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Abstract—Datacenters are at the core of a wide variety of
daily ICT utilities, ranging from scientific computing to online
gaming. Due to the scale of today’s datacenters, the failure of
computing resources is a common occurrence that may disrupt
the availability of ICT services, leading to revenue loss. Although
many high availability (HA) techniques have been proposed to
mask resource failures, datacenter users—who rent datacenter
resources and use them to provide ICT utilities to a global
population—still have limited management options for dynami-
cally selecting and configuring HA techniques. In this work, we
propose Availability-on-Demand (AoD), a mechanism consisting
of an API that allows datacenter users to specify availability
requirements which can dynamically change, and an availability-
aware scheduler that dynamically manages computing resources
based on user-specified requirements. The mechanism operates at
the level of individual service instance, thus enabling fine-grained
control of availability, for example during sudden requirement
changes and periodic operations. Through realistic, trace-based
simulations, we show that the AoD mechanism can achieve high
availability with low cost. The AoD approach consumes about the
same CPU hours but with higher availability than approaches
which use HA techniques randomly. Moreover, comparing to an
ideal approach which has perfect predictions about failures, it
consumes 13% to 31% more CPU hours but achieves similar
availability for critical parts of applications.

I. INTRODUCTION

Increasing amounts of datacenter resources provide the

infrastructure of ICT utilities at global scale [1], [2]. Data-

center users rent datacenter resources to provide diverse ICT

utilities, from business-critical processes [3] and scientific

computing [4], to social networking [5] and online gaming [6].

Due to the sheer scale of datacenters, resource failures are

bounded to happen [7], [8]. When failures occur during

critical service periods, such as during flashcrowds [9], [10],

during periodic collection of results, or at the end of service

operation (such as just before the outcome of an online

game match), they are likely to lead to significant revenue

loss or customer departure [11], [12]. Over the past decade,

many high availability (HA) techniques have contended for

masking resource failures [13], [14], but they can be costly and

difficult to manage when applied indiscriminately. Moreover,

datacenters and even public Infrastructure-as-a-Service clouds

offer today to their users only limited management options

for dynamically selecting and configuring HA techniques.

In this work, we propose Availability-on-Demand (AoD), a

mechanism for dynamic HA management comprised of an

API to dynamically specify availability requirements and a

configurable availability-aware scheduler.

Managing HA techniques effectively is non-trivial. First,

many HA techniques exist, including recent virtualization-

based techniques such as Active/Active (AA) and Ac-

tive/Standby (AS) [13], which are increasingly adopted in

large datacenters and commercial datacenter products [15],

[16]. Second, the impact of resource failures on revenue is

difficult to estimate. Anecdotal evidence [11], [12] indicates

revenue loss: even the small, sub-second delays in generating

the response to a customer query can lead to significantly

fewer sales (1% for Amazon) and overall site traffic (up to 20%

for Google). All HA techniques increase administrative costs

and human resource needs [17], and may incur significant

costs in redundant infrastructure. Thus, we ask in this work

the research question How and when to use HA techniques
effectively inside the datacenter?
We answer our main research question by designing and

analyzing experimentally Availability on Demand (AoD), a

HA-aware mechanism for dynamic datacenter resource man-

agement. Novel in this work, we consider for our mechanism

the class of ICT services where the availability requirements,

and thus the utility of using HA techniques, can change
over time. In contrast to mission-critical applications, such as
online-banking transactions, which require HA during their

entire lifespan, datacenter-supported services such as business

support, some types of scientific computing, and online games

require HA only during limited periods of time. For example,

a company may want to run its support services with HA

only during working hours, an online service may increase

its HA requirements during launch or after major updates, an

online gaming service may require higher HA during the end

of important matches (e.g., the final of the World Cup of e-

Sports League of Legends), etc.

We further design our mechanism to provide support for

the specification and management of HA in datacenters. We

propose an easy-to-use API that allows datacenter users to

specify dynamically the availability levels they need. Users

can express their availability requirements over time, and for

entire services or for parts of their service, e.g., only for the

master component of a master-worker application. We also

propose an availability-aware scheduler which tries to balance

availability and the cost it incurs. We equip this scheduler

with a scheduling policy which manage computing resources
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dynamically to meet user-specify availability requirements.

We evaluate our mechanism experimentally, through trace-

based simulation. Using the API, we express dynamic avail-

ability requirements for a variety of workloads. We also

conduct comprehensive, trace-driven, simulation-based exper-

iments that compare the proposed scheduler with several

alternative approaches. To give evidence on the versatility and

efficiency of our mechanism, our experiments use long-term

traces representative for two important and popular application

domains, scientific computing and online gaming.

The main contribution of this work is twofold:

1) We propose a novel mechanism, Availability on Demand,

which manages the dynamic HA-requirements of data-

center users (Section III). The mechanism consists of an

API for datacenter users to specify dynamic availability

requirements, a scheduler that manages resources while

trying to improve the availability of the system, and a

policy to configure the scheduler.

2) We evaluate our mechanism experimentally, through

trace-based simulation (Section IV). Our results indicate

superior performance for our mechanism, in contrast to

approaches which use HA techniques indiscriminately or

naively. Moreover, comparing to an ideal approach which

use perfect failure predictions, our approach can lead to

13% to 31% more cost, but with similar availability for

critical parts of applications.

II. SYSTEM MODEL

The system model we consider in this work is common

for datacenter studies and follows our previous work [18],

[19], which it extends with a consideration of failures derived

from [20]–[22]. We describe, in turn, the infrastructure, the

workload, the operational, the failure, and the HA elements of

the system model used in this work.

A. Infrastructure and Workload Model

We consider datacenters who provide Infrastructure-as-a-

Service (IaaS) or managed-IaaS (Platform-as-a-Service like)

cloud services. Datacenter users (customers) express their ICT
services (applications) as workload units (jobs) that run on
virtual machines (VMs) rented from the datacenter. VMs are

hosted by the datacenter on homogeneous physical hosts (e.g.,

blade servers) owned by the datacenter.

Jobs can consist of one or multiple tasks, where a task

can be a typical Linux process or a VM. For the IaaS

model, customers submit each task in the form of a VM

to the datacenter, and the datacenter will allocate the VM

to some host. For example, users can control tasks that are

running in VMs provided by Amazon’s EC2. For managed-

IaaS, customers submit their jobs to the datacenter, and let

the datacenter allocates VMs and run the jobs. There are two

types of tasks: primary and backup. Primary tasks are tasks

that execute the application logic, while backup tasks are used

to protect primary tasks to avoid interruption of ICT services.

We only consider tasks for which the CPU is the dominant

resource, that is, the time to execute a task is inversely
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Fig. 1. Schematic Plot of the Operational Model.

proportional to the performance of the processor it runs on

(e.g., SPEC CPU). We allow dependencies between tasks,

and specifically consider two traditional computational mod-

els: master-slave (MS) and bag-of-task (BoT). For MS-type

dependency, if the master task fails, the whole job fails; if

any of the slave-tasks fails, it will not affect the other tasks.

For jobs with BoT-type dependency, individual task failures

do not lead to the failure of the entire job. We do not consider

MPI-type applications. For those applications, should any of

the tasks fail, the whole job fails.

Match-based games, such as the Defense of the Ancients,

are examples of bag-of-task jobs. Matches are independent

from each other. MapReduce applications are a type of master-

slave workload. The master-task of a MapReduce application

monitors and controls the slave-tasks to perform some data-

analysis. We only consider the availability of the jobs them-

selves, not the systems that jobs rely on. If those systems fail,

the jobs fail too. For example, for a master-slave application

such as MapReduce, if the Hadoop Distributed File System

fails, the MapReduce application fails, even when equipped

with our mechanism (introduced in Section III).

B. Operational Model

The operational model is depicted in Figure 1. Users submit

their jobs to the frontend of a datacenter. Each job contains

the necessary information needed to execute the job, and the

availability requirement of the job. All incoming jobs are

enqueued into a system-level queue. A system-level scheduler,

running on a separate physical host, manages all the jobs, a

pool of physical machines, and a pool of virtual machines.

The scheduler decides whether to boot up physical and virtual

machines, and whether to allocate tasks to hosts.

The scheduler use an HA policy to manage backup tasks

which is used to protect normal tasks. As is depicted in

Figure 1, backup1 is running in host1 to protect task1 which
is running in host2. The scheduler uses a provisioning policy

for booting up hosts from the datacenter, and an allocation

policy to select jobs or tasks and to allocate them to hosts.

1) Provisioning Policy: For each task, the provisioning

policy will try to place the task to the first host which has
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enough capacity. If the task is a backup task, the host should

not contain both the primary and the backup tasks of the same

task. If the task cannot be placed on any of the running hosts,

a new host will be booted.

2) Allocation Policy: The allocation policies will first select
a job, according to the First-Come-First-Serve (FCFS) policy,

and then allocate all of the tasks of that job to some hosts. An

allocation of a job is successful only if all of its tasks can be

allocated to hosts. For each task t, the allocation policy will
place the task on the eligible host with the least number of

idle CPUs. A host is eligible if it has enough capacity and it

is not executing the primary task of t (if t is a backup task).

C. Failure Model

We assume that physical hosts fail according to the fail-stop
model: once a host fails, all the VMs hosted on the physical

host stop and fail. Failures adhere to the model proposed

in [21]: as in traditional failure models, once a failure happens

to a physical host, the physical host will be down for a while,

then resume normal operation. Similarly to [22], when a failure

happens and cannot be masked by the HA technique of the

datacenter (see Section II-D), the failing tasks that ran on the

host are resubmitted to the system-level queue and start from

their beginnings.

We do not address other error models [23]. As failure-

detection is not the focus of this work, we also assume that

there exists a failure detection mechanism which can detect

the fail-stop failures timely with perfect accuracy.

D. High Availability Model

We consider in this work one main HA model and its

practical technique that can be used at the VM level of the

datacenter: the Active/Active (AA) technique.

The AA technique masks single failure occurring to individ-

ual VMs (and their service), by using a backup VM is running

in parallel with a primary VM, so the two VMs operate as
active replicas of each other. If a failure happens to one of

active replicas, the other active replica takes over. If both active

replicas fail, the service fails. There are many ways to achieve

the AA technique, including synchronous methods such as

lockstep [16], which execute the exact instruction and data

at each step; asynchronous methods such as Xen Remus [15],

which replicates its state asynchronously to the backup active

replica; and hybrid methods such as COLO [24], which

synchronizes the replicas only their outputs differ significantly.

Dynamically adding or removing AA replicas for a pri-

mary VM is already enabled by current virtualization tech-

niques [15], [16], [25]. Dynamically adding an AA replica

can be achieved by the following procedure. First, the virtual

machine monitor initializes live migration (e.g. as in [25]).

Instead of terminating the primary VM at the end of the

migration, the replicated VM will stay synchronized with the

target VM using mechanisms such as [15], [16].

Other HA models exist. Among them, we have considered

but not explored in this work the Active/Standby (AS) model,

which recovers a failed VM from a booted stand-by VM. In

contrast to AA, AS ensures slower recover speed, but at the

cost of only a standby, rather than active, resource.

III. AVAILABILITY ON DEMAND

In this section, we propose the Availability on Demand

(AoD) mechanism for the specification and management of

HA in datacenters. The main requirement for our AoD mech-

anism is to support services for which individual service

components (tasks) can have time-varying availability require-

ments. The mechanism includes an easy-to-use API to specify

HA requirements and an HA-aware scheduler.

Our key innovation is the support for dynamic HA require-

ments, which promises to provide high availability with low

cost (use of computational resources). Traditional approaches

do not support the dynamic specification of HA for each

service component, and maintain replicas for each service and

for the entire duration of the service. In contrast, the AoD API

enables the dynamic specification of requirements per service

component, and the AoD scheduler uses replicas only for

selected services (tasks) and only temporarily, when needed.
We describe, in turn, the API by which the users can

specify their dynamic HA requirements (Section III-A), and,

in detail, the availability-aware scheduler (Section III-B) and

its policy (Section III-C). Last, we discuss the implications

and limitations of our approach (Section III-D).

A. A Customer API for Specifying Availability Requirements

We propose an API for customers to specify the dynamic

availability requirements of their applications, and per job

or task. Our API is easy-to-use, in that it allows users to

specify their requirements through a single, three-parameter

API call. To achieve this, we consider in this work two levels

of availability, high and normal; normal availability does not
provide any HA model, whereas high availability is supported

through the AA technique. The API provides a single function,

the same for both per-job and per-task specifications:

SetAvailability(id, availability, time period)

with the parameters: “id”, through which users can specify

the unique id of the job or task which requires different

levels of availability; the “availability” field, to specify the

availability level, normal (NA) or high (HA). Users can specify
the period for which the availability requirements expressed in

the API call should be valid, by using the “time period” field.

By default, the specified availability requirement apply to the

entire life cycle of the tasks; the “time period” field is then

set to all. In this work, we use the terms “critical period”
and “high availability period” interchangeably to describe the

period which requires high availability.

The AoD API, albeit simple, is expressive. First, it supports

many types of availability changes, including three main

models we consider in this study:

• Bursty: most of the time, the availability requirement of
the task is normal, but can raise at any moment to high.

• Periodical: the availability requirement of the task

changes over time, alternating between normal and high

availability periods.
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• Steady: the availability requirements of each task is set
to normal or high and does not change over time.

Second, it offers support for a variety of application do-

mains, including the following examples:

• For MS applications (see Section II-A), which are com-

mon in scientific computing, the master component is

more important than the slave-tasks. Users wishing to

provide HA for these applications could specify this such

kind of requirement by making a single, task-level API

call: SetAvailability(MasterId, HA, all). (The calls

of SetAvailability(WorkerId, NA, all) represent the

default, so they are not required.)

• For online gaming applications, many of which are

BoT applications (see Section II-A), the availability re-

quirement may be higher between 9PM to 1AM (af-

ter dinner to late-night play). The users can specify

this requirement through a single, job-level API call:

SetAvailability(gamingAppId, HA, 9PM→1AM).

In this work, we focus on the simplicity of the API to make

it easy to understand and to be sufficient to meet our initial

requirement. The API can be further improved by adding more

features. For example, the API can include an option to be

used to specify the number of backups, as more backups

can ensure better availability. As another example, the API

can be extended to allow customers to specify their desired

availability target, and then our system will give the customers

recommendations, for example based on expected cost.

B. AoD Scheduler

In this section, we propose the AoD scheduler—a

datacenter-level scheduler that is HA-aware and tries, through

the novel HA policy we will introduce in Section III-C, to

support the requirements specified by datacenter users through

the AoD API. The AoD scheduler is configurable, in the sense

that each policy used by the scheduler can be selected by

the user from a library of available policies. We assume that

availability requirements are provided by calls to the API at

the moment when the jobs are submitted to the datacenter.

The function of the scheduler is to manage the process of

booting up or turning off physical hosts, of starting or stopping

VMs, and of allocating tasks, while taking into account HA

requirements and enforcing them through the AA technique

(see Section II-D). In this work, we only use AA backup tasks,

which use AA technique to create backup for the primary task.

For briefly, we refer to AA backup tasks as backup tasks.
The AoD scheduler consists of a main execution cycle,

executed often (e.g., every second). The main steps of the

schedulers are depicted in Algorithm 1. They are:

1) Managing backup tasks The scheduler creates backup
tasks for the running tasks (detailed in Section III-C1).

2) Removing backup tasks The scheduler removes the back-
up tasks that are not longer needed, for example because

their high availability period has just ended.

3) Allocating backup tasks The scheduler allocates backup
tasks to physical hosts (detailed in Section III-C2). It is

1: while not end of scheduling do
2: Managing backup tasks; //Section III-C1

3: Removing backup tasks;

4: Allocating backup tasks; //Section III-C2

5: Enqueuing tasks for scheduling;

6: Provisioning VMs;

7: Allocating tasks to hosts;

8: Turning off idle hosts;

9: end while
ALGORITHM 1: AoD scheduler, main execution cycle.

possible that some backup tasks cannot be allocated due

to lack of computing resources. Those tasks will be put

into the system queue and be processed later.

4) Enqueuing tasks for scheduling Newly arrived normal
tasks, failed tasks, and backup tasks are submitted to the

system queue for scheduling.

5) Provisioning necessary computing resources by turning
on (booting up) enough hosts (see Section II-B for the

provisioning policy).

6) Allocating tasks to hosts by creating a VM for each task

of a job (see Section II-B for the allocation policy).

7) Turning off idle hosts to save operational cost. A host

will be turned off if it has been idle for k minutes (e.g.,
2 minutes).

C. An AoD High Availability Policy

HA policies used in this work determine the behaviors of the

scheduler about how backup tasks should be created, executed

and terminated. We propose an HA policy to manage backup

tasks: AoD based on user-specified availability Requirements
(AoD+R). The AoD+R policy creates backup tasks based

on the availability requirements provided by the customers

(described in Section III-C1). All the backup tasks created

will be allocated to hosts to be executed using an allocation

approach described in Section III-C2. The AoD+R policy

terminates a backup task if HA is not longer needed for its

primary task.
1) Management of Backup Tasks: A distinctive feature of

the AoD+R policy is the management of backup tasks, which

for our AoD mechanism are not running all the time and for

all tasks, but temporarily and only for selected tasks. The

AoD+R policy relies on the availability requirements provided

by customers. Each time the policy is invoked, it works as

follows. For each task t in the running task set (TR), if t needs
HA for a certain period of time, an AA backup replica (taa)
is generated for t and added to the set of AA backups (Taa).

A backup task for a master-task of a MS-type job will run

during the entire lifespan of the master-task, whereas backup

tasks (taa) for non-master tasks (e.g., slave-tasks) will only
run until the end of the HA periods; at the end of this period,

taa is marked for removal by being moved into the removal
set (TK) which will be removed by the scheduler.

2) Allocation of Backup Tasks: In this section, we describe
how the AoD+R policy allocates backup tasks present in the
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Input: taa ∈ Taa all the AA backup tasks.

Hon on-line hosts.

ct the resource consumption of task t.
ch the remaining resource capacity of host h.
ht the host where task t locates.

1: calculate {Gtaa} for each taa ∈ Taa;

2: sort {Gtaa} in decreasing order;
3: for taa ∈ Taa do
4: for host h ∈ Hon do
5: if ctaa ≤ ch and ht �= h then
6: allocate taa to h;
7: htaa = h;
8: end if
9: end for
10: if taa cannot be allocated then
11: T

′
aa = T

′
aa ∪ {taa};

12: end if
13: end for
ALGORITHM 2: AoD allocation heuristic.

backup task set Taa which is created in step 1 of Algorithm 1.

The scheduler takes into account task characteristics of backup

tasks (different runtime, different resource consumptions, etc.)

and tries to maximize the availability gain (an availability-

aware utility metric, defined in the following) achieved by

allocating tasks to different hosts.

The goal of the allocation is to find a subset of Taa, and

to allocate them to hosts H , so that the availability gain is
maximal. We denote by Gtaa the availability gain of backup

task taa, where Gtaa = Etaa × Itaa , with Etaa being the

already executed time of taa’s primary task t, and Itaa being
the relative importance of the primary task t. The intuition
behind Etaa is that more gain is ascribed to the tasks that

have been executed the longest. If the job has an MS-type

dependency, and t is a master task (see Section II-A), we
model Itaa as the total resource consumption of the job

containing t—intuitively, if the master task t fails, the whole
job fails. For all other tasks of all other job types, if t requires
HA at the time when the allocation algorithm is invoked,

Itaa = 1, otherwise 0.

The goal of maximal availability gain can be formulated as

maximizing
∑

taa∈Taa
Gtaa , subject to two constraints which

are formulated as follows.

Resource Constraint: The amount of resources allocated
to tasks in a host h cannot exceed the remaining resource

capacity of h.

∑

htaa=h

ctaa ≤ ch taa ∈ Taa, h ∈ H (1)

Anti-colocation Constraint: The AA replica taa of task t
cannot be placed in the same host as t.

htaa �= ht taa ∈ Taa, t ∈ TR (2)

where ht indicates which host the task t locates, htaa

denotes where taa will be located, and TR is the running

task set. The formulated problem is an integer programming

problem (IPP). As most IPP are NP-hard, we do not seek

to obtain the optimal solution for the above IPP we defined.

We propose a heuristic algorithm to obtain a feasible, online

allocation of tasks to hosts. The heuristic algorithm is depicted

in Algorithm 2. First, it will obtain the availability gain for

each task (line 1). Second, it will sort all the tasks in Taa

according to their gain {Gtaa} in decreasing order. Third, for
each backup task taa, the algorithm will try to allocate the

task to the first host h which has enough capacity and does
not run the primary task t of taa (lines 3-9). For the tasks
that cannot be allocated, they will be organized as T

′
aa (lines

10-12). The T
′
aa will be inserted into the system queue and

be processed using the provisioning and allocation method

described in Section II-B.

D. Implications and Limitations of the AoD Mechanism

There are several ways to improve the AoD mechanism.

One of the possible extensions is to use both the AS and AA

models (see Section II-D). Using standby backup tasks can

reduce the resource consumption incurred by active backups,

while keeping the downtime of applications low (but longer

than for active backups). Another possible extension is to use

both customer-specified availability requirements and failure

predictions, to further reduce the cost of offering availability.

There are several practical limitations to our work. First,

although the overhead of AA replicas can be very small [16],

[24], in practice the AA technique may not work efficiently

for multi-core VMs [16], and may not be efficient for memory

intensive VMs [24]; in both cases, workload interference leads

to decreased performance. An approach to solve this problem

in practice is to run benchmarks statically or dynamically,

to determine whether it is efficient to use AA techniques.

Second, the AoD+R policy does not work efficiently for MPI-

like applications. Checkpointing may be a better solution for

those applications, but also faces many open challenges [26],

[27].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our AoD scheduler equip with

the AoD+R policy (see Section III-C), and compare them

with four alternatives. We use for this realistic trace-based

simulation, using as input long-term, real-world traces that

represent scientific computing and online gaming. Our results
indicate that the AoD+R policy can achieve high availability
with low cost, in comparison to policies that use AA techniques
randomly and an AoD+R policy variation. Moreover, com-
pared to an ideal policy which use perfect failure predictions to
manage backup dynamically, the AoD+R policy can consume
13% to 31% higher cost but with similar availability for
critical parts of applications.
We describe, in turn, the setup of our experiments (Sec-

tion IV-A), the alternative approaches (Section IV-B) and

the metrics used for comparison (Section IV-C), and the
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main results for the usability (Section IV-D) and perfor-

mance (Section IV-E) of the AoD mechanism. Overall, we

evaluate 5 scheduling policies under different scenarios: 2

task dependency models (MS and BoT) and 3 availability

requirement models (bursty, periodical, and steady), and with

different parameters. Unless otherwise specified, the default

task dependency model is MS and the default availability

requirement model is bursty.

A. Experiment Setup

1) Infrastructure: The experiments shown in this section
are conducted using an event-based simulator developed for

this study. The simulator is based on CloudSim [28] and our

previous work on cloud simulation [18], [19]. We simulate a

datacenter which consists of 1000 hosts, with 16 CPU cores

each. These values are realistic for a medium cluster, but also

in the range of the systems that provided the traces described in

Table I. Scaling these traces, for much larger or much smaller

systems, is difficult for various theoretical reasons [29].

2) Workloads: To indicate the versatility of our AoD

mechanism, the real-world workload traces used in this work

represent two application domains, scientific computing and

online gaming. Table I presents an overview of these traces.

The KTH-SP2 trace comes from the Parallel Workload Archive

(PWA) while the DAS2 trace comes from the Grid Workload

Archive (GWA). The DLI trace contains the first year records

of the DotaLicious trace from the Game Trace Archive (GTA).

As the DLI trace does not specify the number of CPU cores

used per job, so we assume that each job uses 1 CPU core.

We do not have real user-defined availability requirements.

Instead, we use the following synthetic formulation. For the

bursty model, a randomly continuous time period (k% of the

task duration) is picked as a critical period which requires

high availability, while the other period is set to be the normal

period which requires normal availability. For the periodical

model, the task runtime is partitioned into multiple half-an-

hour periods; then, for each of the period, the first k% of the

period requires high availability, while the remainder requires

normal availability. For the bursty and periodical model, high

availability requirement period(s) are generated for a task only

if the task’s runtime is longer than 10 minutes. For the steady

model, k% of the tasks need high availability all the time,

while the other tasks only need normal availability. In default,

k is set to be 30. In this work, the workload model specified
by its task dependency and availability model is uniquely

identified as {task dependency}-{availability}. For example,
MS-Bursty means MS task dependency and bursty availability

model.

3) Failure Generation: When generating failures, the time
and duration of a failure are determined according to [21]; and

then randomly one or two hosts will fail. The inter-arrival time

of failures are generated using a Weibull distribution (α = 9.7,
β = 12.2), and the duration of failures are generated using
a LogNormal distribution (μ = 2, δ = 0.26). To determine
which hosts fail, we assign different failure probabilities to

different hosts [20]. The failure probabilities follows a Zipf

Trace Trace Avg. Avg. Trace
Type name #jobs runtime [s] CPU source

Sci.comp. KTH-SP2 28,489 8876 7.7 PWA [30]
Sci.comp. DAS2 219,618 530 10.3 GWA [31]
Onl.Gam. DLI 109,250 2232 1 GTA [32]

TABLE I
OVERVIEW OF REAL-WORLD TRACES. “SCI.COMP.” AND “ONL.GAM.”

STAND FOR SCIENTIFIC COMPUTING AND ONLINE GAMING,
RESPECTIVELY.

distribution (exponent r range from 0 to 1); the hosts with a

larger failure probability will experience more failures. In this

work, we set r = 1, this leads to more failures happening to
some hosts.

B. Alternative Policies for Comparison

We compare the AoD+R policy against four scheduling

policies:

• None: This policy does not use any HA techniques.
• Rnd: This policy will use the AA technique to improve

the availability of all the jobs: for each task it will have a

k% (i.e., 30) probability to add an AA backup task which

runs for the entire duration of the job.

• AoD-I: This policy is a variation of the AoD+R policy.
The AoD-I policy does not distinguish between master-

tasks and slave-task and treats them equally, that is, if

the task (either a master-task or a slave-task) needs HA

at the time when the mechanism is invoked, it assigns

Itaa = 1, otherwise Itaa = 0
• Pred: This policy is used as a reference to measure the
gap between the AoD+R and optimal scenarios. It as-

sumes the existence of a predictor which tells about when

and where each failure will happen, the policy will create

backup tasks for the tasks located on hosts predicted to

fail. The Pred policy also informs the allocation module
to stop allocating tasks to hosts predicted to fail, for

an amount of time (e.g., 10 minutes) or, if a downtime

predictor exists, until the predicted end of the failure. We

explore in this work only the ideal case in which the

location of failure is perfectly predicted and the accuracy

of the moment when failure happens is within 10 minutes.

C. Metrics

Each experiment is repeated at least 20 times. The results

reported in this section are average values. We consider the

following metrics:

• Number of critical failure events (CRITS) The number of
failure events during periods which require high avail-

ability. This metric indicates the ability of the system to

protect applications during the periods that matter, that

is, when the customers could be willing to pay extra for

high-availability guarantees. The lower this metric, the

better.

• CPU hours The total number of hours that the CPUs in
the datacenter are used by the customer. This metric is
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Fig. 2. Results under the MS task dependency and bursty availability requirement model: (left) number of critical failure events (CRITS), (middle) CPU
hours, and (right) number of failure events (FAILS). (the non-visible bars represent zeros.)

Fig. 3. Results under the BoT task dependency and periodical availability requirement model: (left) number of critical failure events (CRITS), (middle) CPU
hours, and (right) number of failure events (FAILS).

useful to assess the efficiency of an availability approach;

less is better.

• Number of failure events (FAILS) The number of failure
events, including failures during periods require normal

or high availability. The lower this value, the better, but

this metric may be misleading, because failures during

normal availability periods may not be important enough

(for example, it may not be user-facing). Similar to

CRITS and CPU hours, lower values mean better results.

For the three metrics, the CRITS metric emphasizes the

importance to protect applications during critical periods. The

CPU hours metric evaluates the cost-efficiency of a scientific

computing and online gaming system, and the FAILS metric

measures the availability of a system. In this work, we only

evaluate the above three metrics, more metrics could be used to

evaluate the effectiveness of our approach. However, it requires

future work.

D. Expressiveness Results

We apply the availability API proposed by AoD (in Sec-

tion III-A), in practice, for specifying the availability re-

quirements of each task in the input workloads, for various

scenarios.

We generate the availability requirements of each task

according to the availability models we described in Sec-

tion III-A and the amounts we have described in Section IV-A.

Overall, we conclude that the API can express the diverse

workloads used in this work: 2 application domains, 2 task

dependency models, and 3 availability models.

E. Performance Results

In this section, we show the results under different task

dependency and availability requirement models. The main

findings are:

1) The AoD+R policy work well for the MS and BoT task

dependency models.

2) The AoD+R policy consumes about the same CPU hours

as the Rnd and the AoD-I policy, but has significantly

lower CRITS. Moreover, the AoD+R policy can lead to

less FAILS than the RnD policy and the AoD-I policy.

3) Comparing to the ideal policy: Pred, the AoD+R policy

consumes 13% to 31% more CPU hours, but about the

same CRITS.

1) MS task dependency with bursty availability requirement
model (MS-Bursty): Figure 2 (left) shows CRITS for the None,
the Rnd, the AoD-I, the AoD+R, and the Pred policy, from left

to right; grouped by traces. As is shown in the figure, the None

and the Rnd policy have much higher CRITS than the other

policies. The None policy has the highest CRITS, because

it does not employ any HA techniques to protect tasks. The

AoD-I has at least 50% lower CRITS than the Rnd policy, but

the CRITS for the AoD-I under the KTH-SP2 and the DAS2

trace are non-negligible. The AoD+R, the Pred policy has the

lowest CRITS. This shows that the AoD+R policy satisfies the

design goal to protect applications at important occasions.

Figure 2 (middle) shows the CPU hours metric for all the

policies. As expected, the None policy consumes the least

CPU hours, as it does not use any HA techniques which use

additional computational resources to execute tasks. The Pred
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Fig. 4. AoD+R with various percentage of HA periods: (left) number of critical failure events (CRITS), (middle) CPU hours, and (right) number of failure
events (FAILS).
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Fig. 5. AoD+R with various frequencies of failures: (left) number of critical failure events (CRITS), (middle) CPU hours, and (right) number of failure
events (FAILS).

policy consumes the second lowest CPU hours. The AoD-

R policy consume 15% to 30% more CPU hours than the

Pred policy. In addition, the AoD-I policy consumes more

or less the same amount of CPU hours as the Rnd policy.

Moreover, the AoD-I policy consumes a bit less (about 5%)
CPU hours than the AoD+R policy. This is because the

AoD+R policy create AA backups for master tasks during

their overall runtime instead of only during HA periods.

Figure 2 (right) shows the FAILS metric for all the policies

under the MS task dependency and bursty availability model.

The Pred policy has the least FAILS, as it predicts occurrences

of failure and create AA backups to protect tasks located in

physical hosts which will fail. The AoD+R policy has the

second least FAILS, about 60% and 10% less FAILS than

the Rnd policy under the KTH-SP2 and the DAS2 trace,

respectively. The FAILS of the AoD-I policy are about 40%

higher than AoD+R policy for the KTH-SP2 and the DAS2

traces. This because the AoD+R policy protect master tasks

of jobs by creating AA backup tasks for all the master tasks,

when failure happens to a master task, it will be protected as

the master task has AA backup which is running in another

physical host. The FAILS of the AoD-I and the AoD+R policy

are identical for the DLI trace, because each job only contain

one task in the DLI trace, thus the performance of the two

policies are the same.

2) BoT task dependency with bursty availability require-
ment model (BoT-Bursty): As is shown in Figure 3 (left), the
AoD+R policy has about the same CRITS as the Pred policy,

and significantly less CRITS than the None and the Rnd policy.

Comparing to the MS-Bursty workload, the CRITS metric for

the BoT-Bursty is less. This is because for the MS-Bursty

workload, a failure of the master task will trigger failures of

tasks of the same job. For the CPU hours metric, as is shown

in Figure 3 (middle), the Rnd, the AoD-I, the AoD+R policy

consumes about the same CPU hours. And they consume 15%

to 25% higher CPU hours than the Pred policy. The FAILS

of the policies for the BoT-Bursty workload is lower than

the FAILS for the MS-Bursty workload due to the reason we

explain before. As is depicted in Figure 3 (right), the AoD+R

and the AoD-I policy consume about the same FAILS as the

Rnd policy.

For MS and BoT task dependency models with periodical

and steady availability model: MS-Periodical, MS-Steady,

BoT-Periodical and BoT-Steady, we obtain similar experi-

mental results. The AoD+R policy has similar CRITS to

the ideal policy: Pred. And the AoD+R policy consumes

similar amounts of CPU hours to the Rnd policy, but leads

to significantly lower CRITS. For tasks with MS dependency,

the AoD+R policy can lead to significantly less FAILS than

the Rnd and the AoD-I policy. In comparison with the Pred

policy, we find that the AoD+R policy has more FAILS, but

importantly similar CRITS and only 13% to 31% higher CPU

hours.

3) Impact of changing the percentage of HA periods: We
evaluate the AoD+R policy by varying the percentage of HA

periods (k), from 10% to 50%. With increasing k, the duration
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of HA periods for each task increases. The results of this set of

experiments are depicted in Figure 4. As is shown in Figure 4

(left), the CRITS metric stays low (≤ 8) for the AoD+R
policy with increasing k. This indicates that the AoD+R policy
can protect applications even for high percentages of HA

periods. For the CPU hours metric, as is depicted in Figure 4

(middle), the CPU hours consumed by the AoD+R policy

increase linearly with k. This is because with the increasing
k, AA backup tasks will run longer to protect primary tasks,

which leads to increased, but only linearly, CPU hours. As

Figure 4 (right) shows, the FAILS metric decreases linearly

with increasing k. This is because when the duration of HA
periods increase, AA backup tasks will run longer to protect

their primary tasks longer.

4) Impact of changing the frequency of failures: We evalu-
ate the impact of frequency of failures for the None, the Rnd,

and the AoD+R policy by changing β which determines inter-
arrival time (IAT) of failures. The smaller β is, the smaller the
IAT is, which leads to in turn more failures. As is depicted

in Figure 5 (left), the CRITS metric for the AoD+R policy

remains low (≤ 5) for various values of β, whereas the
None and the Rnd policy has very high CRITS metric for

small values of β, and the metric decreases with increasing β
(decreasing failure frequency). This suggests that the AoD+R

policy can protect applications during important moments,

regardless of the frequencies of failures. For the CPU hours

metric, as Figure 5 (middle) indicates, the None, the Rnd, and

the AoD+R policies consumes slightly less CPU hours with

reducing failure frequencies (increasing β). This is because
with less failures, less tasks are needed to re-executed. For the

FAILS metric, according to Figure 5 (right), the FAILS metric

for the three policies decreases significantly with increasing β.

V. RELATED WORK

A large number of research efforts have been devoted to

improve the efficiency [33]–[36] and availability [37], [38]

of distributed systems. Hardware-based techniques, which

employ redundant power-facilities, cooling-facilities, switches,

network links, and storages [39], have been proposed to

improve the availability of distributed systems. In this section,

we focus on comparing our work with software-based high-

availability techniques. Two of the most common software-

based techniques are checkpointing and replication [7].

For checkpointing-based approaches: Researchers propose

to use proactive and preventive checkpointing to improve

the efficiency of HPC system [26]; to reduce the storage

space and overhead of checkpointing [40]; to determine the

checkpointing interval with the goal to reduce the job run-

time and improve reliability [41]. For checkpointing-based

approaches, the efficiency of the approaches heavily depend

on the characteristics of failures and they may significantly

slowdown job execution. In this work, we use replication-

based techniques, we plan to integrate our approach with

checkpointing.

Replication-based techniques can be classified into

application-level and system-level replication. For application-

level replication techniques, the application developer should

provide customized code to create replication of the

applications. Researchers propose to use iterative redundancy

which trade-offs accurateness for cost-efficiency in volunteer

computing environment [42]; to use different fault-tolerance

techniques for different parts of applications [43]. Different

from them [42], [43], we use system-level replication

techniques to improve the availability of systems.

For system-level replication techniques, the system where

applications run can create replicas for parts of the system.

For example, Dynamo [44], a highly available key-value store,

automatically replicates data items in multiple locations to

ensure the availability of the data store service. Different from

the data-replication techniques used in Dynamo, we use a

VM-level replication technique that creates backups for VMs.

Researchers propose to change the location of AA backups

when failure happens with the goal to optimize availability

and application performance (latency) [45]; to use AA and

AS to achieve dependable VMs allocation [46]; to use AS

to provide HA with the goal to minimize the number of

hosts used [47]. These approaches [45]–[47] statically allocate

VMs to hosts and only change the location of backup VMs

when failure happens. In contrast, our method dynamically

manage backup VMs by taking into account the time-varying

availability requirements and failure predictions.

Some work use checkpointing and replication techniques

both. Chtepen et al. [27] use the two techniques both to

improve resource utilization when running bag-of-task in

Grid. Elliott et al. [48] use the techniques both to provide

fault-tolerance for MPI applications. Different from them, we

manage the backups dynamically instead of statically.

Our work is inspired by [37], [38]. Israel and Raz [37]

propose a method to balance between expected recovery time

and cost of machine activation once failures happen. Cirne

and Franchtenberg [38] propose a backup-task bag approach

to guarantee the failure probability of losing more than certain

tasks is lower than a threshold.

VI. CONCLUSION

Datacenters are hosting the ICT services that serve our daily

life. Failures, which are bounded to happen in datacenters,

can disrupt the availability of ICT services. Although many

high availability (HA) techniques have already been developed

to mask failures, dynamically selecting and configuring HA

techniques for applications are still daunting for datacenter

practitioners and researchers.

In this work, we propose, Availability on Demand (AoD)

a mechanism consisting of an API that allows datacenter

users to specify availability requirements which can change

over time, and a scheduler which provides HA to applica-

tions based on user-specified requirements by dynamically

managing computing resources for applications. We equip

our HA mechanism with a scheduling policy AoD+R which

responds to the dynamic availability requirements expressed

by datacenter users with efficient management of resources.
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By evaluating our proposed approach through realistic, trace-

based simulation, we show that the AoD+R policy can protect

applications during important occasions, while the baseline

policies cannot. Moreover, compared to an ideal policy which

uses perfect predictions, the AoD+R policy consume 13% to

31% more resources but with similar availability for critical

parts of applications.
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