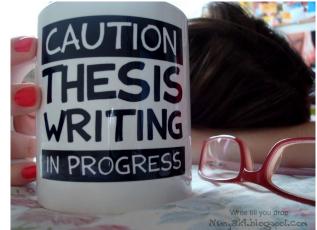
ANANKE: a Q-Learning based Portfolio Scheduler for Complex Industrial Workflows

Presentation: Laurens Versluis Slides: Shenjun Ma

Shenjun Ma Alexey Ilyushkin Alexander Stegehuis Alexandru Iosup @Large research: https://atlarge-research.com/

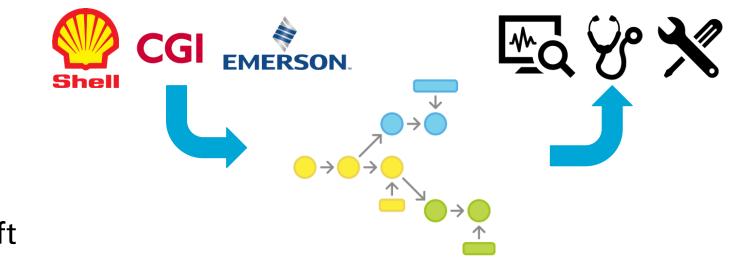
Concept: Workflow

- A process/application modeled as tasks with precedence constraints between them
- Example: A thesis
 - 1. Find a supervisor/topic
 - 2. Define research questions
 - 3. Implement a prototype
 - 4. Perform experiments
 - 5. Document the results
 - 6. Defend your work



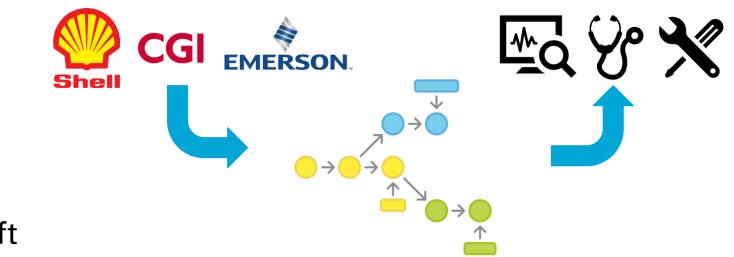
Workflows are used in industrial applications

- Sensor data processing is commonly defined as workflows
- Example use-case: monitoring and diagnosis



Workflows are used in industrial applications

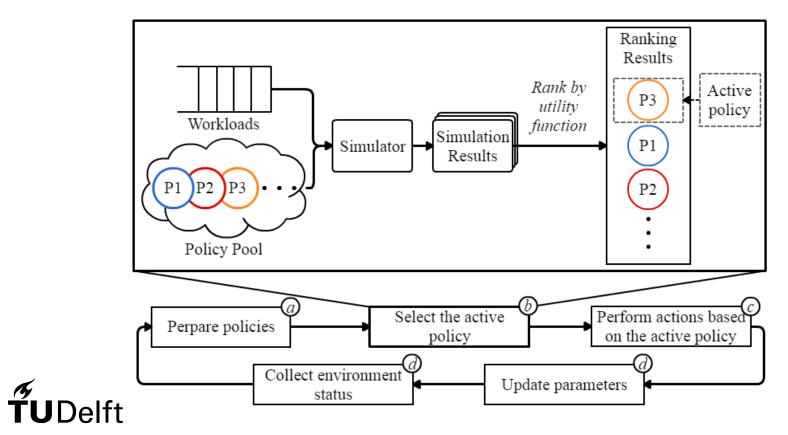
- Sensor data processing is commonly defined as workflows
- Example use-case: monitoring and diagnosis



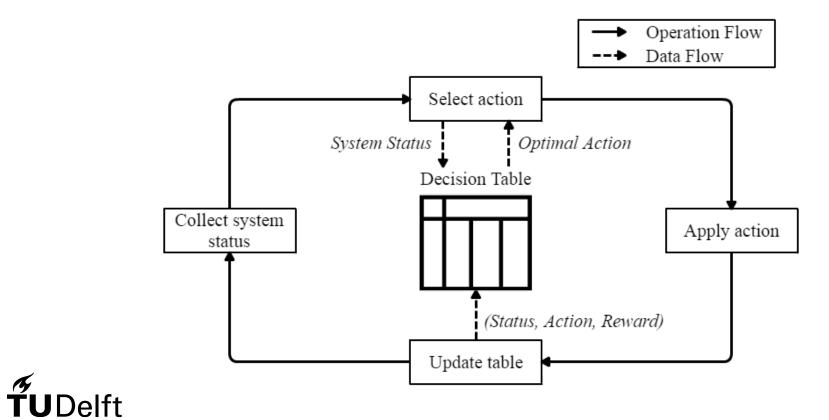
Industrial workflows have special features and requirements

- Analyze and process workflows in production (= in real-time)
- Deadline constraints
 - Monitor asserts in real time
- Exhibit recurrent patterns
 - Sensors collect data with a constant rate
- Workloads may evolve over time
 - New type of sensor data is introduced
 - New type of sensor is applied

Concept: Portfolio Scheduling



Concept: Standard Q-Learning Algorithm



Our approach:

Q-Learning + Portfolio Scheduling

Our approach:

Q-Learning + Portfolio Scheduling

Take the advantage of recurrent patterns

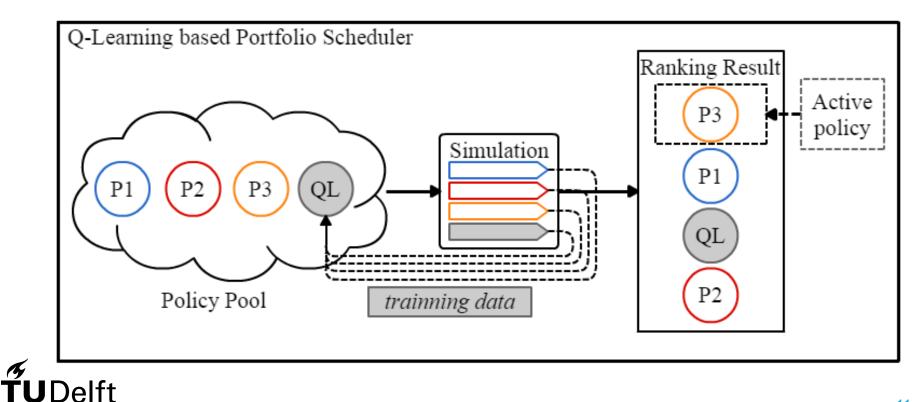
Our approach:

Q-Learning + Portfolio Scheduling

Take the advantage of recurrent patterns

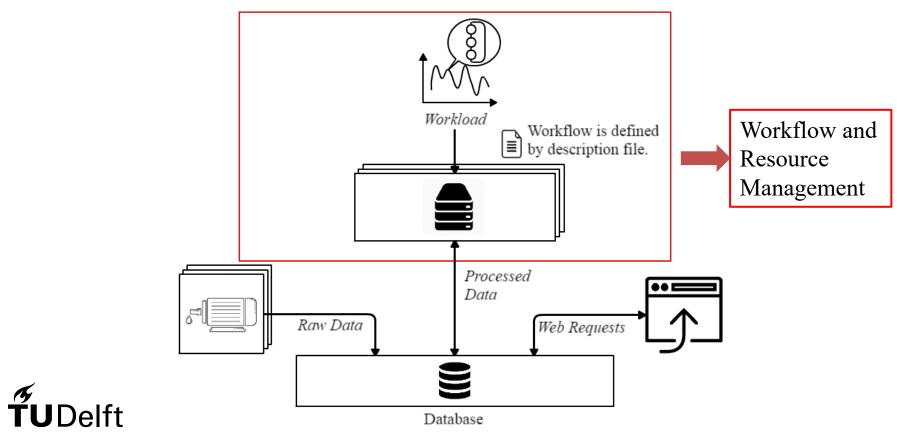
Address the workload evolution and deadline constraints

Obtaining a Q-learning based portfolio scheduler



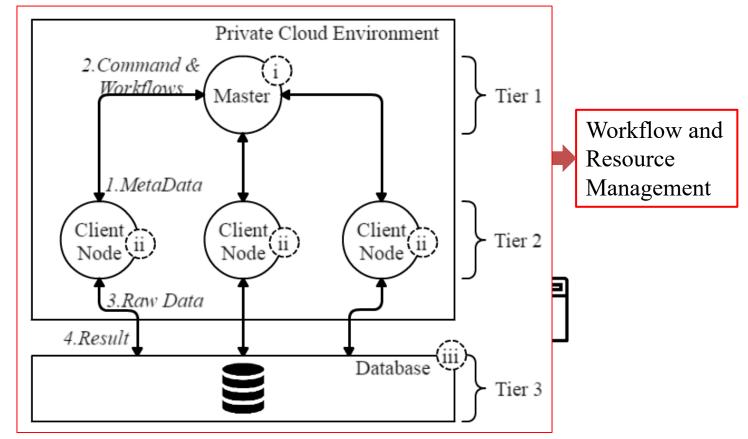
11

The Smart Connect Framework at Shell



The Smart Connect Framework at Shell

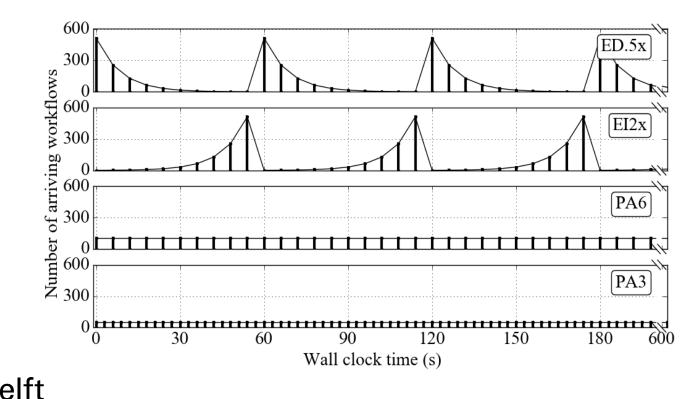
ŤUDelft



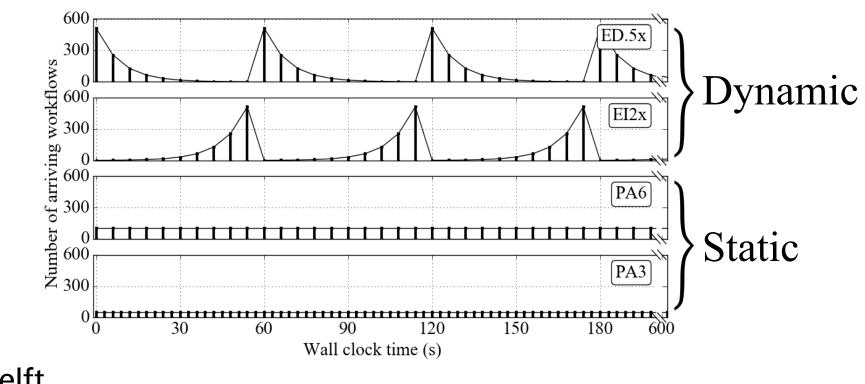
Evaluation

- Real-world experiments based on a prototype implementation
- Realistic experimental environment: DAS-5
 - DAS is often used to emulate cloud environments
 - 1 Master node; 3-50 Client nodes
 - CPU: Intel E5-2630v3 2.4GHz
 - RAM: 64 GB
 - Network: 1 GB/s Ethernet links

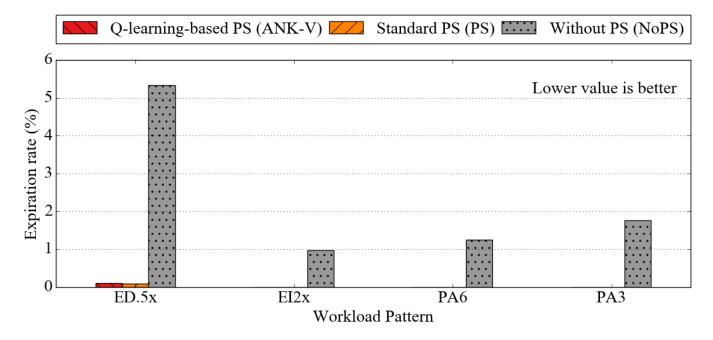
Synthetic Experimental workload, with realistic parameters derived from real-world deployment



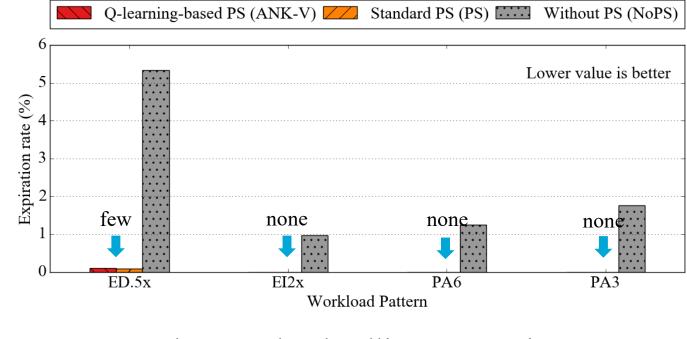
Synthetic Experimental workload, with realistic parameters derived from real-world deployment



Key Deadline Metrics: Expired Workflows (#Clients Nodes: 3)



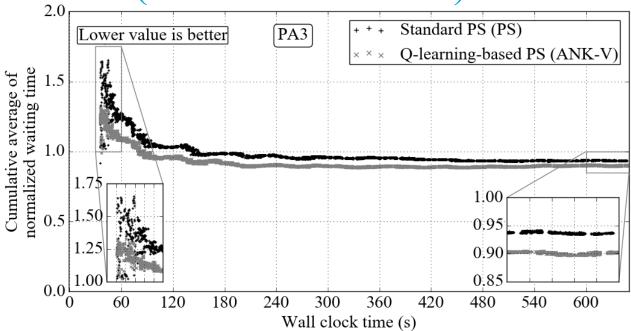
Key Deadline Metrics: Expired Workflows (#Clients Nodes: 3)



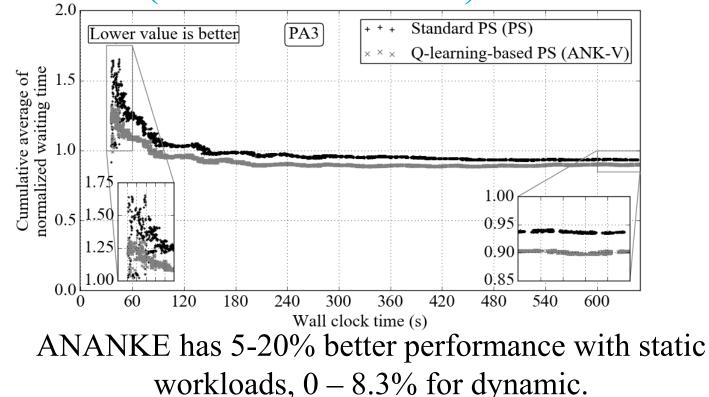
Both meet the deadline-constraints

Delft

Key User Metrics: Workflow performance across portfolio schedulers (#Clients Nodes: 3)



Key User Metrics: Workflow performance across portfolio schedulers (#Clients Nodes: 3)



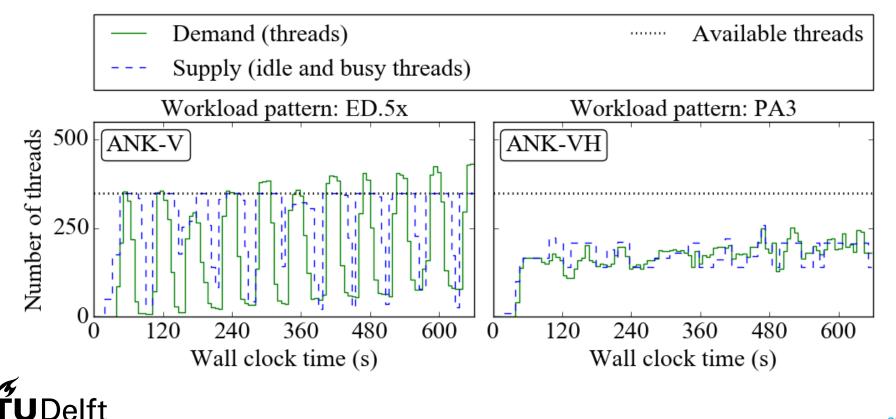
TUDelft

20

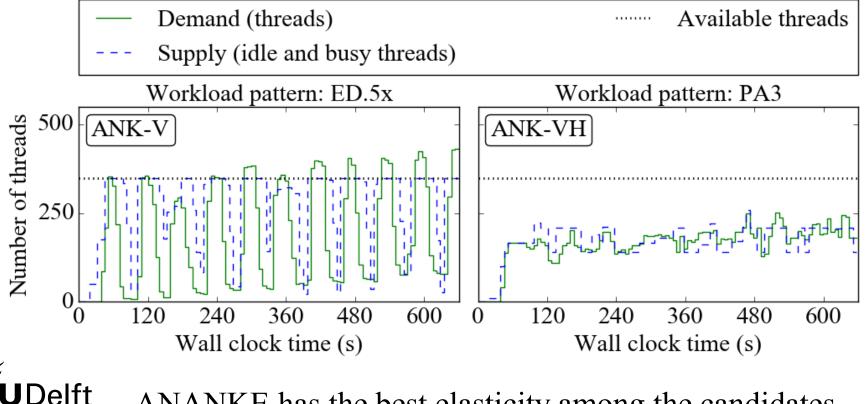
Elasticity: Supply and Demand

- 5 Auto Scalers
 - 2 ANANKE implementations
 - 3 baselines
- Supply: Number of active threads
- Demand: Number of running and near deadline workflows

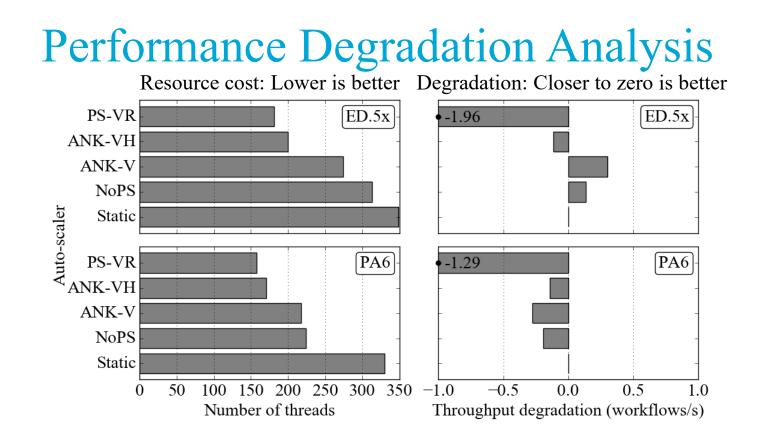
Supply and Demand Analysis

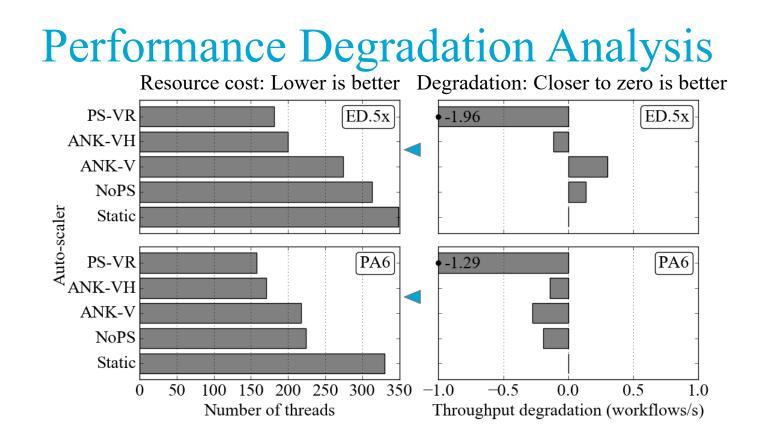


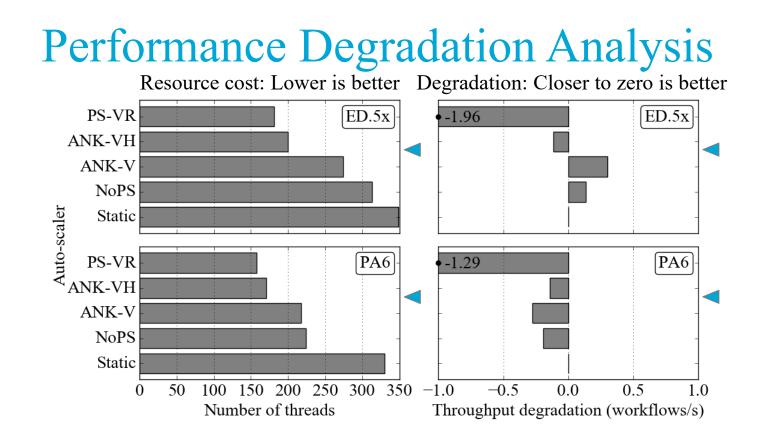
Supply and Demand Analysis

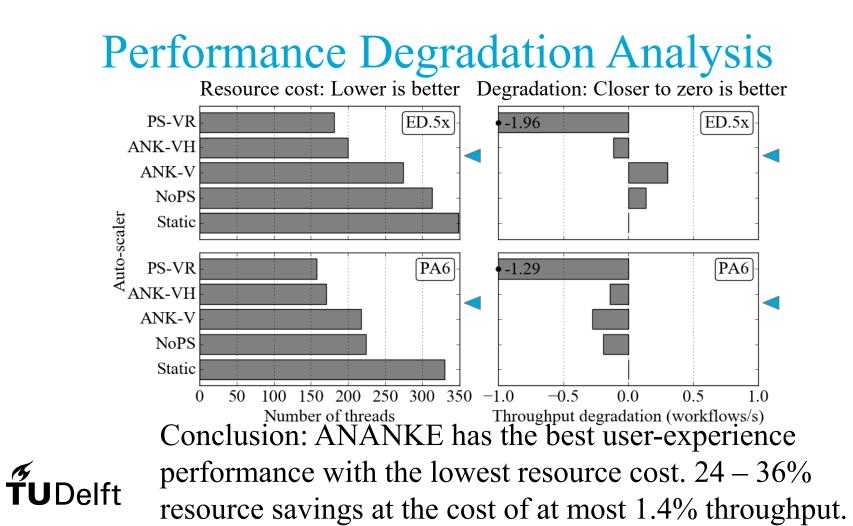


ANANKE has the best elasticity among the candidates ²³









Conclusion

- Design and implement ANANKE
 - a Q-learning based portfolio scheduler
 - Complex industrial workflows
- Evaluate through real-world experiments
- Better user-experience performance, resource utilization and elasticity for relatively static workloads
- For highly dynamic workloads, using Q-learning is less beneficial, but still positive

Future Work

- Different type of simulators
- Different learning techniques
 - GeneRec (error-driven reinforcement learning)
- Advanced mechanism to control/restrict the simulation time
- Apply ANANKE in hybrid cloud environments

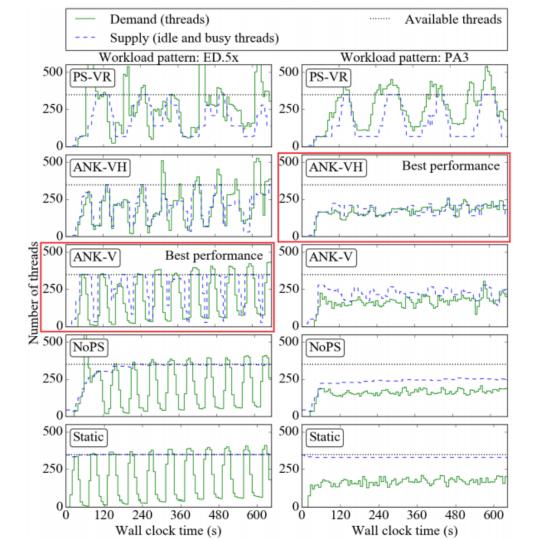
ANANKE: a Q-Learning based Portfolio Scheduler for Complex Industrial Workflows

Presentation: Laurens Versluis Slides: Shenjun Ma

Shenjun Ma Alexey Ilyushkin Alexander Stegehuis Alexandru Iosup @Large research: https://atlarge-research.com/

Novelty

- Conceptual contriution: combining Qlearning with portfolio scheduling
- Conceptual contribution: A QL-based scheduling policy



ŤUDelft

- Numerical methods
 - Pairwise Comparison
 - Fractional Difference Comparison

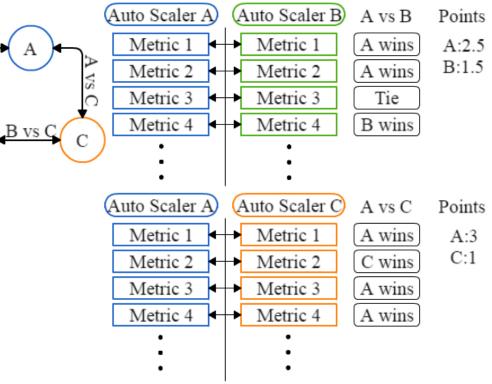
- Numerical methods
 - Pairwise Comparison
 - Fractional Difference Comparison
- 9 related metrics
 - system- and useroriented metrics

- Numerical methods
 - Pairwise Comparison
 - Fractional Difference Comparison
- 9 related metrics
 - system- and useroriented metrics
- Full results are in the technical report
 TUDelft

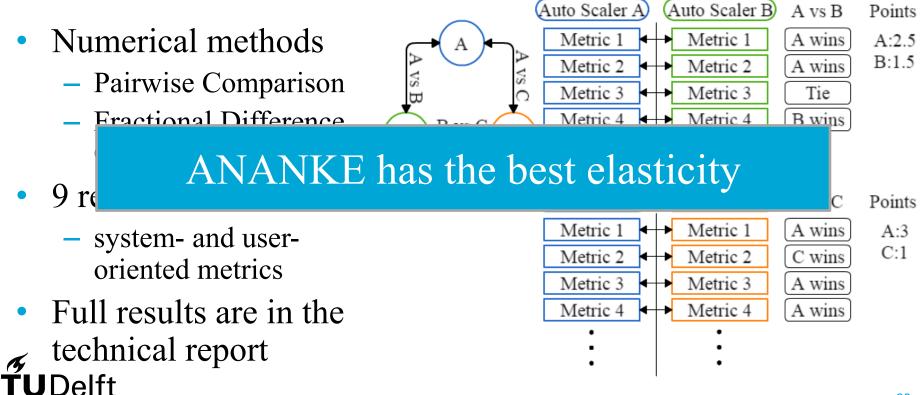
Comprehensive Comparison between auto-scalers

В

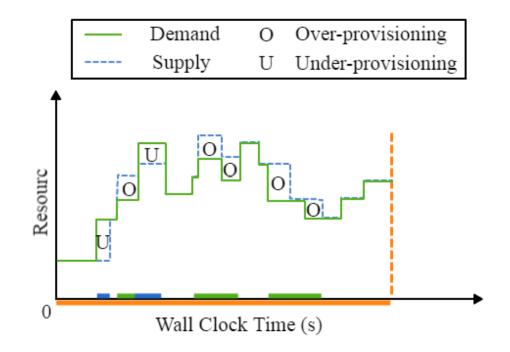
- Numerical methods
 - Pairwise Comparison
 - Fractional Difference Comparison
- 9 related metrics
 - system- and useroriented metrics
- Full results are in the technical report
 TUDelft



Comprehensive Comparison between auto-scalers

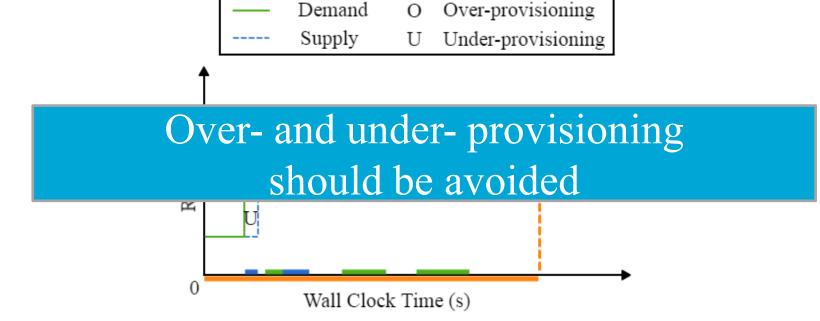


Key concept for auto scaling: Demand and Supply



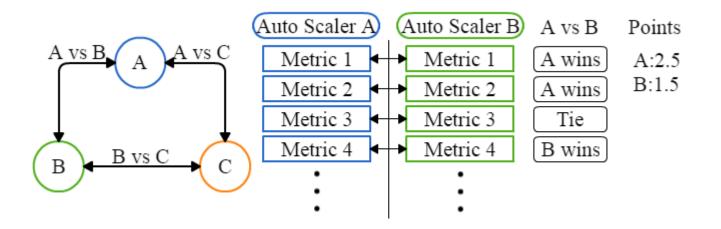
Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).

Key concept for auto scaling: Demand and Supply



Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).

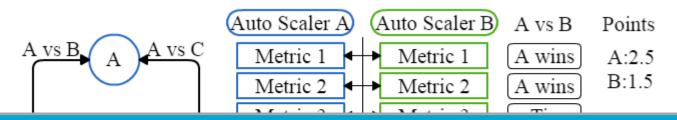
Pairwise Comparison



• Higher value is better

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).

Pairwise Comparison

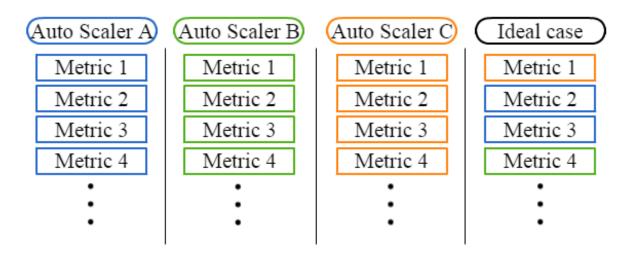


ANANKE with vertical scaling outperforms the candidates in static and dynamic workloads

• Higher value is better

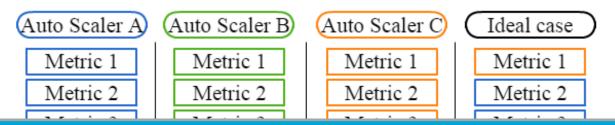
Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).

Fractional Difference Comparison



• Lower value is better

Fractional Difference Comparison



ANANKE with vertical scaling and horizontal scaling ability performs best

• Lower value is better

Appendix: Comprehensive Comparison Results

Table 6.6: The results of the pairwise and fractional comparisons. The winners are highlighted in bold. AS stands for auto-scaler.

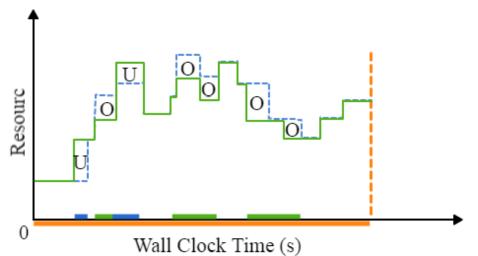
Auto Scaler	Pairwise (points)				Fractional (frac.)			
	ED.5x	EI2x	PA6	PA3	ED.5x	EI2x	PA6	PA3
PS-(VR)	11	13	13	13	3.00	2.88	3.65	3.58
ANK-VH	17	16	19	15	2.89	2.70	1.80	1.94
ANK-V	20	22	15	19	6.78	5.53	4.00	3.95
NoPS	19	16	17.5	17	6.02	5.82	4.08	3.92
Static	13	13	15.5	16	13.44	15.91	14.51	14.46

Appendix: Research Questions

- 1. How to adapt portfolio scheduling?
- 2. How to use learning technique and historical information?
- 3. How to evaluate the learning-based portfolio scheduler?

Appendix: Auto scaling metrics (Accuracy)

 Demand	0	Over-provisioning
 Supply	U	Under-provisioning



Under-provisioning Accuracy *resource under_provisioning*

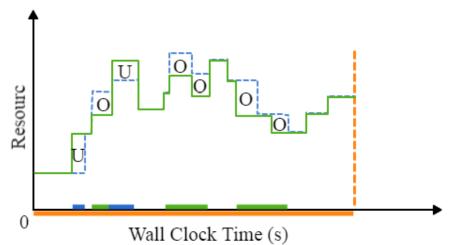
Total resource

Over-provisioning Accuracy *resource over_provisioning*

Total resource

Appendix: Auto scaling metrics (Timeshare)

 Demand	0	Over-provisioning
 Supply	U	Under-provisioning



Under-provisioning Timeshare ______*Time of under_provisioning state*

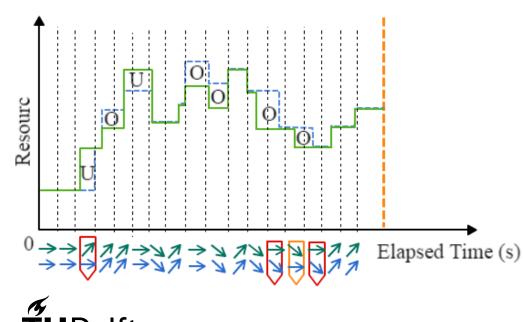
Total time

Over-provisioning Timeshare *Time of over_provisioning state*

Total time

Appendix: Auto scaling metrics (instability)

 Demand	0	Over-provisioning
 Supply	U	Under-provisioning



The fraction of time the supply and demand curves move in opposite directions.

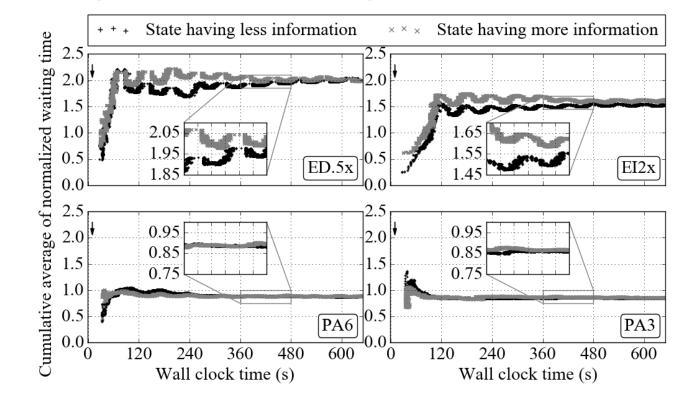
The fraction of time the supply and demand curves move towards each others.

Appendix: Decision Table in Q-Learning based Policy

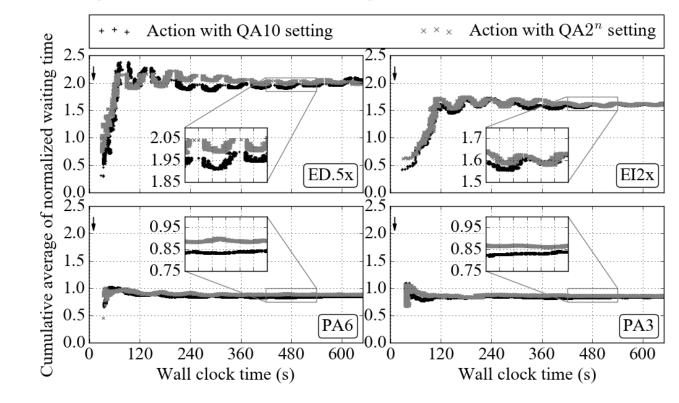
State	(0, none)	(1, up)	(3, down)	 (m, down)
(0, 0, 0)	Х	Х	Х	 Х
(0.1, 0.1, 0.1)	Х	Х	Х	 Х
(u_t, v_t, y_t)	Х	Х	Х	 Х

- Different format of State or Action will leads to different Table size.
 - Table Size = size of action set × size of state set

Appendix: Different Configuration Setting in Determining State



Appendix: Different Configuration Setting in Determining Action



Appendix: Policy Pool Size Impact on Workflow Performance

