
46	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

COVER FEATURE SELF-AWARE AND SELF-EXPRESSIVE SYSTEMS

Vincent van Beek, ASP4ALL Bitbrains

Jesse Donkervliet, Tim Hegeman, Stefan Hugtenburg, and Alexandru Iosup, Delft University of Technology

The Mnemos resource management and scheduling

architecture uses portfolio scheduling, topology-aware

virtual-resource management, and state information

to self-adapt to significant workload changes and to

analyze risks. Simulations with real-world workload

traces reveal the potential for significant cost savings.

To run their business-critical workloads, many
large enterprises and governments are mov-
ing toward leasing computation from data-
centers, which host the workloads as diverse

digital services on virtualized resources. IDC predicts
that by 2017 over three-quarters of business-critical
data will reside in virtualized datacenters,1 and major
digital economies, such as the EU, the US, and Japan, are
already expanding datacenter customers. The EU pre-
dicts that its digital economy will grow 50 percent from
2015 until 2020.2

Through resource virtualization, datacenters can
service many workload types and respond to a variety of

resource requirements, while still operating relatively
modest physical resources. These economies of scale in
cost, energy, and human resources are critical to a data
center’s ability to cost-effectively handle increasing
demand, but maintaining them requires self-aware and
self-expressive techniques to address increasing scale,
changing architectures, and dynamic workloads. Auto-
mated state monitoring, for example, can enable intelli-
gent scheduling and other decision making, but it must
accommodate novel architectures driven by big data appli-
cations, which are becoming central to business-critical
workloads. The sidebar “The Challenge of Business-
Critical Workloads” describes workload characteristics

Self-Expressive
Management of
Business-Critical
Workloads in
Virtualized Datacenters

	 J U LY 2 0 1 5 � 47

THE CHALLENGE OF BUSINESS-CRITICAL WORKLOADS

Business-critical workloads are user-facing, back-end enterprise services that generally support business
decisions and are typically contracted under strict service-level agreement requirements. Their down-

time or even low performance will decrease revenue and productivity and possibly lead to financial loss, legal
action, and departing customers.1 Business-critical workloads often include applications based on Monte
Carlo simulations, such as financial modeling and applications such as email, databases, customer relation-
ship management, and collaborative and management services.

WORKLOAD CHARACTERISTICS
Business-critical workloads differ significantly from scientific and analytic workloads in the level of cus-
tomer data sensitivity. Because details about datacenter customers’ software cannot be revealed, software
requirements are typically expressed in virtual machines (VMs) instead of as applications. Over the past two
decades, business-critical workloads have changed from sequential jobs and Web applications to a mix of
long-running services and high-performance applications that are both computation-intensive (MPI) and
data-intensive (MapReduce and Pregel). If this recent history is any indication, workload characteristics are
likely to continue changing significantly.

Although datacenter operators benefit from the shift to leasing computation, they also face interesting
new challenges in resource management and scheduling related to rising volume, diverse requirements,
and rapid workload changes. When workload volume is high, VM scheduling must be fully automated with
minimal risk of low performance. Intelligent resource managers must be aware of the network topology, for
example, to ensure that critical datasets are not placed on the same physical machine or on machines that
are likely to fail together.

MANAGEMENT STRATEGIES
Traditional approaches to managing datacenters cannot cope with these challenges. Developing or even se-
lecting scheduling policies is error-prone and ephemeral, because new workload requirements often inval-
idate the previous approaches and scheduler selection remains a challenge.2,3 Instead, many datacenters
use simple approaches combined with human expertise,3 but human resources are scarce, error-prone, and
often too slow to respond to dynamic customer requirements and uncertain workload conditions.

Self-* principles provide the roots of a radically different approach to handling dynamically changing
requirements. Self-awareness in computer systems is the ability to alter behavior in some beneficial way,
without human intervention,4 while self-expressiveness is the notion that a system knows its own state,
context, goals, values, objectives, and constraints.5 We believe that self-awareness and self-expressiveness
can offer key adaptation capabilities to datacenters managing business-critical workloads.

References
1.	 S. Shen, V. van Beek, and A. Iosup, “Statistical Characterization of Business-Critical Workloads Hosted in Cloud Datacenters,” Proc. 15th

IEEE/ACM Int’l Symp. Cluster, Cloud, and Grid Computing (CCGRID 15), 2015; www.pds.ewi.tudelft.nl/~iosup/business-critical-datacenter

-workloads15ccgrid.pdf.

2.	 D. Feitelson, “Packing Schemes for Gang Scheduling,” Proc. 2nd Workshop Job Scheduling Strategies for Parallel Processing (JSSPP

96), LNCS, vol. 1162, 1996, pp. 89–110.

3.	 D. Klusácek and S. Tóth, “On Interactions among Scheduling Policies: Finding Efficient Queue Setup Using High-Resolution Simula-

tions,” Proc. 20th Int’l Conf. Parallel Processing (Euro-Par 14), LNCS, vol. 8632, 2014, pp. 138–149.

4.	 H. Hoffmann et al., “SEEC: A General and Extensible Framework for Self-Aware Computing,” tech. report MIT-CSAIL-TR-2011-046, Com-

puter Science Dept., MIT, 2011; http://hdl.handle.net/1721.1/67020.

5.	 P.R. Lewis et al., “A Survey of Self-Awareness and Its Application in Computing Systems,” Proc. 5th IEEE Int’l Conf. Self-Adaptive and

Self-Organizing Systems Workshops (SASOW 11), 2011, pp. 102–107.

48	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SELF-AWARE AND SELF-EXPRESSIVE SYSTEMS

that are driving datacenters to more
efficient scheduling approaches.

To meet these needs, we developed
Mnemos, a self-expressive architec-
ture for resource management and
scheduling in virtualized datacenters.
Mnemos has two main self-aware and
self-expressive components:

›› Datacenter-wide portfolio sched-
uler. Scheduling policies are
typically designed for each
new workload (and sometimes
application) type, always with
much effort and cost. Mnemos’
portfolio scheduler is self-aware
and self-expressive and thus
can continuously select an
appropriate policy from those in
its portfolio and quickly reflect
on each policy’s usefulness.

›› Virtualization-aware scheduler.
Distributed data–intensive
applications, such as Hadoop,
perform poorly when running
on virtual machines (VMs)
mapped to the same physical
machine, and these applica-
tions can lose data when hosted
together on a machine that fails.
Mnemos’ virtualization-aware
scheduler, Nebu, is designed
to automatically handle these
applications by running them on
VM clusters that are agnostic to
both the virtualization provider
and the distributed application,
and thus require no human-
managed mapping.

To evaluate Mnemos, we sim-
ulated its use with traces of real-
world, business-critical workloads
in a datacenter infrastructure that
includes a multicluster setup. Our
goal was to determine the degree to
which Mnemos ensures reliable and

high-performance service to datacen-
ter customers. Our results show that
both the portfolio and virtualization-
aware schedulers can help datacenter
operators understand and lower the
risk of suboptimal performance. Over-
all, Mnemos decreases operational risk
with an acceptable performance pen-
alty. In our experiments, the portfolio
scheduler that equips Mnemos made
decisions about large-scale problems
in a matter of minutes.

MNEMOS ARCHITECTURE
Mnemos uses self-* principles to
fully automate operation across
multiple physical clusters within
the entire datacenter and across
multiple datacenters that share an
operational domain. Its focus is to
reliably execute business-critical
workloads, including running high-
performance computing (HPC) and
big data applications, while main-
taining good performance with lit-
tle risk of data loss, even with highly
dynamic workloads. Mnemos, cur-
rently in the prototype stage, can
handle a wide range of business-
critical applications, although it is
not yet completely generic.

As Figure 1 depicts, Mnemos
combines the typical components
of a datacenter resource manager
and scheduler—VM manager, sys-
tem monitor, and application (app)
managers—with self-aware and self-
expressive components. These core
components cover the typical roles in
a self-aware computing framework’s
decoupled observe-decide-act loop:3
the system monitor is the observer,
the portfolio scheduler is the decider,
and the VM manager is the actor or
executer. Other than these core com-
ponents, Mnemos uses tools familiar
to most datacenters because replacing

existing components with self-* com-
ponents is likely to occur gradually.

VMs and vClusters
Mnemos manages user requests trans-
parently without the need for addi-
tional administration. Datacenter
users embed their applications in
VMs, either as a single VM or VM clus-
ter (vCluster). Single VMs are suitable
for running low-load webservers and
small database applications, whereas
vClusters are better for multitier Web,
big data, and HPC applications.

To facilitate hosting applications
in a single VM or in entire vClusters,
Mnemos’ app managers automatically
manage common business-critical
applications, such as Hadoop for big
data applications and Microsoft HPC
for HPC applications.

Because it distinguishes between
big data and other applications, Mne-
mos addresses the current pressing
need for placement strategies specific
to big data applications. In Figure 1,
App A represents a big data application
running in a vCluster, and Apps B and
C are regular applications running in
a single VM and in a vCluster, respec-
tively. Nebu places big data applications
on hosts, using placement strategies
that can guarantee data locality or dis-
tribution over multiple clusters. It then
communicates placement decisions
to the application, which can use this
information to optimize its internal
scheduling and its own job-placement
strategies. The portfolio scheduler
handles regular application schedul-
ing directly through policies that aim
to optimize performance and reduce
oversubscription to physical hosts.

The VMs that users or app manag-
ers request run on physical resources,
which Figure 1 shows in the datacenter
layer. Multiple datacenters and one or

	 J U LY 2 0 1 5 � 49

more clusters within each datacen-
ter are connected through high-speed
fiber optics. The clusters are built from
physical hosts (which contain CPUs,
memory, and networking), storage
servers, and network routers. To run
VMs, all the hosts run a hypervisor—a
component for creating and running
VMs—that grants the VMs use of phys-
ical resources, including CPU, mem-
ory, network, and storage.

Consistent with its focus on mod-
ern business-critical workloads, Mne-
mos differs from traditional architec-
tures in several key aspects:

›› Mnemos uses only single-
cluster failure domains, whereas
traditional architectures use
multiclusters;

›› through virtualization, Mnemos
users can simultaneously occupy
computing nodes, whereas
in traditional HPC and grid-
computing architectures, node
use is mutually exclusive;4 and

›› finally, Mnemos uses a high-
performance network, whereas
typical grid-computing and
cluster-based architectures rely
on relatively slower and less
expensive networks.

Component overview
Of Mnemos’ main components, only
the portfolio scheduler and Nebu have
self-aware and self-expressive capa-
bilities. The VM manager and sys-
tem monitor, which mediate between
user requests and physical resources,
enable self-* capabilities but alone can-
not ensure them.

VM manager. The VM manager pro-
visions and allocates VMs in each clus-
ter, subject to the scheduler’s intel-
ligent decisions. It can be any of the

many single-cluster and multicluster
managers on the market, including
the freely available Condor, Globus,
and Mesos tools. The VM manager
can also use self-aware commercial
tools, such as VMWare’s Dynamic
Resource Scheduling tool, to allocate
and migrate VMs across hosts within
the same cluster.

System monitor. The system monitor
maintains information about the data-
center’s internal state by gathering
information about the center’s system
components, including hosts, storage,
networking, VMs, and the hypervisor.
The system monitor can be any com-
mercial or freely available monitor,
such as Ganglia, or any of the moni-
toring tools that typically accompany
commercial VM managers.

Self-* components. Mnemos’ two
self-* components—the portfo-
lio scheduler and Nebu—are tools

we created to intelligently manage
both workloads and scheduling pol-
icies. Both use the VM manager and
system monitor to gather informa-
tion about the datacenter’s current
and historical states. Through these
components, Mnemos enables self-
expressive resource management
and scheduling across multiple data-
centers and multiple vClusters, and
supports big data applications in dis-
tributed virtualized environments.

Table 1 summarizes the portfolio
scheduler’s and Nebu’s self-aware and
self-expressive features. Although the
two have different functions, they have
a common goal: to proactively gather
system information that will increase
their self-aware and self-expressive
capabilities and use that information
to greatly enhance a datacenter’s func-
tionality and efficiency.

Mnemos’ portfolio scheduler is
based on an earlier scheduler4 that
uses resources from public datacenters

Hadoop

Single VMs

App B
VM

App A

VM
vCluster 1 vCluster 2

System monitor
Portfolio scheduler

VM manager

Hosts
Cluster

Storage

Hosts
Cluster

Storage

Hosts

Host

Application

Hypervisor
VM

Storage

Datacenter 2 Datacenter 1

Nebu

App C

VM

vClusters App managers

MS HPC
User/Engineer

System

Datacenter

VM/App/vCluster pro�le information
System/datacenter components
VM pro�le data
API commands
Monitoring data
Nebu application connection

DRS

FIGURE 1. Overall model of the Mnemos datacenter-wide architecture. Components
in blue use self-aware or self-expressive techniques. In addition to these, Mnemos
incorporates familiar support components, which are freely or commercially available
such as the app managers, system monitor, and virtual machine (VM) manager, to ensure
that datacenters have the necessary tools as they gradually increase the architecture’s
self-awareness with future self-* components. VMWare’s Dynamic Resource Scheduling
(DRS) tool, which works with the VM manager, is an example of how the architecture can
spread self-* capabilities.

50	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SELF-AWARE AND SELF-EXPRESSIVE SYSTEMS

(infrastructure-as-a-service clouds) to
create a scheduling policy portfolio
for scheduling HPC workloads. An
evaluation showed that the portfolio
outperformed any of the individual
policies it contained.

Although Mnemos’ portfolio sched-
uler is modeled after this scheduler, it
is the first scheduler we know of that
can operate across multiple clusters
and datacenters. Adaptive schedul-
ing techniques have been considered
for datacenters5 and clouds,4,6,7 but
not across multiple clusters and data
centers and not for the workloads
Mnemos targets. Commercial tools
such as PBS, Mesos, and Cloudera can
schedule hierarchically, but they can-
not schedule VM placement in multi-
ple datacenters. Commercial cluster-
management software, such as that
offered from VMware, currently lacks
an understanding of big data applica-
tions and a holistic view of datacenter
management. As techniques similar
to Mnemos’ become more widespread,
we expect this situation to change.

Portfolio scheduler
The portfolio scheduler responds to
changes in workload patterns across
multiple users, datacenters, and clus-
ters. Its name derives from the idea of a
stock portfolio—a collection of stocks
designed to mitigate risks and achieve

better overall performance. Portfolio
schedulers are by nature self-expressive,
in that they adapt to reflect changed
user demand, goals, or knowledge.

Adding self-awareness to the orga-
nizing mechanism, in our case, the
portfolio scheduler, alleviates the need
for engineers to tune the datacenter.
The scheduler iteratively selects the
best scheduling policy for the foresee-
able future, from a set (portfolio) of
constituent policies.

Portfolios can also become the basis
for search instruments applicable to a
variety of domains. For example, an
exhaustive simulation of each port-
folio item’s behavior, whether it is a
stock or a scheduling policy, can pro-
vide information essential to making
investment or scheduling decisions.
However, each new portfolio applica-
tion can require a new design or signif-
icant adaptation.

For Mnemos’ portfolio scheduler, we
nontrivially adapted a previous port-
folio scheduler developed for single-
cluster operation.4 Figure 2 shows the
operational model. Operations have
three main phases: equipping the port-
folio with policies, selecting a policy,
and applying a policy.

Equipping the portfolio. The system
administrator equips the portfolio
with a set of scheduling policies that

are unique to the problem at hand.
Policies generally address the sched-
uling of VMs, rack-based clusters, and
datacenters and specifically address
the requirements for scheduling
business-critical workloads, such
as affinity and anti-affinity for VM
placement and load balancing across
clusters and datacenters. Many other
classes of scheduling policies exist,
as the sidebar “Workload Scheduling
Approaches” describes.

Policies range from simple round-
robin or first-fit placement scheduling
to complex policies based on resource
utilization metrics and VM-specific
characteristics.8 For example, the com-
plex BB vCluster policy (bottom of the
list in Figure 2) groups VMs according to
exclusion vectors and assigns groups to
clusters on the basis of cluster-wide CPU
availability, storage requirements, and
network workload, taking into account
the requested VM memory sizes.

Policy selection. The portfolio sched-
uler selects a single scheduling pol-
icy from the portfolio online. Online
selection better aligns with the large
scale of multiple datacenters because,
unlike traditional periodic selection, it
does not allow large request accumula-
tions in the system’s queues.

As part of the selection process,
the portfolio scheduler simulates

TABLE 1. Self-aware and self-expressive features in Mnemos’ portfolio scheduler and Nebu.

Feature Self-* principle Component

Autonomously learns the physical infrastructure hierarchy from monitoring tools,
allowing adaptive virtual machine (VM) placement

Self-awareness Portfolio scheduler, Nebu

Provisions VMs and VM clusters in one or more datacenter clusters, responding to
observed behavior and decisions from the portfolio scheduler, allowing adaptive
VM placement

Self-expressiveness Portfolio scheduler

Monitors VM host mapping and detects changes in the infrastructure so that the
placement policies can adapt and optimize for the new situation

Self-awareness Portfolio scheduler, Nebu

Monitors available physical hardware in datacenters and observes infrastructure
use, allowing adaptive behavior that can optimize datacenter use

Self-awareness Portfolio scheduler, Nebu

Monitors VM behavior to make more informed decisions about VM placement Self-awareness Portfolio scheduler

Automatically deploys distributed applications across datacenters through
placement policies that take into account observations from both physical and
virtual infrastructures

Self-expressiveness Nebu

	 J U LY 2 0 1 5 � 51

the entire datacenter to determine
the impact of the candidate policy
on the datacenter’s operations. The
simulator gathers information about
the datacenter’s current system state
and about current and past work-
loads. It also reports various opera-
tional and performance metrics, such
as the maximum resource load and
the expected response time for each
workload unit (median, 99th percen-
tile, and so on).

Using a utility function that the
system administrator provides, the
scheduler then selects the scheduling

policy with the highest utility. The
utility function, which is unique to
the application domain, captures the
datacenter operator’s requirements—
for example, minimizing the imbal-
ance between each cluster’s average
and maximum workloads. Thus, in
gathering information about the
datacenter, the portfolio scheduler
ensures that Mnemos is self-aware,
and through the utility function, that
Mnemos is self-expressive.

Policy application. The last opera-
tional step is to apply a selected policy

any time it is needed until another pol-
icy selection step invokes another pol-
icy. For business-critical workloads,
policies decide where to place VMs.
Inside the VMs, customers deploy
applications that are then outside the
policy scheduler’s control.

Virtualization-aware scheduler
To our knowledge, Nebu is the first
virtualization-aware scheduler that
is agnostic to both the VM manager
and application and that emphasizes
Hadoop-based and distributed data-
base applications.9 Its main goals are

WORKLOAD SCHEDULING APPROACHES

Resource scheduling in a datacenter usually
takes place on different execution stack

levels, starting at the CPU level and moving to the
OS, hypervisor, and software levels. Usually the
higher the stack level, the more information is
available on workload context and characteristics.

Workload scheduling within a datacenter or
across multiple centers is attracting increas-
ingly more attention. From our survey of gen-
eral scheduling policies applied in datacenters,
grids, and clusters, we have identified four main
scheduling approaches: specialized, single-tier,
multitier, and meta.

SPECIALIZED
Specialized scheduling focuses on finding sched-
uling policies for very specific workload types,
such as workflows and parallel and sequential
jobs. Because scheduling performance is com-
mensurate with the amount of available informa-
tion, specialized scheduling mechanisms are often
found at the software level, high in the execution
stack. However, specialized scheduling policies
can still make decisions at lower levels. For exam-
ple, information about what is running on a VM
can help intelligently allocate VMs to hardware.

SINGLE-TIER
Work on model-based scheduling focuses on
finding single-tier workload models and using
the insights these models provide to optimize

future workload scheduling. These single-tier
models are also used to test scheduling policies
in simulators. Modelers use different modeling
approaches, such as analytical and statistical, to
develop workload models.

MULTITIER
Multitier applications often have two charac-
teristics (multicolinearity and highly dynamic
load patterns) that are very specific for this type
of setups. Because Web applications are often
hosted on multitier systems—webserver and da-
tabase server—much research has been devoted
to this topic. The resulting variety of approaches
use a range of modeling strategies, including
queue, prediction, and analytical models, to
achieve effective dynamic resource allocation for
multitier applications.

META
Meta scheduling requires a scheduling approach
that works across multiple datacenters. However,
many datacenters run a wide variety of work-
load types, so there is little chance of finding a
one-size-fits-all policy. Portfolio scheduling, one
recent approach of interest, works with a set of
policies, choosing the best one for every workload
subset. Consequently, datacenters can create less
complex scheduling policies that work well for
certain workload subsets without worrying if the
policy works well for another complete workload.

52	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SELF-AWARE AND SELF-EXPRESSIVE SYSTEMS

to prevent data loss when resources
fail and to reduce physical resource
contention from the accidental collo-
cation of VMs.

Nebu informs big data applications,
or their app manager, of their VM
host’s physical topology, thus enabling
self-aware and self-expressive applica-
tion scheduling. Nebu also includes a
system-level scheduler that can, with-
out application input, intelligently
place VMs so that they do not overlap.

As Figure 3 shows, Nebu’s architec-
ture includes three layers:

›› an application extension layer,
which provides distributed
applications with host topology
knowledge and feeds applica-
tion requirements to the portfo-
lio scheduler;

›› a VM manager extension layer,
which extracts meaningful
information and transmits
Nebu’s scheduling decisions; and

›› a middleware layer, which
comprises the Nebu resource
manager and a component that
interacts with the portfolio
scheduler; this connects the
other layers and decides on the
basis of app manager and VM

manager information if new
VMs are needed.

To enable topology-aware VM place-
ment and the scheduling of big data
applications in virtualized environ-
ments, Nebu collects information from
the VM manager on the physical net-
work topology, as well as host (cluster
and datacenter) and storage locations.
Storage locations can be in the host or
in a dedicated network-attached storage
solution. Nebu combines this informa-
tion with knowledge about the virtual
infrastructure, particularly VM location
on the physical infrastructure, and its
basic understanding of network topol-
ogy and network types (within a cluster
and between clusters or datacenters).

EXPERIMENTAL RESULTS
Experiments to understand the effects
of self-* properties for datacenters that
support business-critical workloads
are not easy to perform. A production
datacenter is rarely available for that
use, and experimentation can be costly.
Even trace collection is hampered by
legal and business restrictions.

Fortunately, thanks to the gener-
osity of ASP4ALL Bitbrains, which
has a multidatacenter infrastructure,

we obtained traces of real-world
business-critical workloads (http://
gwa.ewi.tudelft.nl/datasets/gwa-t-12
-bitbrains) and secured resource time,
which we used to evaluate the portfo-
lio scheduler and Nebu.

Because of space limitations, we
present key results only for the portfo-
lio scheduler. In general, the results of
the Nebu experiment showed that add-
ing self-awareness to big data appli-
cation schedulers can significantly
increase reliability with an acceptable
performance penalty.9

Portfolio scheduler
implementation
We implemented a complete portfo-
lio scheduler for the production data
center infrastructure, including a set
of placement policies for both a single
VM and vCluster that covered the poli-
cies in the portfolio in Figure 2.

Workload
The collected workload traces cap-
ture long-term, large-scale operations:
more than 1,300 VMs for over three
operational months. Combined, the
VMs have more than 17 TBytes of mem-
ory and consumed more than five mil-
lion CPU-core hours.10

Evaluation process
The portfolio scheduler bases its selec-
tion on the scores expressed as util-
ity functions based on the datacenter
operator’s goals, such as minimizing
the resource overload or maximizing
revenue. In practice, datacenter oper-
ators provide a utility function as a
portfolio scheduler configuration. We
considered six possible goals, which
are reflected in six configurations:8

›› MinScore. Mitigate the risk of
scarcity for every resource (CPU,

System monitor

Datacenter

VM managerPolicy application

Policy selection

Workload queue
requested VMs

Simulator

Portfolio of policies Policies:
Round-robin
First-�t
Lowest CPU load
BB
...

FIGURE 2. Operational model of the Mnemos portfolio scheduler. Both the VM manager
and system monitor gather information about the datacenter from the simulator (dotted
arrows), which contributes to the portfolio scheduler’s self-* capabilities. Blue dashed
denotes these capabilities in action. For example, the arrow from “Policy application” to
the VM manager ensures the self-expressiveness of the Mnemos portfolio scheduler by
triggering the provisioning of VMs and vClusters in one or more datacenter clusters.

	 J U LY 2 0 1 5 � 53

memory, disk, and network).
›› MaxScore. Pack as many VMs
as possible into a cluster, which
leads to high resource utiliza-
tion and thus income for the
datacenter operator, but has the
highest risk of resource scarcity.

›› MinMem. Mitigate the risk of
memory scarcity for many
requests, each with small
amounts of requested memory.

›› MaxMem. Mitigate the risk
of memory scarcity for sev-
eral requests, each with large
amounts of requested memory.

›› MinCPU. Mitigate the risk of CPU
scarcity for many requests, each
with small amounts of requested
CPU capacity.

›› MaxCPU. Mitigate the risk of
CPU scarcity for several requests,
each with large amounts of
requested CPU capacity.

Selection frequency
To understand the usefulness of
portfolio scheduling, we measured
selection frequency for each policy
selected and determined the distri-
bution of the chosen policies for each
of the six goals. As Figure 4 shows, no
scheduling policy was selected more
than three fourths of the time, and
no policy was never selected. This is
strong evidence that self-* principles
manage selection efficiently. Using
a single policy that never changes
makes little sense, particularly when
several scheduling policies are fre-
quently selected, as in the MinScore
and MaxScore goals.

V irtualized datacenters pro-
vide important infrastruc-
ture for digital economies,

but they also raise new challenges

in resource management and sched-
uling. Through experiments based
on real-world workload traces, we
found that self-awareness and self-ex-
pressiveness, when considered in
architectures such as Mnemos, can
enhance response to significant
workload changes, prevent data loss
during failures, and lower the risk of
resource scarcity.

Mnemos is part of a larger project
on datacenter management, devel-
oped in collaboration with ASP4ALL
Bitbrains and TU Delft. We have
already implemented the Mnemos
prototype, tested the portfolio sched-
uler and Nebu, and are currently
extending the Mnemos conceptual
framework with more service-level
agreements and objectives and more

in-depth network and CPU perfor-
mance metrics. In the near future, we
plan to extend the Mnemos prototype
implementation to a full-scale oper-
ational environment, which we will
use to test our design and policies
under real-world conditions and with
user feedback.

ACKNOWLEDGMENTS
We thank ASP4ALL Bitbrains for access
to data and expertise and for financial
support. This research is also supported
by the Nederlandse Oraganisatie voor
Wettenschappelijke Onderzoek (Neth-
erlands Organization for Scientific
Research) Kennis Innovatie Mapping
(KIEM; Mapping between Knowledge
and Innovation) project Kiesa, and by
the Commit project Commissioner.

Distributed application

Application extension

Topology
information

Portfolio scheduler
Policies:
Random
Locality-n
Replication
Local-remote
...

VM manager extension

VM manager

Nebu

FIGURE 3. How Nebu fits in the core Mnemos architecture. Nebu collects information
from the VM manager on the physical network topology and cluster and datacenter stor-
age locations, and combines this information with knowledge about the virtual infrastruc-
ture. Blue denotes self-* elements.

Con�guration

MinMemMaxScoreMinScore MaxMem MinCPU MaxCPU

Lowest network load
Lowest storage load
Lowest memory load
Lowest CPU Load
BB policy
Type priority
First-�t

1.0

0.8

0.6

0.4

0.2

0.0Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

FIGURE 4. Evaluation of policy distribution to minimize and maximize VM and vCluster
placement scores. The y-axis shows the fraction of times the portfolio scheduler chose
the policy, while the x-axis shows scheduler configurations that correspond to the data-
center operator’s various goals.

54	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SELF-AWARE AND SELF-EXPRESSIVE SYSTEMS

REFERENCES
1.	 Worldwide and Regional Public IT

Cloud Services: 2013-2017 Forecast,
IDC; www.idc.com/getdoc.jsp
?containerId=251730.

2.	 “Europe in a Nutshell,” EU 2020
Smart Growth, European Commis-
sion; http://ec.europa.eu/europe
2020/europe-2020-in-a-nutshell.

3.	 H. Hoffmann et al., “SEEC: A Gen-
eral and Extensible Framework for

Self-Aware Computing,” tech. report
MIT-CSAIL-TR-2011-046, Computer
Science Dept., MIT, 2011; http://hdl
.handle.net/1721.1/67020.

4.	 K. Deng et al., “Exploring Portfolio
Scheduling for Long-Term Execu-
tion of Scientific Workloads in IAAS
Clouds,” Proc. ACM Supercomputing
Conf. (SC 13), 2013, pp. 1–12.

5.	 V. Nae, A. Iosup, and R. Prodan,
“Dynamic Resource Provisioning in

Massively Multiplayer Online Games,”
IEEE Trans. Parallel Distributed Sys-
tems, vol. 22, no. 3, 2011, pp. 380–395.

6.	 J. He et al., “On the Cost-QoE Tradeoff
for Cloud-Based Video Streaming
under Amazon EC2’s Pricing Mod-
els,” IEEE Trans. Circuits and Systems
Video Technology, vol. 24, no. 4, 2014,
pp. 669–680.

7.	 S. Farokhi et al., “Self-Adaptation
Challenges for Cloud-Based Appli-
cations: A Control Theoretic Per-
spective,” Proc.ACM Int’l Workshop
Feedback Computing (IWFC 15), 2015;
www.infosys.tuwien.ac.at/staff
/sfarokhi/soodeh/papers/Soodeh
-Farokhi_CameraReady_Feedback
Comp-2015.pdf.

8.	 J. Donkervliet, T. Hegeman, and
S. Hugtenburg, “Nebu: A Topolo-
gy-Aware Deployment System for
Reliable Virtualized Multi-Cluster
Environments,” bachelor’s thesis, TU
Delft, 2014; http://repository.tudelft
.nl/view/ir/uuid:aa101139-5fe5-457d
-85f5-cf939cfe3868.

9.	 V. van Beek, “Design and Evaluation
of a Portfolio Scheduler for Busi-
ness-Critical Workloads Hosted in
Cloud Datacenters,” master’s thesis,
TU Delft, 2015; http://repository.
tudelft.nl/view/ir/uuid%3A43d
b2d0f-9593-4eac-901a-ecd7783805fc.

10.	 S. Shen, V. van Beek, and A. Iosup,
“Statistical Characterization of Busi-
ness-Critical Workloads Hosted in
Cloud Datacenters,” Proc. 15th IEEE/
ACM Int’l Symp. Cluster, Cloud, and
Grid Computing (CCGRID 15), 2015;
www.pds.ewi.tudelft.nl/~iosup
/business-critical-datacenter
-workloads15ccgrid.pdf.

ABOUT THE AUTHORS

VINCENT VAN BEEK is a doctoral student in computer science in the Paral-

lel and Distributed Systems (PDS) group at the Delft University of Technology

(TU Delft), the Netherlands, and a systems engineer at ASP4ALL Bitbrains. His

research interests include distributed systems, big data, and cloud computing.

Van Beek received an MSc in computer science from TU Delft. He is a member

of IEEE. Contact him at vincent.vanbeek@bitbrains.nl.

JESSE DONKERVLIET is pursuing an MSc in computer science with an empha-

sis in distributed systems, as part of TU Delft’s PDS group. His research inter-

ests include distributed systems, big data, and cloud computing. Donkervliet

received a BSc in computer science from TU Delft. Contact him at j.donkervliet@

gmail.com.

TIM HEGEMAN is pursuing an MSc in computer science with an emphasis in dis-

tributed systems as part of TU Delft’s PDS group. His research interests include

distributed systems, big data, and cloud computing. Hegeman received a BSc

in computer science from TU Delft. Contact him at tim.m.hegeman@gmail.com.

STEFAN HUGTENBURG is pursuing an MSc in computer science with an

emphasis on algorithms as part of TU Delft’s Algorithmics group. His research

interests include distributed systems, big data, and cloud computing. Hugten-

burg received a BSc in computer science from TU Delft. Contact him at

s.hugtenburg@gmail.com

ALEXANDRU IOSUP is an assistant professor of computer science in the PDS

group at TU Delft. His research interests include distributed systems, big data,

and cloud computing. Iosup received a PhD in computer science from TU Delft.

He is a member of ACM, IEEE, and SPEC. Contact him at a.iosup@tudelft.nl.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

