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The Mnemos resource management and scheduling 

architecture uses portfolio scheduling, topology-aware 

virtual-resource management, and state information 

to self-adapt to significant workload changes and to 

analyze risks. Simulations with real-world workload 

traces reveal the potential for significant cost savings.

To run their business-critical workloads, many 
large enterprises and governments are mov-
ing toward leasing computation from data-
centers, which host the workloads as diverse 

digital services on virtualized resources. IDC predicts 
that by 2017 over three-quarters of business-critical 
data will reside in virtualized datacenters,1 and major 
digital economies, such as the EU, the US, and Japan, are 
already expanding datacenter customers. The EU pre-
dicts that its digital economy will grow 50 percent from 
2015 until 2020.2

Through resource virtualization, datacenters can 
service many workload types and respond to a variety of 

resource requirements, while still operating relatively 
modest physical resources. These economies of scale in 
cost, energy, and human resources are critical to a data
center’s ability to cost-effectively handle increasing 
demand, but maintaining them requires self-aware and 
self-expressive techniques to address increasing scale, 
changing architectures, and dynamic workloads. Auto-
mated state monitoring, for example, can enable intelli-
gent scheduling and other decision making, but it must 
accommodate novel architectures driven by big data appli-
cations, which are becoming central to business-critical 
workloads. The sidebar “The Challenge of Business-
Critical Workloads” describes workload characteristics 
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THE CHALLENGE OF BUSINESS-CRITICAL WORKLOADS

Business-critical workloads are user-facing, back-end enterprise services that generally support business 
decisions and are typically contracted under strict service-level agreement requirements. Their down-

time or even low performance will decrease revenue and productivity and possibly lead to financial loss, legal 
action, and departing customers.1 Business-critical workloads often include applications based on Monte 
Carlo simulations, such as financial modeling and applications such as email, databases, customer relation-
ship management, and collaborative and management services. 

WORKLOAD CHARACTERISTICS
Business-critical workloads differ significantly from scientific and analytic workloads in the level of cus-
tomer data sensitivity. Because details about datacenter customers’ software cannot be revealed, software 
requirements are typically expressed in virtual machines (VMs) instead of as applications. Over the past two 
decades, business-critical workloads have changed from sequential jobs and Web applications to a mix of 
long-running services and high-performance applications that are both computation-intensive (MPI) and 
data-intensive (MapReduce and Pregel). If this recent history is any indication, workload characteristics are 
likely to continue changing significantly. 

Although datacenter operators benefit from the shift to leasing computation, they also face interesting 
new challenges in resource management and scheduling related to rising volume, diverse requirements, 
and rapid workload changes. When workload volume is high, VM scheduling must be fully automated with 
minimal risk of low performance. Intelligent resource managers must be aware of the network topology, for 
example, to ensure that critical datasets are not placed on the same physical machine or on machines that 
are likely to fail together. 

MANAGEMENT STRATEGIES
Traditional approaches to managing datacenters cannot cope with these challenges. Developing or even se-
lecting scheduling policies is error-prone and ephemeral, because new workload requirements often inval-
idate the previous approaches and scheduler selection remains a challenge.2,3 Instead, many datacenters 
use simple approaches combined with human expertise,3 but human resources are scarce, error-prone, and 
often too slow to respond to dynamic customer requirements and uncertain workload conditions. 

Self-* principles provide the roots of a radically different approach to handling dynamically changing 
requirements. Self-awareness in computer systems is the ability to alter behavior in some beneficial way, 
without human intervention,4 while self-expressiveness is the notion that a system knows its own state, 
context, goals, values, objectives, and constraints.5 We believe that self-awareness and self-expressiveness 
can offer key adaptation capabilities to datacenters managing business-critical workloads.
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that are driving datacenters to more 
efficient scheduling approaches.

To meet these needs, we developed 
Mnemos, a self-expressive architec-
ture for resource management and 
scheduling in virtualized datacenters. 
Mnemos has two main self-aware and 
self-expressive components:

›› Datacenter-wide portfolio sched-
uler. Scheduling policies are 
typically designed for each 
new workload (and sometimes 
application) type, always with 
much effort and cost. Mnemos’ 
portfolio scheduler is self-aware 
and self-expressive and thus 
can continuously select an 
appropriate policy from those in 
its portfolio and quickly reflect 
on each policy’s usefulness.

›› Virtualization-aware scheduler. 
Distributed data–intensive 
applications, such as Hadoop, 
perform poorly when running 
on virtual machines (VMs) 
mapped to the same physical 
machine, and these applica-
tions can lose data when hosted 
together on a machine that fails. 
Mnemos’ virtualization-aware 
scheduler, Nebu, is designed 
to automatically handle these 
applications by running them on 
VM clusters that are agnostic to 
both the virtualization provider 
and the distributed application, 
and thus require no human-
managed mapping. 

To evaluate Mnemos, we sim-
ulated its use with traces of real-
world, business-critical workloads 
in a datacenter infrastructure that 
includes a multicluster setup. Our 
goal was to determine the degree to 
which Mnemos ensures reliable and 

high-performance service to datacen-
ter customers. Our results show that 
both the portfolio and virtualization-
aware schedulers can help datacenter 
operators understand and lower the 
risk of suboptimal performance. Over-
all, Mnemos decreases operational risk 
with an acceptable performance pen-
alty. In our experiments, the portfolio 
scheduler that equips Mnemos made 
decisions about  large-scale problems 
in a matter of minutes. 

MNEMOS ARCHITECTURE
Mnemos uses self-* principles to 
fully automate operation across 
multiple physical clusters within 
the entire datacenter and across 
multiple datacenters that share an 
operational domain. Its focus is to 
reliably execute business-critical 
workloads, including running high-
performance computing (HPC) and 
big data applications, while main-
taining good performance with lit-
tle risk of data loss, even with highly 
dynamic workloads. Mnemos, cur-
rently in the prototype stage, can 
handle a wide range of business-
critical applications, although it is 
not yet completely generic.

As Figure 1 depicts, Mnemos 
combines the typical components 
of a datacenter resource manager 
and scheduler—VM manager, sys-
tem monitor, and application (app) 
managers—with self-aware and self-
expressive components. These core 
components cover the typical roles in 
a self-aware computing framework’s 
decoupled observe-decide-act loop:3 
the system monitor is the observer, 
the portfolio scheduler is the decider, 
and the VM manager is the actor or 
executer. Other than these core com-
ponents, Mnemos uses tools familiar 
to most datacenters because replacing 

existing components with self-* com-
ponents is likely to occur gradually.

VMs and vClusters
Mnemos manages user requests trans-
parently without the need for addi-
tional administration. Datacenter 
users embed their applications in 
VMs, either as a single VM or VM clus-
ter (vCluster). Single VMs are suitable 
for running low-load webservers and 
small database applications, whereas 
vClusters are better for multitier Web, 
big data, and HPC applications. 

To facilitate hosting applications 
in a single VM or in entire vClusters, 
Mnemos’ app managers automatically 
manage common business-critical 
applications, such as Hadoop for big 
data applications and Microsoft HPC 
for HPC applications.

Because it distinguishes between 
big data and other applications, Mne-
mos addresses the current pressing 
need for placement strategies specific 
to big data applications. In Figure 1,  
App A represents a big data application 
running in a vCluster, and Apps B and 
C are regular applications running in 
a single VM and in a vCluster, respec-
tively. Nebu places big data applications 
on hosts, using placement strategies 
that can guarantee data locality or dis-
tribution over multiple clusters. It then 
communicates placement decisions 
to the application, which can use this 
information to optimize its internal 
scheduling and its own job-placement 
strategies. The portfolio scheduler 
handles regular application schedul-
ing directly through policies that aim 
to optimize performance and reduce 
oversubscription to physical hosts.

The VMs that users or app manag-
ers request run on physical resources, 
which Figure 1 shows in the datacenter 
layer. Multiple datacenters and one or 
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more clusters within each datacen-
ter are connected through high-speed 
fiber optics. The clusters are built from 
physical hosts (which contain CPUs, 
memory, and networking), storage 
servers, and network routers. To run 
VMs, all the hosts run a hypervisor—a 
component for creating and running 
VMs—that grants the VMs use of phys-
ical resources, including CPU, mem-
ory, network, and storage. 

Consistent with its focus on mod-
ern business-critical workloads, Mne-
mos differs from traditional architec-
tures in several key aspects: 

›› Mnemos uses only single-
cluster failure domains, whereas 
traditional architectures use 
multiclusters; 

›› through virtualization, Mnemos 
users can simultaneously occupy 
computing nodes, whereas 
in traditional HPC and grid-
computing architectures, node 
use is mutually exclusive;4 and

›› finally, Mnemos uses a high-
performance network, whereas 
typical grid-computing and 
cluster-based architectures rely 
on relatively slower and less 
expensive networks.

Component overview
Of Mnemos’ main components, only 
the portfolio scheduler and Nebu have 
self-aware and self-expressive capa-
bilities. The VM manager and sys-
tem monitor, which mediate between 
user requests and physical resources, 
enable self-* capabilities but alone can-
not ensure them. 

VM manager. The VM manager pro-
visions and allocates VMs in each clus-
ter, subject to the scheduler’s intel-
ligent decisions. It can be any of the 

many single-cluster and multicluster 
managers on the market, including 
the freely available Condor, Globus, 
and Mesos tools. The VM manager 
can also use self-aware commercial 
tools, such as VMWare’s Dynamic 
Resource Scheduling tool, to allocate 
and migrate VMs across hosts within 
the same cluster.

System monitor. The system monitor 
maintains information about the data-
center’s internal state by gathering 
information about the center’s system 
components, including hosts, storage, 
networking, VMs, and the hypervisor. 
The system monitor can be any com-
mercial or freely available monitor, 
such as Ganglia, or any of the moni-
toring tools that typically accompany 
commercial VM managers.

Self-* components. Mnemos’ two 
self-* components—the portfo-
lio scheduler and Nebu—are tools 

we created to intelligently manage 
both workloads and scheduling pol-
icies. Both use the VM manager and 
system monitor to gather informa-
tion about the datacenter’s current 
and historical states. Through these 
components, Mnemos enables self-
expressive resource management 
and scheduling across multiple data-
centers and multiple vClusters, and 
supports big data applications in dis-
tributed virtualized environments. 

Table 1 summarizes the portfolio 
scheduler’s and Nebu’s self-aware and 
self-expressive features. Although the 
two have different functions, they have 
a common goal: to proactively gather 
system information that will increase 
their self-aware and self-expressive 
capabilities and use that information 
to greatly enhance a datacenter’s func-
tionality and efficiency. 

Mnemos’ portfolio scheduler is 
based on an earlier scheduler4 that 
uses resources from public datacenters 
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FIGURE 1. Overall model of the Mnemos datacenter-wide architecture. Components 
in blue use self-aware or self-expressive techniques. In addition to these, Mnemos 
incorporates familiar support components, which are freely or commercially available 
such as the app managers, system monitor, and virtual machine (VM) manager, to ensure 
that datacenters have the necessary tools as they gradually increase the architecture’s 
self-awareness with future self-* components. VMWare’s Dynamic Resource Scheduling 
(DRS) tool, which works with the VM manager, is an example of how the architecture can 
spread self-* capabilities.
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(infrastructure-as-a-service clouds) to 
create a scheduling policy portfolio 
for scheduling HPC workloads. An 
evaluation showed that the portfolio 
outperformed any of the individual 
policies it contained. 

Although Mnemos’ portfolio sched-
uler is modeled after this scheduler, it 
is the first scheduler we know of that 
can operate across multiple clusters 
and datacenters. Adaptive schedul-
ing techniques have been considered 
for datacenters5 and clouds,4,6,7 but 
not across multiple clusters and data
centers and not for the workloads 
Mnemos targets. Commercial tools 
such as PBS, Mesos, and Cloudera can 
schedule hierarchically, but they can-
not schedule VM placement in multi-
ple datacenters. Commercial cluster-
management software, such as that 
offered from VMware, currently lacks 
an understanding of big data applica-
tions and a holistic view of datacenter 
management. As techniques similar 
to Mnemos’ become more widespread, 
we expect this situation to change. 

Portfolio scheduler
The portfolio scheduler responds to 
changes in workload patterns across 
multiple users, datacenters, and clus-
ters. Its name derives from the idea of a 
stock portfolio—a collection of stocks 
designed to mitigate risks and achieve 

better overall performance. Portfolio 
schedulers are by nature self-expressive, 
in that they adapt to reflect changed 
user demand, goals, or knowledge. 

Adding self-awareness to the orga-
nizing mechanism, in our case, the 
portfolio scheduler, alleviates the need 
for engineers to tune the datacenter. 
The scheduler iteratively selects the 
best scheduling policy for the foresee-
able future, from a set (portfolio) of 
constituent policies.

Portfolios can also become the basis 
for search instruments applicable to a 
variety of domains. For example, an 
exhaustive simulation of each port-
folio item’s behavior, whether it is a 
stock or a scheduling policy, can pro-
vide information essential to making 
investment or scheduling decisions. 
However, each new portfolio applica-
tion can require a new design or signif-
icant adaptation. 

For Mnemos’ portfolio scheduler, we 
nontrivially adapted a previous port-
folio scheduler developed for single-
cluster operation.4 Figure 2 shows the 
operational model. Operations have 
three main phases: equipping the port-
folio with policies, selecting a policy, 
and applying a policy.

Equipping the portfolio. The system 
administrator equips the portfolio 
with a set of scheduling policies that 

are unique to the problem at hand. 
Policies generally address the sched-
uling of VMs, rack-based clusters, and 
datacenters and specifically address 
the requirements for scheduling 
business-critical workloads, such 
as affinity and anti-affinity for VM 
placement and load balancing across 
clusters and datacenters. Many other 
classes of scheduling policies exist, 
as the sidebar “Workload Scheduling 
Approaches” describes.

Policies range from simple round-
robin or first-fit placement scheduling 
to complex policies based on resource 
utilization metrics and VM-specific 
characteristics.8 For example, the com-
plex BB vCluster policy (bottom of the 
list in Figure 2) groups VMs according to 
exclusion vectors and assigns groups to 
clusters on the basis of cluster-wide CPU 
availability, storage requirements, and 
network workload, taking into account 
the requested VM memory sizes.

Policy selection. The portfolio sched-
uler selects a single scheduling pol-
icy from the portfolio online. Online 
selection better aligns with the large 
scale of multiple datacenters because, 
unlike traditional periodic selection, it 
does not allow large request accumula-
tions in the system’s queues. 

As part of the selection process, 
the portfolio scheduler simulates 

TABLE 1. Self-aware and self-expressive features in Mnemos’ portfolio scheduler and Nebu.

Feature Self-* principle Component

Autonomously learns the physical infrastructure hierarchy from monitoring tools, 
allowing adaptive virtual machine (VM) placement 

Self-awareness Portfolio scheduler, Nebu

Provisions VMs and VM clusters in one or more datacenter clusters, responding to 
observed behavior and decisions from the portfolio scheduler, allowing adaptive 
VM placement

Self-expressiveness Portfolio scheduler

Monitors VM host mapping and detects changes in the infrastructure so that the 
placement policies can adapt and optimize for the new situation

Self-awareness Portfolio scheduler, Nebu

Monitors available physical hardware in datacenters and observes infrastructure 
use, allowing adaptive behavior that can optimize datacenter use 

Self-awareness Portfolio scheduler, Nebu

Monitors VM behavior to make more informed decisions about VM placement Self-awareness Portfolio scheduler

Automatically deploys distributed applications across datacenters through 
placement policies that take into account observations from both physical and 
virtual infrastructures

Self-expressiveness Nebu
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the entire datacenter to determine 
the impact of the candidate policy 
on the datacenter’s operations. The 
simulator gathers information about 
the datacenter’s current system state 
and about current and past work-
loads. It also reports various opera-
tional and performance metrics, such 
as the maximum resource load and 
the expected response time for each 
workload unit (median, 99th percen-
tile, and so on). 

Using a utility function that the 
system administrator provides, the 
scheduler then selects the scheduling 

policy with the highest utility. The 
utility function, which is unique to 
the application domain, captures the 
datacenter operator’s requirements—
for example, minimizing the imbal-
ance between each cluster’s average 
and maximum workloads. Thus, in 
gathering information about the 
datacenter, the portfolio scheduler 
ensures that Mnemos is self-aware, 
and through the utility function, that 
Mnemos is self-expressive.

Policy application. The last opera-
tional step is to apply a selected policy 

any time it is needed until another pol-
icy selection step invokes another pol-
icy. For business-critical workloads, 
policies decide where to place VMs. 
Inside the VMs, customers deploy 
applications that are then outside the 
policy scheduler’s control. 

Virtualization-aware scheduler
To our knowledge, Nebu is the first 
virtualization-aware scheduler that 
is agnostic to both the VM manager 
and application and that emphasizes 
Hadoop-based and distributed data-
base applications.9 Its main goals are 

WORKLOAD SCHEDULING APPROACHES

Resource scheduling in a datacenter usually 
takes place on different execution stack 

levels, starting at the CPU level and moving to the 
OS, hypervisor, and software levels. Usually the 
higher the stack level, the more information is 
available on workload context and characteristics. 

Workload scheduling within a datacenter or 
across multiple centers is attracting increas-
ingly more attention. From our survey of gen-
eral scheduling policies applied in datacenters, 
grids, and clusters, we have identified four main 
scheduling approaches: specialized, single-tier, 
multitier, and meta.

SPECIALIZED
Specialized scheduling focuses on finding sched-
uling policies for very specific workload types, 
such as workflows and parallel and sequential 
jobs. Because scheduling performance is com-
mensurate with the amount of available informa-
tion, specialized scheduling mechanisms are often 
found at the software level, high in the execution 
stack. However, specialized scheduling policies 
can still make decisions at lower levels. For exam-
ple, information about what is running on a VM 
can help intelligently allocate VMs to hardware.

SINGLE-TIER
Work on model-based scheduling focuses on 
finding single-tier workload models and using 
the insights these models provide to optimize 

future workload scheduling. These single-tier 
models are also used to test scheduling policies 
in simulators. Modelers use different modeling 
approaches, such as analytical and statistical, to 
develop workload models.

MULTITIER
Multitier applications often have two charac-
teristics (multicolinearity and highly dynamic 
load patterns) that are very specific for this type 
of setups. Because Web applications are often 
hosted on multitier systems—webserver and da-
tabase server—much research has been devoted 
to this topic. The resulting variety of approaches 
use a range of modeling strategies, including 
queue, prediction, and analytical models, to 
achieve effective dynamic resource allocation for 
multitier applications.

META
Meta scheduling requires a scheduling approach 
that works across multiple datacenters. However, 
many datacenters run a wide variety of work-
load types, so there is little chance of finding a 
one-size-fits-all policy. Portfolio scheduling, one 
recent approach of interest, works with a set of 
policies, choosing the best one for every workload 
subset. Consequently, datacenters can create less 
complex scheduling policies that work well for 
certain workload subsets without worrying if the 
policy works well for another complete workload.
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to prevent data loss when resources 
fail and to reduce physical resource 
contention from the accidental collo-
cation of VMs.

Nebu informs big data applications, 
or their app manager, of their VM 
host’s physical topology, thus enabling 
self-aware and self-expressive applica-
tion scheduling. Nebu also includes a 
system-level scheduler that can, with-
out application input, intelligently 
place VMs so that they do not overlap.

As Figure 3 shows, Nebu’s architec-
ture includes three layers:

›› an application extension layer, 
which provides distributed 
applications with host topology 
knowledge and feeds applica-
tion requirements to the portfo-
lio scheduler;

›› a VM manager extension layer, 
which extracts meaningful 
information and transmits 
Nebu’s scheduling decisions; and

›› a middleware layer, which 
comprises the Nebu resource 
manager and a component that 
interacts with the portfolio 
scheduler; this connects the 
other layers and decides on the 
basis of app manager and VM 

manager information if new 
VMs are needed.

To enable topology-aware VM place-
ment and the scheduling of big data 
applications in virtualized environ-
ments, Nebu collects information from 
the VM manager on the physical net-
work topology, as well as host (cluster 
and datacenter) and storage locations. 
Storage locations can be in the host or 
in a dedicated network-attached storage 
solution. Nebu combines this informa-
tion with knowledge about the virtual 
infrastructure, particularly VM location 
on the physical infrastructure, and its 
basic understanding of network topol-
ogy and network types (within a cluster 
and between clusters or datacenters). 

EXPERIMENTAL RESULTS 
Experiments to understand the effects 
of self-* properties for datacenters that 
support business-critical workloads 
are not easy to perform. A production 
datacenter is rarely available for that 
use, and experimentation can be costly. 
Even trace collection is hampered by 
legal and business restrictions. 

Fortunately, thanks to the gener-
osity of ASP4ALL Bitbrains, which 
has a multidatacenter infrastructure, 

we obtained traces of real-world 
business-critical workloads (http:// 
gwa.ewi.tudelft.nl/datasets/gwa-t-12 
-bitbrains) and secured resource time, 
which we used to evaluate the portfo-
lio scheduler and Nebu.

Because of space limitations, we 
present key results only for the portfo-
lio scheduler. In general, the results of 
the Nebu experiment showed that add-
ing self-awareness to big data appli-
cation schedulers can significantly 
increase reliability with an acceptable 
performance penalty.9

Portfolio scheduler 
implementation
We implemented a complete portfo-
lio scheduler for the production data
center infrastructure, including a set 
of placement policies for both a single 
VM and vCluster that covered the poli-
cies in the portfolio in Figure 2.

Workload
The collected workload traces cap-
ture long-term, large-scale operations: 
more than 1,300 VMs for over three 
operational months. Combined, the 
VMs have more than 17 TBytes of mem-
ory and consumed more than five mil-
lion CPU-core hours.10

Evaluation process
The portfolio scheduler bases its selec-
tion on the scores expressed as util-
ity functions based on the datacenter 
operator’s goals, such as minimizing 
the resource overload or maximizing 
revenue. In practice, datacenter oper-
ators provide a utility function as a 
portfolio scheduler configuration. We 
considered six possible goals, which 
are reflected in six configurations:8

›› MinScore. Mitigate the risk of 
scarcity for every resource (CPU, 

System monitor

Datacenter

VM managerPolicy application

Policy selection

Workload queue 
requested VMs

Simulator

Portfolio of policies Policies:
Round-robin
First-�t
Lowest CPU load
BB
...

FIGURE 2. Operational model of the Mnemos portfolio scheduler. Both the VM manager 
and system monitor gather information about the datacenter from the simulator (dotted 
arrows), which contributes to the portfolio scheduler’s self-* capabilities. Blue dashed 
denotes these capabilities in action. For example, the arrow from “Policy application” to 
the VM manager ensures the self-expressiveness of the Mnemos portfolio scheduler by 
triggering the provisioning of VMs and vClusters in one or more datacenter clusters.
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memory, disk, and network).
›› MaxScore. Pack as many VMs 
as possible into a cluster, which 
leads to high resource utiliza-
tion and thus income for the 
datacenter operator, but has the 
highest risk of resource scarcity.

›› MinMem. Mitigate the risk of 
memory scarcity for many 
requests, each with small 
amounts of requested memory.

›› MaxMem. Mitigate the risk 
of memory scarcity for sev-
eral requests, each with large 
amounts of requested memory.

›› MinCPU. Mitigate the risk of CPU 
scarcity for many requests, each 
with small amounts of requested 
CPU capacity.

›› MaxCPU. Mitigate the risk of 
CPU scarcity for several requests, 
each with large amounts of 
requested CPU capacity.

Selection frequency
To understand the usefulness of 
portfolio scheduling, we measured 
selection frequency for each policy 
selected and determined the distri-
bution of the chosen policies for each 
of the six goals. As Figure 4 shows, no 
scheduling policy was selected more 
than three fourths of the time, and 
no policy was never selected. This is 
strong evidence that self-* principles 
manage selection efficiently. Using 
a single policy that never changes 
makes little sense, particularly when 
several scheduling policies are fre-
quently selected, as in the MinScore 
and MaxScore goals.

V irtualized datacenters pro-
vide important infrastruc-
ture for digital economies, 

but they also raise new challenges 

in resource management and sched-
uling. Through experiments based 
on real-world workload traces, we 
found that self-awareness and self-ex-
pressiveness, when considered in 
architectures such as Mnemos, can 
enhance response to significant 
workload changes, prevent data loss 
during failures, and lower the risk of 
resource scarcity. 

Mnemos is part of a larger project 
on datacenter management, devel-
oped in collaboration with ASP4ALL 
Bitbrains and TU Delft. We have 
already implemented the Mnemos 
prototype, tested the portfolio sched-
uler and Nebu, and are currently 
extending the Mnemos conceptual 
framework with more service-level 
agreements and objectives and more 

in-depth network and CPU perfor-
mance metrics. In the near future, we 
plan to extend the Mnemos prototype 
implementation to a full-scale oper-
ational environment, which we will 
use to test our design and policies 
under real-world conditions and with 
user feedback. 
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