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Concept: Workflow

• A process/application modeled as tasks with 
precedence constraints between them

• Example: A thesis

1. Find a supervisor/topic

2. Define research questions

3. Implement a prototype

4. Perform experiments

5. Document the results

6. Defend your work
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Workflows are used in industrial 

applications

• Sensor data processing is commonly defined 

as workflows

• Example use-case: monitoring and diagnosis
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Industrial workflows have special features 

and requirements

• Analyze and process workflows in production 
(= in real-time)

• Deadline constraints

– Monitor asserts in real time

• Exhibit recurrent patterns

– Sensors collect data with a constant rate

• Workloads may evolve over time

– New type of sensor data is introduced

– New type of sensor is applied
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Concept: Portfolio Scheduling



7

Concept: Standard Q-Learning Algorithm
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Q-Learning + Portfolio Scheduling 

Our approach:
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Q-Learning + Portfolio Scheduling 

Take the advantage of recurrent patterns

Address the workload evolution and 

deadline constraints

Our approach:
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Obtaining a Q-learning based portfolio 

scheduler
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The Smart Connect Framework at Shell

Workflow and 

Resource 

Management
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The Smart Connect Framework at Shell

Workflow and 

Resource 

Management
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Evaluation

• Real-world experiments based on a prototype 
implementation

• Realistic experimental environment: DAS-5

– DAS is often used to emulate cloud environments

– 1 Master node; 3-50 Client nodes

– CPU: Intel E5-2630v3 2.4GHz

– RAM: 64 GB

– Network: 1 GB/s Ethernet links
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Synthetic Experimental workload, with realistic 

parameters derived from real-world deployment
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Synthetic Experimental workload, with realistic 

parameters derived from real-world deployment

Dynamic

Static
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Key Deadline Metrics: 

Expired Workflows (#Clients Nodes: 3)
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Both meet the deadline-constraints

Key Deadline Metrics: 

Expired Workflows (#Clients Nodes: 3)

few none none none
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Key User Metrics:

Workflow performance across portfolio 

schedulers (#Clients Nodes: 3)
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Key User Metrics:

Workflow performance across portfolio 

schedulers (#Clients Nodes: 3)

ANANKE has 5-20% better performance with static 

workloads, 0 – 8.3% for dynamic.
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Elasticity: Supply and Demand 

• 5 Auto Scalers 

– 2 ANANKE implementations

– 3 baselines

• Supply: Number of active threads 

• Demand: Number of running and near 

deadline workflows 
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Supply and Demand Analysis
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Supply and Demand Analysis

ANANKE has the best elasticity among the candidates
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Performance Degradation Analysis
Resource cost: Lower is better Degradation: Closer to zero is better



25

Performance Degradation Analysis
Resource cost: Lower is better Degradation: Closer to zero is better



26

Performance Degradation Analysis
Resource cost: Lower is better Degradation: Closer to zero is better



27

Performance Degradation Analysis

Conclusion: ANANKE has the best user-experience 

performance with the lowest resource cost. 24 – 36% 

resource savings at the cost of at most 1.4% throughput.

Resource cost: Lower is better Degradation: Closer to zero is better
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Conclusion

• Design and implement ANANKE

– a Q-learning based portfolio scheduler

– Complex industrial workflows

• Evaluate through real-world experiments

• Better user-experience performance, resource 
utilization and elasticity for relatively static 
workloads

• For highly dynamic workloads, using Q-learning 
is less beneficial, but still positive
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Future Work

• Different type of simulators

• Different learning techniques

– GeneRec (error-driven reinforcement learning)

• Advanced mechanism to control/restrict the 

simulation time

• Apply ANANKE in hybrid cloud 

environments
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Novelty

• Conceptual contriution: combining Q-

learning with portfolio scheduling

• Conceptual contribution: A QL-based 

scheduling policy
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Comprehensive Comparison between 

auto-scalers
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Comprehensive Comparison between 

auto-scalers

• Numerical methods

– Pairwise Comparison

– Fractional Difference 
Comparison

• 9 related metrics 

– system- and user-
oriented metrics

• Full results are in the 
technical report

ANANKE has the best elasticity
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Key concept for auto scaling: Demand 

and Supply

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex 

Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).
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Key concept for auto scaling: Demand 

and Supply

Over- and under- provisioning 

should be avoided

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex 

Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).
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Pairwise Comparison

• Higher value is better

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex 

Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).
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Pairwise Comparison

• Higher value is better

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A. V., Bogdan, G., Epema, D., & Iosup, A. (2016). An Experimental Performance Evaluation of Autoscaling Algorithms for Complex 

Workflows. In ACM Symposium on Cloud Computing 2016 (SOCC 2016).

ANANKE with vertical scaling outperforms the 

candidates in static and dynamic workloads
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Fractional Difference Comparison

• Lower value is better
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Fractional Difference Comparison

• Lower value is better

ANANKE with vertical scaling and horizontal 

scaling ability performs best
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Appendix: Comprehensive Comparison 

Results
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Appendix: Research Questions

1. How to adapt portfolio scheduling?

2. How to use learning technique and historical 

information?

3. How to evaluate the learning-based portfolio 

scheduler?
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Appendix: Auto scaling metrics (Accuracy)

Under-provisioning Accuracy

= 
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑛𝑑𝑒𝑟_𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

Over-provisioning Accuracy

= 
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑣𝑒𝑟_𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
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Appendix: Auto scaling metrics (Timeshare)

Under-provisioning Timeshare

= 
𝑇𝑖𝑚𝑒 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟_𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

Over-provisioning Timeshare

= 
𝑇𝑖𝑚𝑒 𝑜𝑓 𝑜𝑣𝑒𝑟_𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
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The fraction of time the supply 

and demand curves move in 

opposite directions.

Appendix: Auto scaling metrics (instability)

The fraction of time the supply 

and demand curves move 

towards each others.
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Appendix: Decision Table in Q-Learning 

based Policy

• Different format of State or Action will leads to 
different Table size.

– 𝑇𝑎𝑏𝑙𝑒 𝑆𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 ×
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑠𝑒𝑡
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Appendix: Different Configuration 

Setting in Determining State
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Appendix: Different Configuration 

Setting in Determining Action
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Appendix: Policy Pool Size Impact on 

Workflow Performance


