between
two consequent measurements. (We use the formulation
(x)+ for defining several other metrics.)

2) aO: the average over-provisioning accuracy measures the
area in which the supply exceeds the demand: aO =

1
T ·R

∑T
t=1(st − dt)+∆t.

3) āU : the under-provisioning accuracy normalized by the
actual resource demand, āU = 1

T

∑T
t=1

(dt−st)+
dt

∆t. The
normalized accuracy is particularly useful when the re-
source demand has a large variance over time, and it can
assume both large and small values.

4) āO: the normalized over-provisioning accuracy, defined as
āO = 1

T

∑T
t=1

(st−dt)
+

dt
∆t.

Wrong-Provisioning Timeshare Metrics: While the accu-
racy metrics express the elastic properties of the system in the
number (or fraction) of over- or under-provisioned resources,
they do not consider how much time the system spends in
such states. To distinguish between short but large deviations
from long but small deviations, we use wrong-provisioning

timeshare metrics tU and tO. These two complementary
metrics represent the fraction of time in which under- or over-
provisioning occurs:
1) tU = 1

T

∑T
t=1(sign(dt − st))+∆t, where sign(x) is the

sign function of x and (x)+ is defined as for aU .
2) tO = 1

T

∑T
t=1(sign(st − dt))+∆t.

Instability Metrics: The metrics k and k′ capture instability
and inertia of autoscalers. Under the assumption that the policy
is trying to reach an equilibrium where supply equals demand,
a low stability indicates that the system adapts fast to changing
supply and demand, and a high stability indicates that the
system adapts slowly. For a low complementary stability, it
means that the system is fast in removing excessive nodes as
demand is decreasing.
1) k: This metric shows the fraction of time the supply

and demand curves move in opposite directions k =
1

T−1

∑T
t=2min((sign(∆st) − sign(∆dt))

+, 1)∆t, where
(x)+ is defined as for aU .

2) k′: This complementary metric shows the fraction of
time the curves move towards each other k′ =

1
T−1

∑T
t=2min((sign(∆dt)− sign(∆st))

+, 1)∆t.

E. Performability Metrics

Assessing the performance of graph-processing workloads
is not a straightforward endeavor. Whilst in high-performance
computing domain experts measure FLOPs or bandwidth,
deriving such numbers when running graph workloads is both
difficult to achieve, and not trivially translated into graph
operations throughput. Therefore, in this article we refer
to performability as a measure of various graph-processing
related metrics gathered over a period of time. JoyGraph
defines the following metrics to evaluate the performability of
(elastic) graph-processing workloads:
1) tp: the processing time of a job in seconds. This is the sum

of time spent in every super-step and barrier. It includes
time spent on adding and removing resources, but excludes
everything else (i.e., loading input, or storing output).

2) tm: the makespan of a job in seconds. This is the time
spent from the submission of the job, until its completion. It
includes fetching and provisioning machines, loading input
data, running the algorithm, and the time to generate and
persist the output.

3) te: the elasticity overhead of a job in seconds. This is
the time spent, for all super-steps to lease or release
resources and migrate data according to the neste parti-
tioning scheme. This metric takes into account parallel data
transfers and addition/removal of resources.

4)
∑
tc: the total lifespan of all separate node lifespans tc

in seconds, where tc is the time difference between the
start of a process in a node until the release of the node.
This metric allows to measure the real cost of running a
specific job expressed in node time. The real cost can then
be extended to quantify the performance of combinations
of graph algorithms and autoscaling policies with respect
to a dataset.

5) VPS + EVPS: VPS is the graph processing speed in Vertices
Per Second and EVPS is the graph processing speed in
Edges and Vertices Per Second.

6)
∑
te: the cumulative of overhead in seconds introduced by

elasticity for all the used nodes, where the elastic overhead
te is the time a single node spends waiting for data
transfers induced by addition or removal of nodes. This
metric does not take into account parallel data transfers
and addition/removal of resources.

7)
∑
ts: the total time spent processing all super-steps, where

ts is the time spent processing a single super-step (the
generation of outgoing messages and the processing of
incoming messages) by a set of nodes.

IV. JOYGRAPH EGAP: A REFERENCE ELASTIC
GRAPH-ANALYTICS PLATFORM

In this section, we discuss the JoyGraph EGAP, which is
an elastic graph-analytics platform. Currently, the community
does not have a reference EGAP, or even an open-source
EGAP it can use for benchmarking purposes. To explore the
benefits and drawbacks of elastic graph processing, we design
and implement, and include in the JoyGraph benchmark,
a reference EGAP: a fully-elastic graph processing system
that can lease or re-lease resources, on-demand, at runtime.
The goal of this EGAP is not to optimize performance under
elasticity, but to serve as a benchmark for comparisons,
stimulating the community to do better.

A. Design Overview

We design the JoyGraph EGAP as an iterative GAP,
based on the commonly used Pregel-like programming model.
The key elasticity mechanism is to grow and shrink the
provisioned infrastructure, using the decisions to lease and re-
lease resources taken by any of the elasticity policies mandated
by JoyGraph (described in Section III-C). Figure 4 presents
an overview of the JoyGraph EGAP, with the following
main components:
(1) Master: The master node orchestrates the execution of the
graph processing workloads on the worker nodes. It collects
utilization metrics from the workers and takes elastic scaling
decisions based on such metrics. Furthermore, whenever a
scaling event is triggered, it adjusts the partitioning scheme.
Also, using the cluster/cloud resource manager, it is able to
provision or decommission resources. The granularity of tak-
ing elastic scaling decisions is defined at super-step level, i.e.,
whenever a super-step finishes. However, JoyGraph EGAP
could take finer-grained elastic scaling decisions, although in
practice we found this to add too much overhead, as generally
the super-steps are short-lived (i.e., in the order of seconds,
or tens of seconds).

(2) Workers: Worker nodes execute the super-steps of the
graph processing workloads. To enable elastic scaling, they
collect local metrics (e.g., CPU load, memory utilization,
active vertices etc.) which are sent to the master at regular
time intervals (i.e., every second). Worker nodes store in
memory the partitions of the input graph. Whenever an

Fig. 4. Overview of the JoyGraph EGAP architecture.

elastic scaling event is triggered, the worker nodes receive
from the master the updated partitioning scheme. Based on
this new vertices-to-workers mapping, the worker nodes send
data to other nodes, to facilitate load balancing when workers
are added or removed.

(3) Storage: JoyGraph uses a distributed or shared file system
to load the input graph and to store the generated results.
The choice of storage system does not affect application per-
formance, as the graph-processing system does not interact
with it during the runtime of the graph algorithms. In our
experiments (Section VI), the storage system we use is a
NFS installation.

B. Elastic Workload Distribution and Nested Partitioning

Graph partitioning is a well-studied field [4], [7], [41].
Although well-balanced partitions (i.e., in terms of storage,
workload distribution, network load) are challenging to design
on their own, partitioning efficiency can raise additional design
challenges: performance decreases even more when a graph is
altered, or when workers are added and/or removed at runtime.

Graph partitioning is often achieved using a hash parti-
tioning function over the vertex and worker identifiers, e.g.,
h(v) = v mod n, where n is the number of workers. In
JoyGraph, we address partitioning imbalances and robustness
while supporting elasticity by means of nested partitioning.
A nested hash partitioning mapping h1(vertex) → worker
consists of two parts: (i) a hash-partitioning function h0(v)→
m, where h0 is a hash partitioner starting from vertex v
and m is a worker-machine, and (ii) a series of mappings
Si → ({Di}, fi), where Si is the source-machine of the
mapping, Di is the destination-machine of the mapping, and fi
is the fraction of vertices to be distributed from Si to Di. Load-
balancing can be achieved by carefully choosing fi, which is
done by the master (see Section IV-A).

To illustrate how the nested hash partitioning handles
elasticity, consider the following example. A workload L is
running on JoyGraph on n worker-nodes. At the end of super-
step k, the master computes how balanced the system is
in terms of metric M (i.e., CPU, memory, network, active
vertices). If, according to policy P , a scaling event needs to
be triggered by adding n+ worker-nodes, the master computes
a new nested partitioning scheme: for each worker node mi, a
fraction of vertices that need to be migrated, fi, is computed.
Then, the new partitioning scheme is broadcast to all nodes.
Based on this new partitioning scheme, the workers transfer

TABLE II
SELECTED GRAPH ANALYSIS PLATFORMS. ACRONYMS: C,

COMMUNITY-DRIVEN; I, INDUSTRY-DRIVEN; D, DISTRIBUTED; S,
NON-DISTRIBUTED.

Type Name Vendor Lang. Model Vers.
C, D Giraph [8] Apache Java Pregel 1.1.0
C, D GraphX [9] Apache Scala Spark 1.6.0
C, D PowerGraph [3] CMU C++ GAS 2.2
I, S/D GraphMat [31] Intel C++ SpMV Feb ’16
I, S OpenG [42] G.Tech C++ Native code Feb ’16
I, D PGX.D [10] Oracle C++ Push-pull Feb ’16

vertices to the newly added nodes. The procedure is similar
when decreasing the number of nodes.

V. EXPERIMENT SETUP

In this section, we present the design of our experiments
with EGAPs. We use the JoyGraph benchmark to study the
effects of elasticity in graph processing, in two experiments:
(1) Non-elastic baseline: we analyze the performance of the

reference JoyGraph EGAP without elasticity enabled, in
comparison with state-of-the-art graph processing platforms
(all of which use static-provisioning, so are non-elastic).

(2) Impact of elasticity on performance: we perform an in-
depth analysis of the performance-effects of auto-scaling
policies, which determine, at runtime, the amount of nodes
used by the JoyGraph EGAP to run graph-processing
workloads.
Implementation and experimentation effort: We have im-

plemented a prototype of the JoyGraph reference EGAP in
Scala, using approximately 11K LoC, in 4 person-months. We
have used for it the generic autoscaling policies provided by
the SPEC RG Cloud Group, and implemented the new system-
level policies. We have conducted experiments, first for testing
purposes and later full-scale, in another 3 person-months.

A. Systems Under Test: Two Classes of Elastic and Four
Classes of State-of-the-Art Graph-Processing Systems

We equip the reference JoyGraph EGAP with the two
sets of autoscaling policies introduced in Section III-C, generic
and systems-level. This effectively allows us to evaluate two
classes of EGAPs.

We compare EGAPs with the selection of (non-elastic,
generic) GAPs summarized in Table II: 6 state-of-the art GAPs
systems, grouped in 4 classes. The class of GAPs that are
community-driven and distributed (C,D) is the most repre-
sented, in part because these are open-source systems available
to everyone. For all generic GAPs, the results we report here
are taken from the LDBC Graphalytics study [24]. For a more
detailed description of these state-of-the-art platforms, we refer
the reader to the same study.

B. Hardware and Software Environment for Experiments

The results presented in this section are generated by
conducting real-world experiments on one of the clusters
of DAS-5, a multi-cluster system designed for computer-
science experiments [43] and extended in 2016 to fit big data
experimentation. The infrastructure is exclusively reserved for

our experiments, that is, we report results obtained without the
interference of a background workload.

Our infrastructure consists of 68 compute nodes equipped
with dual 8-core Intel E5-2630v3 (two hyperthreads per core)
CPUs, 64 GB memory, and 4 TB HDD. The nodes are
interconnected with a 54-Gbps FDR InfiniBand. The cluster
nodes are running CentOS 7.2, Linux Kernel 3.10. The cluster
manager used for leasing and releasing resources is SLURM.
The JVM used to run the JVM-based platforms, including
JoyGraph EGAP, is OpenJDK 1.8.

VI. RESULTS USING THE JOYGRAPH BENCHMARK

In this section we present an in-depth analysis on the
performance of the elastic prototype for graph-processing,
JoyGraph, according to the experimental setup presented in
Section V. Our main findings can be summarized as follows:
MF1 Elasticity does not degrade application throughput: the

performance of JoyGraph EGAP and of JVM-based
graph-processing systems is comparable.

MF2 JoyGraph EGAP can run non-trivial graph-processing
workloads (e.g., LCC), where several state-of-the-art plat-
forms fail.

MF3 Elastic scaling policies are able to exploit non-trivial
(e.g., wallclock time, CPU, network) resource variability
to improve resource management and load balancing.

MF4 Elasticity introduces a high communication overhead
when leasing or releasing resources.

MF5 Elasticity is able to reduce resource utilization provided
that communication time is reduced by at least 50%.

MF6 The interaction between the autoscaling policy and the
graph-analytics workload is non-trivial. Consequently,
elasticity adds a new level of complexity in resource
management and scheduling for graph processing, which
requires further, more in-depth study.

A. JoyGraph EGAP vs. State-of-the-Art Graph-Processing
Systems

In this section we assess the behavior of the JoyGraph
EGAP under various scenarios: dataset variety, algorithm vari-
ety, strong horizontal scalability, and weak horizontal scalabil-
ity. The results obtained with this set of experiments support
MF1.

Dataset Variety. The performance of the JoyGraph
EGAP is comparable to the JVM-based graph-processing plat-
forms. We ran the BFS and PR algorithms on 6 different
graphs of increasing sizes on 1 compute node. We compare
the performance of EGAP with Giraph [8], GraphX [9], Pow-
ergraph [3], Graphmat [31] (both single node and distributed),
OpenG [42], Oracle PGX and its distributed counterpart,
PGX.D [10]. Figure 5 presents the results of this experiment.
We report the full makespan time, that includes loading the
graph, running the algorithm, and saving the results. The
results show clearly that JoyGraph EGAP performance is
comparable to the JVM-based graph processing platforms
(Giraph, GraphX), while the native platforms exhibit better
performance, as expected.

EGAP

Fig. 5. Dataset variety: Dataset impact on makespan, for BFS and PR.

EGAP

Fig. 6. Algorithm variety: algorithm makespan on R4.

Algorithm Variety. JoyGraph EGAP is able to run non-
trivial graph-processing workloads (i.e., LCC), while state-of-
the-art platforms fail (MF2). We ran all the LDBC Graphalyt-
ics algorithms (BFS, WCC, CDLP, PR, LCC and SSSP) on the
R4 graph. We compare EGAP against the platforms mentioned
previously on one compute node. Figure 6 plots the results.
For most algorithms, EGAP performance is comparable to the
JVM-based platforms (Giraph, GraphX) and comparable to
PGX and PGX.D on most algorithms. EGAP is able to run
LCC, as opposed to Giraph, GraphX, GraphMat (distributed)
and PGX.D on the R4 graph.

Strong Horizontal Scalability. JoyGraph EGAP ex-
hibits good horizontal scaling behavior. We performed a
strong horizontal scalability analysis for all graph processing
platforms on the D1000 graph while running BFS and PR.
The platforms are deployed on 1-2-4-8-16 nodes. Figure 7
plots the results. We notice that the best-performing platforms
are GraphMat and PGX.D. These platforms are not only the
fastest, but also exhibit a good scaling behavior. In contrast,
EGAP performance is comparable only to Giraph and GraphX.
In our environment, GraphMat crashed on 4 machines due to
an unresolved issue in the used MPI implementation.

EGAP

Fig. 7. Strong Horizontal Scalability: BFS and PR makespan on D1000 vs.
number of nodes.
B. Elastic Graph Processing

We present the performance evaluation of the autoscaling
policies using the elasticity metrics introduced in Section V.
Our experiments are performed on the graph500-25 dataset
using the BFS, and PR workloads. We start all the elastic runs
on 4 worker nodes. During runtime, the minimum allowed
number of worker nodes is 1, while the maximum is 20. We
compare all the elastic runs with static baseline experiments
that runs on 4, 10, and 20 machines. The results obtained in
this set of experiments support MF3.

Elastic BFS Highlights. Table III presents the performance
metrics for all autoscaling policies while running the BFS
algorithm. For the same experiment, Table IV presents the
autoscaling metrics derived from the performance metrics.

The processing time and makespan vary significantly be-
tween the autoscaling policies. The worst performing au-
toscalers are the generic ones, while the graph-specific policies
leverage better running times. We notice that the generic
autoscalers do spend little time under-provisioned, but also
that the over-provisioned time is relatively high. This indicates
that scaling out is cheap, but scaling in is more expensive.
The graph-specific policies do not over-provision much, but
the under-provisioning time is relatively high. In terms of
stability, all policies exhibit a highly unstable behavior. This
can be contributed to the BFS behavior: the number of active
vertices increases significantly in the beginning, leading to a
constant increase in demand; towards the end of the algorithm,
the number of active vertices decreases significantly, leading
to a large decrease in demand.

Elastic PR Highlights. Table V presents the performance
metrics for all autoscaling policies while running the PR
algorithm. For the same experiment, Table VI presents the
autoscaling metrics derived from the performance metrics.

The autoscaler processing time and makespan do not vary
as much as for BFS. As opposed to BFS behavior, the
worst performing autoscalers are the graph-specific policies.
It is important to notice that in the case of PR, only three
autoscaling policies generate elastic scaling events: React,
AKTE and WCP. The others do not trigger any elasticity due to
the PR characteristics: all vertices are active during the entire
duration of the algorithm. Contrary to the BFS behavior, no

TABLE III
PERFORMANCE METRICS FOR GRAPH500-25 AND ALGORITHM BFS.

tp tm te
∑

tc(s) kVPS kEVPS
∑

te(s)
∑

ts(s)

Static-20 29 76 0 1,316 576 35,938 0 329
Static-10 47 104 0 1,008 359 22,409 0 329
Static-4 147 300 0 1,445 115 7,230 0 506

React 525 675 461 6,473 32 2,027 3,345 324
AKTE 2,106 2,258 1,980 15,630 8 505 10,499 324
ConPaaS 957 1,116 872 10,882 17 1,112 6,950 327
Reg 701 862 618 10,454 24 1,526 7,268 313
Hist 563 708 500 7,545 30 1,890 4,986 316

NP 433 583 254 3,399 60 3,784 621 518
CPU 445 593 272 3,346 38 2,391 396 552
WCP 747 898 551 5,878 23 1,496 998 525

TABLE IV
AUTOSCALER METRICS FOR GRAPH500-25 AND ALGORITHM BFS.

aU aO āU āO tU tO k k′

React 0.11 1.27 0.00 0.82 0.12 21.19 36.98 58.95
AKTE 0.06 1.01 0.00 20.25 0.28 6.27 60.72 38.18
ConPaaS 0.07 2.02 0.00 38.52 0.07 12.79 34.94 62.59
Reg 0.12 2.71 0.00 54.21 0.13 16.93 44.82 51.18
Hist 0.13 2.91 0.00 58.18 0.14 19.39 52.36 43.61

NP 0.22 0.02 0.00 0.00 4.40 0.36 24.67 18.21
CPU 1.16 0.00 0.00 0.00 23.23 0.00 49.64 23.25
WCP 0.97 0.55 0.00 0.00 19.47 10.90 59.35 39.53

TABLE V
PERFORMANCE METRICS FOR GRAPH500-25 AND ALGORITHM PR.

tp tm te
∑

tc(s) kVPS kEVPS
∑

te(s)
∑

ts(s)

Static-20 186 236 0 4,668 91 5,712 0 3,094
Static-10 385 443 0 4,734 44 2,764 0 3,080
Static-4 1,327 1,483 0 7,355 12 801 0 5,033

React 1,107 1,253 514 13,548 15 961 5,110 3,775
AKTE 1,116 1,268 529 13,710 15 953 5,248 3,793
ConPaaS 1,334 1,488 0 7,378 12 797 0 4,958
Reg 1,302 1,460 0 7,236 13 817 0 4,951
Hist 1,395 1,551 0 7,699 12 762 0 5,104

NP 1,308 1,462 0 7,246 13 814 0 4,967
CPU 1,294 1,452 0 7,199 13 822 0 4,912
WCP 1,660 1,814 457 13,712 10 641 1,014 4,730

TABLE VI
AUTOSCALER METRICS FOR GRAPH500-25 AND ALGORITHM PR.

aU aO āU āO tU tO k k′

React 4.46 0.00 0.00 0.00 44.64 0.00 53.33 45.26
AKTE 4.37 0.00 0.00 0.00 43.72 0.00 54.20 44.32
ConPaaS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Reg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hist 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WCP 2.25 0.00 0.00 0.00 39.18 0.00 30.16 40.23

policy over-provisions. The three policies that do trigger elastic
scaling (i.e., React, AKTE, and WCP) exhibit a large amount
of under-provisioning, and also instability.

C. The Cost and Benefits of Elasticity

With the reference implementation, moving data when
leasing or releasing resources is a synchronous mechanism:
computation is stopped until the the data is migrated. This
generates large amounts of (communication) overhead for the
auto-scaling policies that trigger many scaling events (MF4).
This behavior is depicted in the column te of Table III
and Table V for BFS and PR, respectively. In Figure 8,
we plot the resource utilization for BFS (Figure 8a) and
PR (Figure 8b) in node-seconds, i.e., the amount of time
EGAP used its resources. Furthermore, for the autoscalers,
we depict the processing time and the 25th, 50th, and 75th
percentiles of elasticity time. Provided that the data migration
mechanism is further optimized, and reduced by at least 50%,
the resource utilization for both BFS and PR can be improved

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

S
ta

ti
c
-2

0

S
ta

ti
c
-1

0

S
ta

ti
c
-4

R
e
a
c
t

A
K

T
E

C
o
n
P

a
a
S

R
e
g

H
is

t

N
P

C
P

U

W
C

P

N
o
d
e
-s

e
c
o
n
d
s

Policy

Processing time
25% elasticity
50% elasticity
75% elasticity

(a) BFS Resource Utilization.

 0

 1000

 2000

 3000

 4000

 5000

S
ta

ti
c
-2

0

S
ta

ti
c
-1

0

S
ta

ti
c
-4

R
e
a
c
t

A
K

T
E

C
o
n
P

a
a
S

R
e
g

H
is

t

N
P

C
P

U

W
C

P

N
o
d
e
-s

e
c
o
n
d
s

Policy

(b) PR Resource Utilization.

Fig. 8. JoyGraph EGAP: the cost of elasticity.

via elastic scaling policies (MF5). This could be achieved
via non-blocking [44], or hot-migration [45] data movement
mechanisms.

Moreover, as static processing scalability is not linear (e.g.,
Static-20, and Static-10 use a similar amount of resources), as
a user, or system administrator it is not trivial to determine
an optimal configuration. Figure 8 shows that the general
autoscaling policies achieve a similar resource utilization to
the static deployments on BFS, and a competitive resource
utilization for PR. To conclude, all general autoscalers achieve
a good processing time for BFS, while for PR only React and
AKTE. The NP, CPU and WCP policies are too conservative,
and trigger too few elastic scaling events, thus processing the
workload on lower numbers of resources, which reduces the
throughput.

D. Toward Uncovering Elasticity Laws in Graph-Processing

We showed in Section II that there is more non-trivial re-
source variability to exploit than simply using active vertices,
as state-of-the-art suggests. We showed that even though the
number of active vertices is constant during runtime (i.e., as is
the case of PR), the usage of systems-level metrics can highly
vary. The opposite is also true, as is the case of BFS: while the
active vertices show significant variability, the wallclock time,
or memory do not vary as much. We validate this behavior
by plotting the supply-demand curves of BFS and PR under

the WCP and AKTE autoscaling policies. Figure 9 depicts the
results.

For the BFS workload, while the AKTE policy (Figure 9b)
scales abruptly from 4 to 20 nodes and back, there is not
much variability after super-step 5. Moreover, the WCP policy
(Figure 9a) does not even identify a large increase in demand,
scaling only up to 8 nodes. For the PR algorithm, both WCP
(Figure 9c) and AKTE (Figure 9d) identify large increases in
demand and trigger many scaling events, even though the PR
algorithm does not generate any variability in the number of
active vertices during runtime.

This shows that we are far from completely understanding
the behavior of graph-processing workloads and systems,
supporting MF6. There is much intrinsic resource variability
due to both algorithm and system behaviors that we need to
harness via fine-grained autoscaling mechanisms and policies
to build more scalable, load balanced, and performant systems.

Similarly to our conjecture, in the past, that the performance
of graph-processing systems depends non-trivially on datasets,
algorithms, and underlying execution platform [24], we con-
jecture from the data presented in this section that uncovering
the laws that govern elasticity in graph-processing systems is
also non-trivial. Proving this conjecture is outside the scope
of this work.

VII. RELATED WORK

In this section we discuss work related to JoyGraph:
benchmarks for graph processing, and three systems-related
categories, cloud-optimized graph processing, dynamic parti-
tioning, and general elastic data processing frameworks.

a) Benchmarks for Graph Processing: Closest to our
work, LDBC Graphalytics [24] is a state-of-the-art benchmark
supported by the industry and academic community processing
graphs on commodity hardware. Extending LDBC Graphalyt-
ics significantly, JoyGraph focuses on elasticity, proposing
new metrics, elasticity policies, and a reference JoyGraph
EGAP. JoyGraph proposes the same features in contrast
with Berkeley GAP [46], or Graph500, which is currently
the de facto standard for benchmarking GAPs running on
supercomputing hardware; JoyGraph uses a more diverse
set of algorithms and datasets than Graph500, also adhering
to the recent finding of Broido and Clauset: most real-world
graphs are not scale-free [35].

b) Cloud-optimized Graph Processing: Recent work on
graph processing proposes adapting such systems to the cloud:
Surfer [16] Pregel.NET [26], and iGiraph [27]. Also, Li
et al. introduce a performance model [47] for Pregel-like
distributed graph processing on clouds. This predictor suggests
cost effective static VM deployment with appropriate VM
instance types. Such systems focus on enabling cost-effective
deployments on clouds while using static setups. In contrast,
JoyGraph takes a more general approach, being infrastructure
agnostic. Its elasticity policies can be extended with cost-
effective scaling policies and network-aware partitioning to
reduce cost and improve performance in clouds. Furthermore,

0 4 7
super-step

0 200 400 600
time (s)

0

5

10

15

20

m
a
ch

in
e
s

supply

demand

(a) BFS + WCP.

0 4 7
super-step

0 500 1000 1500 2000
time (s)

0

5

10

15

20

m
a
ch

in
e
s

supply

demand

(b) BFS + AKTE.

0 5 9
super-step

0 500 1000 1500
time (s)

0

5

10

15

20

m
a
ch

in
e
s

supply

demand

(c) PR + WCP.

0 5 9
super-step

0 400 800 1200
time (s)

0

5

10

15

20

m
a
ch

in
e
s

supply

demand

(d) PR + AKTE.

Fig. 9. EGAP elastic policies WCP and AKTE on BFS and PR. The position of the discrete super-steps reflects the duration of the elasticity operations.

JoyGraph’s native elasticity enables it to take decisions dy-
namically, during runtime.

c) Dynamic Partitioning: We identified several graph
processing systems [7], [48], [49] that dynamically repartition
the graph data during runtime. The goal of such systems is
to improve performance through reducing the imbalances of
either storage, network communication, or computation. Much
like JoyGraph, such systems monitor various system metrics
during runtime (e.g., active vertices, CPU load, network com-
munication) and take dynamic re-partitioning decisions during
runtime. In addition to achieving load balancing through re-
partitioning, JoyGraph is also able to scale the number of
workers to improve resource utilization.

d) Elastic Data Processing Systems: The problem of
elasticity in generic data processing systems has been ex-
tensively treated recently. Elasticity has been leveraged to
meet on-demand workload variability, reduce monetary costs
or improve resource utilization. For achieving this, variants
of elastic MapReduce [50], [51] have been developed. Fur-
thermore, more domain-specific elasticity schemes have been
proposed: machine learning on Spark [52], elastic stream
processing [53] or even scientific workflows [22]. Similarly
to such systems, JoyGraph supports user-defined policies for
dynamically scaling the number of compute nodes during
runtime. Closest to our work, Pundir et al. investigate the
challenges of elastically scaling graph computation during
runtime [44]. However, they only provide mechanisms for
migrating data when adding or removing nodes, and do not
investigate any elastic policy.

VIII. CONCLUSION AND ONGOING WORK

Graph-processing systems currently use a static deployment
model: for each processing job, a set of resources is used
from start to finish. In contrast, in this work we investigated
a dynamic deployment model. Our benchmark, JoyGraph
proposes a framework for assessing the benefits and costs of
elasticity in graph processing. JoyGraph builds on top of the
LDBC Graphalytics industry benchmark for graph processing,

and the SPEC Cloud Group’s elasticity metrics, and proposes
a reference EGAP.

We find that elasticity offers an interesting trade-off between
performance and fine-grained resource management in com-
parison to the static state-of-the-art alternatives. We charac-
terize with many elasticity-related metrics the performance of
the autoscaling policies and find that they offer distinct trade-
offs. Moreover, we show that graph processing workloads are
sensitive to data migration during elastic scaling, and that the
non-trivial interactions between scaling policies and workload
add an extra level of complexity to resource management and
scheduling for graph processing.

We are just beginning to understand the potential elasticity
holds for graph processing, and for big data processing in
general. We are currently extending this work in the following
directions: we are exploring the situation when elasticity
becomes particularly challenging when multiple customers
compete for the same infrastructure. We are considering re-
evaluating and extending JoyGraph for a more extensive set
of (emerging) graph-processing algorithms, addressing prop-
erty graphs, mutable graphs, and (dynamic) graph-processing
workflows.

REPRODUCIBILITY THROUGH CODE AND DATA
AVAILABILITY

Following a decade-long tradition in our research group,
of releasing data and source-code, the artifacts of this study
are available online, at https://atlarge.ewi.tudelft.nl/gitlab/stau/
joygraph

ACKNOWLEDGMENTS

This work is supported by the Dutch projects Vidi MagnaData, by
the Dutch Commit and the Commit project Commissioner, and by
generous donations from Oracle Labs, USA.

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” PVLDB, vol. 8,
no. 12, pp. 1804–1815, 2015.

https://atlarge.ewi.tudelft.nl/gitlab/stau/joygraph
https://atlarge.ewi.tudelft.nl/gitlab/stau/joygraph

[2] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in SIGKDD, 2012, pp. 1222–1230.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs.” in
OSDI, vol. 12, no. 1, 2012, p. 2.

[4] Y. Guo, S. Hong, H. Chafi, A. Iosup, and D. Epema, “Modeling, analysis,
and experimental comparison of streaming graph-partitioning policies,”
JPDC, vol. 108, pp. 106–121, 2017.

[5] S. Beamer, K. Asanovic, and D. A. Patterson, “Direction-optimizing
breadth-first search,” in SC, 2012, p. 12.

[6] Z. Shang and J. X. Yu, “Catch the wind: Graph workload balancing on
cloud,” in ICDE, 2013, pp. 553–564.

[7] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: a system for dynamic load balancing in large-scale
graph processing,” in EuroSys, 2013, pp. 169–182.

[8] A. Ching and C. Kunz, “Giraph: Large-scale graph processing infras-
tructure on Hadoop,” Hadoop Summit, vol. 6, no. 29, 2011.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph processing in a distributed dataflow
framework.” in OSDI, vol. 14, 2014, pp. 599–613.

[10] S. Hong, S. Depner, T. Manhardt, J. V. D. Lugt, M. Verstraaten, and
H. Chafi, “PGX.D: a fast distributed graph processing engine,” in SC,
2015, pp. 58:1–58:12.

[11] F. Checconi and F. Petrini, “Massive data analytics: the Graph 500 on
IBM Blue Gene/Q,” IBM J. Res. Dev., vol. 57, no. 1/2, pp. 10–1, 2013.

[12] Y. Guo, A. L. Varbanescu, D. H. J. Epema, and A. Iosup, “Design and
experimental evaluation of distributed heterogeneous graph-processing
systems,” in CCGRID, 2016, pp. 203–212.

[13] S. Heldens, A. L. Varbanescu, and A. Iosup, “Dynamic load balancing
for high-performance graph processing on hybrid cpu-gpu platforms,” in
Int’l. W. on Irregular Applications: Archi. and Algo., 2016, pp. 62–65.

[14] R. Chen, X. Weng, B. He, and M. Yang, “Large graph processing in the
cloud,” in SIGMOD, 2010, pp. 1123–1126.

[15] J. Li, S. Su, X. Cheng, Q. Huang, and Z. Zhang, “Cost-conscious
scheduling for large graph processing in the cloud,” in HPCC, 2011,
pp. 808–813.

[16] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li, “Improving
large graph processing on partitioned graphs in the cloud,” in SoCC,
2012, p. 3.

[17] M. Verstraaten, A. L. Varbanescu, and C. de Laat, “Quantifying the
performance impact of graph structure on neighbour iteration strategies
for pagerank,” in Euro-Par Workshops, 2015, pp. 528–540.

[18] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L.
Willke, “How well do graph-processing platforms perform? an empirical
performance evaluation and analysis,” in IPDPS, 2014, pp. 395–404.

[19] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in ICDCS, 2011, pp. 559–570.

[20] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows,” in SC, 2011, pp. 1–12.

[21] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,
D. Epema, and A. Iosup, “An experimental performance evaluation of
autoscaling policies for complex workflows,” in ICPE, 2017, pp. 75–86.

[22] A. Uta, A. Sandu, S. Costache, and T. Kielmann, “MemEFS: an elastic
in-memory runtime file system for escience applications,” in e-Science,
2015, pp. 465–474.

[23] B. Nicolae, P. Riteau, and K. Keahey, “Bursting the cloud data bubble:
Towards transparent storage elasticity in iaas clouds,” in IPDPS, 2014,
pp. 135–144.

[24] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Man-
hardto, H. Chafio, M. Capotă, N. Sundaram, M. Anderson et al., “LDBC
Graphalytics: A benchmark for large-scale graph analysis on parallel and
distributed platforms,” PVLDB, vol. 9, no. 13, pp. 1317–1328, 2016.

[25] S. Au, A. Uta, A. Ilyushkin, and A. Iosup, “An elasticity study of
distributed graph processing,” in CCGrid, 2018.

[26] M. Redekopp, Y. Simmhan, and V. K. Prasanna, “Optimizations and
analysis of BSP graph processing models on public clouds,” in IPDPS,
2013, pp. 203–214.

[27] S. Heidari, R. N. Calheiros, and R. Buyya, “iGiraph: A cost-efficient
framework for processing large-scale graphs on public clouds,” in
CCGRID, 2016, pp. 301–310.

[28] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan, “Graphreduce:
processing large-scale graphs on accelerator-based systems,” in SC,
2015, pp. 28:1–28:12.

[29] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,
M.-D. Pham, and P. Boncz, “The LDBC social network benchmark:
Interactive workload,” in SIGMOD. ACM, 2015, pp. 619–630.

[30] G. Malewicz, M. Austern, and A. Bik, “Pregel: a system for large-scale
graph processing,” SIGMOD, pp. 135–146, 2010.

[31] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” PVLDB, vol. 8, no. 11,
pp. 1214–1225, 2015.

[32] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” snap.stanford.edu/data.

[33] Y. Guo and A. Iosup, “The game trace archive,” in NETGAMES, 2012.
[34] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm

to detect community structures in large-scale networks,” Phys. Rev. E,
vol. 76, no. 3, p. 036106, 2007.

[35] A. D. Broido and A. Clauset, “Scale-free networks are rare,” arXiv
preprint arXiv:1801.03400, 2018.

[36] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling
of web applications in a virtualized cloud computing environment,” in E-
Business Engineering, 2009. ICEBE’09. IEEE International Conference
on. IEEE, 2009, pp. 281–286.

[37] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in Network Operations and Man-
agement Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp. 204–212.

[38] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling web applications
in heterogeneous cloud infrastructures,” in Cloud Engineering (IC2E),
2014 IEEE International Conference on. IEEE, 2014, pp. 195–204.

[39] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[40] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1,
2008.

[41] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in SOSP, 2013, pp. 472–
488.

[42] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
understanding graph computing in the context of industrial solutions,”
in SC, 2015, pp. 1–12.

[43] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A medium-scale distributed system for
computer science research: Infrastructure for the long term,” Computer,
vol. 49, no. 5, pp. 54–63, 2016.

[44] M. Pundir, M. Kumar, L. M. Leslie, I. Gupta, and R. H. Campbell,
“Supporting on-demand elasticity in distributed graph processing,” in
IC2E, 2016, pp. 12–21.

[45] A. Uta, O. Danner, C. van der Weegen, A. Oprescu, A. Sandu,
S. Costache, and T. Kielmann, “Memefs: A network-aware elastic in-
memory runtime distributed file system,” Future Generation Comp. Syst.,
vol. 82, pp. 631–646, 2018.

[46] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[47] Z. Li, B. Zhang, S. Ren, Y. Liu, Z. Qin, R. S. M. Goh, and M. Gurusamy,
“Performance modelling and cost effective execution for distributed
graph processing on configurable VMs,” in CCGRID, 2017, pp. 74–83.

[48] S. Yang, X. Yan, B. Zong, and A. Khan, “Towards effective partition
management for large graphs,” in SIGMOD, 2012, pp. 517–528.

[49] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in Int’l.
Conf. on Sci. and Stat. Data. Mgmt. ACM, 2013, p. 22.

[50] Z. Fadika and M. Govindaraju, “Delma: Dynamically elastic MapReduce
framework for cpu-intensive applications,” in CCGRID, 2011, pp. 454–
463.

[51] A. Gandhi, S. Thota, P. Dube, A. Kochut, and L. Zhang, “Autoscaling
for hadoop clusters,” in IC2E, 2016, pp. 109–118.

[52] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: agile ml elasticity through tiered reliability in dynamic re-
source markets.” in EuroSys, 2017, pp. 589–604.

[53] T. Heinze, L. Roediger, A. Meister, Y. Ji, Z. Jerzak, and C. Fetzer,
“Online parameter optimization for elastic data stream processing,” in
SoCC, 2015, pp. 276–287.

	Introduction
	Variability in Graph Processing
	JoyGraph Benchmarking Framework
	Design Overview
	Benchmarking Workload
	Elastic Autoscaling
	Elasticity Metrics
	Performability Metrics

	JoyGraph EGAP: A Reference Elastic Graph-Analytics Platform
	Design Overview
	Elastic Workload Distribution and Nested Partitioning

	Experiment Setup
	Systems Under Test: Two Classes of Elastic and Four Classes of State-of-the-Art Graph-Processing Systems
	Hardware and Software Environment for Experiments

	Results using the JoyGraph Benchmark
	JoyGraph EGAP vs. State-of-the-Art Graph-Processing Systems
	Elastic Graph Processing
	The Cost and Benefits of Elasticity
	Toward Uncovering Elasticity Laws in Graph-Processing

	Related Work
	Conclusion and Ongoing Work
	References

