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Socializing by Gaming: Revealing Social Relationships in Multiplayer
Online Games
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Multiplayer Online Games (MOGs) like Defense of the Ancients and StarCraft II have attracted hundreds of
millions of users who communicate, interact, and socialize with each other through gaming. In MOGs, rich
social relationships emerge and can be used to improve gaming services such as match recommendation and
game population retention, which are important for the user experience and the commercial value of the
companies who run these MOGs. In this work, we focus on understanding social relationships in MOGs. We
propose a graph model that is able to capture social relationships of a variety of types and strengths. We apply
our model to real-world data collected from three MOGs that contain in total over ten years of behavioral
history for millions of players and matches. We compare social relationships in MOGs across different game
genres and with regular online social networks like Facebook. Taking match recommendation as an example
application of our model, we propose SAMRA, a Socially Aware Match Recommendation Algorithm that takes
social relationships into account. We show that our model not only improves the precision of traditional link
prediction approaches, but also potentially helps players enjoy games to a higher extent.
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1. INTRODUCTION

Multiplayer Online Games (MOGs) are games in which multiple players can play in
the same online game environment at the same time. They have attracted hundreds of
millions of people worldwide who communicate, interact, and socialize with each other
through gaming. They represent a large economic sector that covers an entire ecosystem
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of entertainment products, and that is worth billions of US dollars worldwide. Some
MOGs, for example, Defense of the Ancients (DotA) and StarCraft II, have featured
in several tournaments with wide appeal to gamers and game watchers, such as, the
World Cyber Games (WCG) and the Electronic Sports World Cup (ESWC). From the
vast user base of MOGs, rich social relationships emerge that are useful for improving
gaming services such as match recommendation and game population retention. Thus,
it is important to understand the social relationships in MOGs, and this constitutes
the purpose of this paper.

Different from single-player games that put players against program-controlled op-
ponents, MOGs allow players to enjoy interactions with other human beings—they may
compete with each other individually, they may work cooperatively as a team to achieve
a common goal, they may supervise activities of other players, or they may engage in a
game genre that incorporates any possible combination of these types of interactions.
Often, these interactions provide players with a form of social communication, from
which various types of social relationships may emerge that can be used for improving
gaming services. For example, plain adversarial relationships in MOGs can be used to
promote user activity—players who want to beat each other may motivate each other
to stay longer as game customers.

An increasing number of social network analyses [Newman 2003] use graphs to rep-
resent user relationship, including explicit relationships like friendship [Garg et al.
2009; Kairam et al. 2012; Hu and Wang 2009], and implicit relationships like user
interactions [Wilson et al. 2009; Viswanath et al. 2009; Leskovec et al. 2005; Xiang
et al. 2010; Liu et al. 2012]. Often, graphs are extracted from one or multiple snap-
shots of the network based on a single, domain-specific, and usually threshold-based
rule for mapping relationships to links. Taking Facebook as an example, the map-
ping rule can be that any two users who have exchanged messages for more than
ten times are mapped to two nodes connected by one link in the graph. For three
reasons, this traditional approach is insufficient to obtain clear social relationships
and their evolution from an MOG. First, network snapshots can be generated in
various ways, for example, with or without considering the history before the last
snapshot. However, the influence of different snapshot generation methods on the in-
ferred relationship evolution has only been partially investigated before Viswanath
et al. [2009], Leskovec et al. [2005], Ribeiro et al. [2013], Caceres and Berger-Wolf
[2013], and Krings et al. [2012], and a detailed comparison between these methods is
needed. Secondly, gaming involves relationships in various domains that normally do
not exist in regular social networks, for example, winning together and competing with
each other. To infer user relationships in MOGs, these domains need to be carefully
examined and compared. Thirdly, the impact of various graph extraction rules and
thresholds employed has received relatively little attention [Choudhury et al. 2010],
and a thorough analysis on how they influence the structure of the resulting graphs is
needed.

To tackle the aforementioned issues, in this paper, we propose a graph model that
is able to capture social relationships of a variety of types and strengths. We apply
our model to real-world datasets to analyze social relationships and their evolution in
MOGs. As it turns out, our model is able to identify important relationships in MOGs,
including “wingmen” that are very likely to play together in the future and adversary
relationships that are useful for population retention. By investigating network evo-
lution from different perspectives, our model also demonstrates how an MOG can still
exhibit growth while its player activity actually declines. Taking match recommenda-
tion as the example, we demonstrate how to apply the social relationships revealed
by our model to improve gaming services. Our results show that our model not only
improves the precision of traditional link prediction approaches, but also potentially
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helps players enjoy games to a higher extent. We summarize our main contributions
as follows.

(1) We collect, use, and offer public access to datasets representative for three popular
MOG genres. The datasets contain in total ten years of behavioral history for
1,120,049 players and 2,248,045 matches (Section 3). The datasets are publicly
available through the Game Trace Archive (http://gta.st.ewi.tudelft.nl/).

(2) We propose a graph model to analyze social relationships in MOGs, based on
which we study the influence of relationship strength on the extracted graphs
(Section 4), we analyze the mutual influence of friendship and interactions
(Section 5), and we demonstrate user behavioral changes and the resulting net-
work evolution in MOGs (Section 6).

(3) Based on the social relationships revealed by our model, we propose SAMRA, a So-
cially Aware Match Recommendation Algorithm that we compare with traditional
link prediction approaches (Section 7).

2. PROBLEM STATEMENT

In this section, we first introduce MOGs, matchmaking, and social relationships in
MOGs. Then, we state the research questions we study in this paper.

2.1. An Overview of MOGs

MOGs are games in which multiple players can play in the same online game environ-
ment at the same time. Players in MOGs often control in-game avatars and, individ-
ually or team wise, they try to conquer the opposite side’s territory. Within MOGs, a
variety of game genres exist. Throughout this paper, we consider three popular game
genres, namely Real-Time Strategy (RTS) games exemplified by StarCraft II, Multi-
player Online Battle Arenas (MOBAs) exemplified by DotA, and Massively Multiplayer
Online First-Person Shooter (MMOFPS) games exemplified by World of Tanks.

Different game genres often have different match scales that specify a limit on the
number of players per team, and in-game targets that reflect the design emphasis of
the game genres. Regarding the match scale, DotA requires exactly five players per
team (we indicate this by “5v5-player”), whereas StarCraft II and World of Tanks allow
players to form teams of different sizes, with a maximum of 8 and 15 players per team,
respectively. Regarding in-game targets, StarCraft II asks players to balance strategic
and tactical decisions, often every second, while competing for resources with other
players. DotA provides the opportunity for teams of players to confront each other on a
map and try to conquer the opposite side’s main building. And World of Tanks, although
fast paced, tests the tactical team work of players disputing a territory. Intuitively, from
StarCraft II to DotA and further to World of Tanks, the requirement of team cooperation
increases. As a consequence, we observe an increasing trend in their match scale—92%
of the matches in our StarCraft II dataset are 1v1-player, all matches in DotA are ex-
actly 5v5-player, and 98% of the matches in our World of Tank dataset are 15v15-player.

Seeing MOGs in a broader perspective, they are online social networks in which
users socialize with each other through gaming. Here, we classify online social net-
work into two categories, viz., socializing-driven and target-driven networks. Different
from typical socializing-driven networks like Facebook, in which users mainly join to
socialize with their online and offline friends, MOGs are target driven and their users
primarily join and interact for a particular target, that is, games. Other typical target-
driven networks include YouTube, Flickr, and Meetup, in which users interact through
cocommenting on the same video, coviewing the same photo, and coparticipating in
the same event. As in many other online social networks, users in MOGs may develop
various social relationships.
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It should be noted that our classification here is loose: it often happens that users in
target-driven networks also seek to socialize with others. Nevertheless, we still use this
classification to distinguish the premier purposes of different online social networks.
As a matter of fact, we observe interesting patterns based on this classification (as we
will show later in Section 5.2).

2.2. Matchmaking in MOGs

As we focus in this paper on understanding the social relationships emerging from
MOGs, it is important to know how matchmaking works, that is, how users are
paired/grouped into the same game. Normally, different matchmaking methods are em-
ployed by MOG communities. In this paper, we consider four MOG communities, that
is, two DotA communities, Dota-League and DotAlicious, one StarCraft II community,
and one World of Tanks community (details of these communities will be introduced
later in Section 3.1). We introduce their matchmaking methods in turn as follows.

In Dota-League, players who want to play a match first join a waiting queue. When
there are ten or more players in the waiting queue, the matchmaking algorithm will
form teams (each with five players) that are balanced in terms of the skill levels of the
players. Although this matchmaking algorithm enforces balanced matches, it does not
take into account the social relationships of the players. As a consequence, we observe
that 41% of the games in Dota-League are aborted at the very beginning of the match.
Because quitting at the start of the game could be the outcome of players expressing
their disagreement with the matchmaking system’s choice, we omit these 41% games
in our later analysis and assume that the formations in the remaining games are
according to players’ satisfaction.

In DotAlicious, each game server has a number of open matches waiting for players
to join, and each arriving player can select which match to join and on which team.
For StarCraft II, users can choose either to organize games by themselves (the so-
called custom game), or to be assigned by the community to games with other players
with similar skill levels (the so-called ladder game). World of Tanks uses a similar
matchmaking method as StarCraft II.

To sum up, under the aforementioned matchmaking methods, users can choose their
teammates and opponents freely, either by organizing the games directly, or by quit-
ting playing with unintended players. Therefore, the gaming experiences in the four
MOG communities we consider are suitable proxies for inferring spontaneous social
relationships.

2.3. Social Relationships in MOGs

Social relationships in MOGs can be explicit or implicit. Explicit relationships are
formed on players’ own initiative, for example, when players personally establish
friendships with others, or join a clan (a self-organized group of players who often
form a league and play on the same side in a match). Implicit relationships, on the
other hand, are formed passively by players, for example, through interactions.

Explicit relationships are precise, but they are not sufficient to capture various
social relationships in MOGs. One reason is the prosocial emotions involved through
gaming, for example, vicarious pride and happy social embarrassment [McGonigal
2011]. Another reason is the rareness of explicit relationships like friendship. When
explicit relationships are not enough, implicit relationships, such as user interactions,
provide the supplementary information for inferring social relationships. For example,
we observe that in Dota-League, less than 10% players have explicitly identified more
than ten friends, while 50% players have played repeatedly and possibly regularly with
more than 50 players.
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In MOGs, users interact with each other in various ways, for example, by joining
the same match, by playing on the same/opposite sides, and by winning/losing to-
gether. These interactions are straightforward and yet important: joining the same
match is a precondition for interaction, playing on the same/opposite side indicates a
positive/adversarial relationship, and winning/losing together may impact player at-
titude and their future team formation. These interactions will help us to infer social
relationships in MOGs.

2.4. Research Questions

In this paper, we answer the following five research questions.
(i) How can we infer social relationships from MOGs?
User relationships provide important information for improving services in online

social networks. However, most previous work is based on explicit relationships like
friendship [Garg et al. 2009; Kairam et al. 2012; Hu and Wang 2009] or simply treats
various types of interactions equally [Wilson et al. 2009]. In contrast, we propose a
graph model that takes a variety of types of interactions into account.

(ii) How are MOGs different across game genres and from regular online social net-
works at the structural level?

This question helps us to understand the differences between social networks. In
this paper, we apply our model to real-world data collected from three MOGs. We then
compare our results with previous studies on regular online networks [Wilson et al.
2009; Viswanath et al. 2009; Mislove et al. 2007; Liu et al. 2012], including Facebook,
YouTube, LinkedIn, and Meetup.

(iii) How are networks representing explicit and implicit relationships in MOGs
related?

The correlation between explicit and implicit relationships is useful for relationship
prediction. For example, we can predict potential interactions of a user based on his
current friendships with others. We answer the aforementioned question by comparing
properties of the graphs representing friendship and interactions.

(iv) How do MOGs evolve over time?
Network evolution reflects general user activity change, and provides important in-

formation for system operation. Previous evolution models are mostly based on friend-
ship [Garg et al. 2009; Kairam et al. 2012; Hu and Wang 2009]. A few models [Viswanath
et al. 2009; Leskovec et al. 2005] include user interactions, but they only consider one
perspective on network evolution. In contrast, we investigate network evolution from
different perspectives by demonstrating how an MOG can still exhibit growth while its
player activity actually declines.

(v) What are possible applications of our model?
We take match recommendation as the example to study the application of our model

to gaming services. Good match recommendation algorithms improve user experience
and hence the commercial value of MOGs, but they are often neglected or designed in
a casual way. To tackle this issue, we propose a socially aware algorithm based on our
model, and we show that our model improves the quality of match recommendation.

3. A MODEL FOR MOGS

In this section, we first introduce the datasets we collected from three MOGs. Then,
we propose a graph model for analyzing social relationships in MOGs.

3.1. Datasets of MOGs

Players in MOGs are often loosely grouped into large communities. Each of these com-
munities operates its own game servers and provides various gaming services, such as
matching players to games, maintaining lists of match results and user profiles, and
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Table I. Dataset Statistics of Four MOG Communities

Community Game Genre Team Size No. of Players No. of Matches Obtained History
Dota-League MOBAs Exactly 5v5 61,198 1,470,786 2008.11–2011.7
DotAlicious MOBAs Exactly 5v5 62,495 617,069 2010.4 –2012.2
StarCraft II RTS Mostly 1v1 83,199 85,532 2012.3–2013.8
World of Tanks MMOFPS Mostly 15v15 913,157 74,658 2010.8–2013.7

Game Genre and Team Size are as Introduced Earlier in Section 2.

publishing player ranking information. We have collected datasets from four MOG com-
munities, that is, two DotA communities, Dota-League and DotAlicious, one StarCraft
II community, and one World of Tank community.

In these communities, each user possesses a user profile page, which shows his friend
list and clan membership. Each match has a match page that shows the start and end
times of the match, the player list, and the result of the match (winning team, draw, or
abort). We have crawled each of these user profiles and match pages at least twice, to
reduce the effect of possible temporary unavailability and traffic shaping of the website.
To sanitize the data, we have filtered out matches with zero duration. In the end, we
have obtained the full history of the four MOG communities and in total four types of
datasets: (i) the friendship dataset from Dota-League, (ii) the clan membership dataset
from DotAlicious, (iii) the user skill level datasets from Dota-League and DotAlicious,
and (iv) the match datasets for all four communities. Statistics of these datasets can
be found in Table I.

In general, the two DotA communities, Dota-League and DotAlicious, achieve popula-
tions of similar sizes. Because Dota-League has been operated longer than DotAlicious,
it has more matches. World of Tanks achieves the largest population but the fewest
matches. We believe this is because it has the largest match scale: most matches in
World of Tanks are 15v15-player, whereas matches in DotA and StarCraft II are 5v5-
player and (mostly) 1v1-player. A more detailed description of the datasets can be found
in our previous work [van de Bovenkamp et al. 2013; Iosup et al. 2014].

3.2. Graph Models for MOGs

Following social network analysis, we use graph-based models to represent user rela-
tionships in MOGs. We propose the following two types of graphs, in both of which the
nodes represent the players:

3.2.1. Friendship Graph. In the friendship graph, a link between two nodes represents
the friendship between the corresponding players. Friendship graphs are undirected
and unweighted.

3.2.2. Interaction Graph. Following previous work on Facebook [Wilson et al. 2009], in
an interaction graph, a link between two nodes represents interactions, in terms of
games, between the corresponding two players. Unlike in Wilson et al. [2009], in which
all interactions are assumed to be homogeneous, we consider five types of interactions
and we extract five interaction graphs as follows:

(1) SM: two players present in the Same Match;
(2) SS: two players present on the Same Side of a match;
(3) OS: two players present on the Opposite Sides of a match;
(4) MW: two players who Won together in a match;
(5) ML: two players who Lost together in a match.

Interaction graphs are undirected and unweighted; we do not use link weight to
capture the interaction strength. Instead, we map interactions to links by applying a
threshold-based rule, and only interactions with enough strength to pass the thresholds
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will be included in the graph. We consider two mapping thresholds: the period t of effect
for a user interaction, and the minimum number n of interactions that need to have
occurred between two users for a relationship to exist. For example, in an SM graph
with t equal to one week, and n equal to 10, a link between two players exists only if
there is at least one week in which they have played at least ten games together.

It is obvious that both a small value of t and a large value of n impose strong
relationship constraints. Meanwhile, for the same values of t and n, there are fewer
relationship constraints in the SM graph than in the SS and OS graphs, which in turn
have fewer relationship constraints than the ML and MW graphs. Thus, by tuning t
and n for our five interaction graphs, our model can capture relationships with various
strengths. We explore this in more detail in Section 4.

The list of the five interaction graphs we propose here is not exhaustive and it
can support more complex variations. For example, it can incorporate more specific
interactions, such as playing against each other at least ten times, in the winter, while
located in the same country. It can also support more mapping thresholds. For example,
opposite to n, we can specify a maximum number of interactions between two users for
a relationship to exist. In this way, we can focus on moderately interacting user pairs,
which often consist the majority of an MOG’s population.

3.3. Graph Metrics

To study the social relationships in MOGs, we compare their friendship and interaction
graphs based on a number of graph metrics that are related to the degrees and paths
between players. Specifically, we consider the following graph metrics.

Network size (N): The number of nonisolated nodes in a graph; NLCC represents the
size of the Largest Connected Components (LCC) and NLCC/N represents the fraction
of nodes in the LCC.

Number of links (L): The number of links in a graph; LLCC represents the number of
links in the LCC.

Degree (d): The degree of a node is the number of its neighbors.
The distance (h): The distance between two nodes is equal to the length of a shortest

path between them.
Diameter (D): The diameter is the largest distance between any two nodes.
The clustering coefficient (C): The clustering coefficient (CC) of a node is equal to the

fraction of pairs of its neighbors that are linked.
Assortativity (ρ): Assortativity is the average Pearson Ranking Correlation Coeffi-

cient (PRCC) of degree between pairs of connected nodes. In brief, PRCC measures the
linear dependence between two variables. Therefore, assortativity measures to what
extent nodes link to other nodes with similar degrees.

4. USER RELATIONSHIP AND NETWORK STRUCTURE

The graph model proposed in Section 3 identifies relationship types and strength in
MOGs by differentiating gaming relationships (SM, SS, OS, MW, and ML) and by
using mapping thresholds (n and t). In this section, we analyze the influence of the
gaming relationship and the values of the thresholds on the structural properties of
the graphs generated by our model. In general, the patterns we observe for the four
MOG communities we consider are rather similar, and therefore, here we only show
the results for Dota-League.

4.1. Influence of Interaction Strength: Threshold n

Here, we set the period of effect t to ∞ and we vary the minimum number of interactions
n from 4 to 500. We choose this range for n because, as we will show later, it captures
the important changes of the graph structure: when n increases from 4 to 500, the
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Fig. 1. The influence of the minimum number of interactions that need to have occurred between two users
for a relationship to exist (threshold n) on the network structure (the vertical axis has a logarithmic scale).

graph starts to dissolve from a giant connected component to a number of relatively
small connected components. For every value of n, we generate a set of five interaction
graphs from the dataset of Dota-League, one for each gaming relationship. We show
the properties of these interaction graphs in Figure 1.

Network Size: As shown in Figure 1(a) and 1(b), for any of the interaction graphs,
its network size and the fraction of nodes in the LCC drop quickly (near exponentially)
as the threshold n increases, and after n increases to a very large value1, the fraction
of nodes in the LCC starts to increase with n. Apparently due to the dramatically
decreased network size, it becomes easier for the remaining nodes to be connected.

Intuitively, for pairs of players who play intensively with each other, the increase
of n should not influence their links very much, since they have played far more than
n games. We conjecture that less-intensively playing players form the less strongly
connected fringe in the LCC, and that as n increases, their links are removed first
and they are removed from the LCC—in other words, the core of the graph will be
more strongly connected as n increases. This conjecture is confirmed by the following
observation on the network connectivity.

Network Connectivity: As shown in Figure 1(c), for any of the interaction graphs, the
average clustering coefficient increases with n until n ∼ 20, stays stable after that, and
starts fluctuating from n ∼ 50. This result confirms our conjecture that as n increases,
the less strongly connected fringe is removed and the LCC is getting more strongly
connected. On the other hand, when n becomes very large, links from the core of the
graph are also removed. The combination of these two forces makes the clustering
coefficient unstable for large values of n.

1This turning point is different for different interaction graphs.
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Fig. 2. The influence of the period of effect, that is, the threshold t (network size normalized to the case of
t = ∞).

Default Value of n for Later Analysis: To avoid repeatedly exploring the mapping
thresholds, here we choose the default value of n for our later analysis. On the one
hand, n cannot be too large, otherwise it induces a very strong relationship constraint
and the network will be overly fragmented. On the other hand, n cannot be too small
either, otherwise it achieves a small clustering coefficient and it will be difficult to dif-
ferentiate strong user relationships from occasional or even random ones. Given these
considerations, we choose n = 10 for Dota-League, in which for any of the interaction
graphs at least half of the nodes are in the LCC and the average clustering coefficient is
almost at its maximum, which guarantees a strongly connected LCC with a reasonable
size. Following the same rules, we choose n = 10, 2, and 4 as the default values for
DotAlicious, StarCraft II, and World of Tanks, respectively.

4.2. Influence of Interaction Type

As shown in Figure 1, for the same value of n, the network size and the fraction of nodes
in the LCC in the SM graph are larger than those in the OS and SS graphs, which in
turn are larger than those in the MW and ML graphs. When n increases, these metrics
drop faster in the MW and ML graphs than in the OS and SS graphs, which in turn drop
faster than in the SM graph. One simple explanation is that there are fewer links in
graphs extracted using stronger relationship constraints (e.g., MW and ML, or OS and
SS compared to SM), and thus removing links from them breaks down the graph more
quickly than graphs that are extracted using less restrictive relationship constraints.

4.3. Influence of the Period of Effect: Threshold t

Given the similarity in the network structure of the five interaction graphs we model,
here we focus only on the SM graph. We set n = 10 and vary t from one day, to one week,
one month, and infinity. The results are shown in Figure 2. With an increasing value of
t, the relationship constraints get less strict, and so the network size and the fraction of
nodes in the LCC are increased, although compared to Figure 1, they are not increased
as quickly as when we decrease n. Meanwhile, the average clustering coefficient does
not change much with t. These results indicate that n has a higher influence on the net-
work structure than t, and we compare the influence of n and t in the following section.

4.4. Comparison of the Influence of n and t

As shown in Figure 3(a) and 3(b), for a fixed value of n, decreasing t can at most reduce
the network size by 20,000 and the fraction of nodes in the LCC by 50% (when n = 20),
whereas for a fixed value of t, decreasing n can easily reduce the network size by over
30,000 and the fraction of nodes in the LCC by over 80%.

Together with the results from the previous sections, we conclude that when the
constraints for a relationship to exist get stricter, the graphs representing those
relationships become more disconnected, but the connection between nodes in their
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Fig. 3. The influence of the minimum number of interactions that need to have occurred between two users
for a relationship to exist (threshold n) and the period of effect (thresholds t) on the network structure (the
vertical axis in (b) and (c) has a logarithmic scale).

LCCs becomes stronger. Further, increasing n and decreasing t—two methods to ex-
tract more strict relationships—have similar influence on network structure, with
increasing n having a stronger effect.

5. FRIENDSHIP AND INTERACTION GRAPHS

In this section, we analyze the similarities, the differences, and the correlation between
the friendship and interaction graphs of the four MOG communities we consider. To
generate the interaction graphs, we use the default values for the mapping thresholds
we chose in Section 4, that is, the period of effects for interactions t is set to ∞, and the
minimum number of interactions n is set to 10, 2, and 4 for Dota-League and DotAli-
cious, StarCraft II, and World of Tanks, respectively. To compare different MOGs at the
same activity level, we also test n = 10 for StarCraft II and World of Tanks. An overview
of the values of the graph properties is presented in Table II. In general, we find that
both the friendship and interaction graphs of the four MOG communities we consider
exhibit the small-world property, that friendship has a positive influence on user inter-
actions, and that MOGs of game genres have different user interaction patterns.

5.1. The Small-World Property

As shown in Table II, both the friendship and interaction graphs have relatively small
average hop counts and rather high average clustering coefficients, indicating that they
possess small-world properties [Milgram 1967], [Watts and Strogatz1 1998] rather than
the properties expected of random graphs.2

5.2. Degree Distribution

Instead of finding accurate degree distributions, we are more interested in under-
standing the difference in the degree distributions of the graphs representing different
relationships. We use a power-law distribution as the comparison baseline, since node
degrees in many social networks are found to follow this distribution [Mislove et al.
2007; Wilson et al. 2009; Liu et al. 2012]. We use the Maximum Likelihood Estimation
method [Clauset et al. 2009] to perform power-law curve fitting for node degrees in the
friendship and interaction graphs, and we compare whether one is heavier, similar, or
lighter-tailed than another.

Figure 4 shows the results of Dota-League. The straight dashed lines in these figures
are the fitted power-law distributions. We see that the degree distribution of Dota-
League’s friendship graph is power-law distributed, and those of its interaction graphs

2Random graphs have clustering coefficient equal to K/N, where K represents the average node degree and
N represents the number of nodes.

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 2, Article 11, Publication date: October 2015.



Socializing by Gaming: Revealing Social Relationships in Multiplayer Online Games 11:11

Table II. Properties of Friendship and Interaction Graphs Extracted From Four MOG Communities

DotA-League (n = 10) DotAlicious (n = 10)
SM OS SS ML MW FR SM OS SS ML MW

N 31,834 26,373 24,119 18,047 18,301 53,062 31,702 11,198 29,377 22,813 21,783
NLCC 27,720 19,814 16,256 6,976 8,078 34,217 26,810 10,262 20,971 10,795 13,382
L 202,576 85,581 62,292 30,680 33,289 368,854 327,464 92,010 108,176 43,240 54,009
LLCC 199,316 79,523 54,186 17,686 21,569 301,586 323,064 91,354 99,063 29,072 44,129
h̄ 4.42 5.40 6.30 8.09 7.67 8.1 4.24 3.97 5.3 6.80 5.95
D 14 21 24 28 26 26 17 12 19 20 22
C̄ 0.37 0.40 0.41 0.41 0.41 0.3 0.43 0.27 0.47 0.47 0.49
ρ 0.13 0.26 0.25 0.27 0.28 0.22 0.08 0.01 0.25 0.27 0.29

StarCraft (n = 10) World of Tanks (n = 10)
SM OS SS ML MW SM OS SS ML MW

N 907 611 314 95 212 4,340 477 4,251 561 1,824
NLCC 31 22 24 9 14 129 118 122 66 57
L 748 404 327 85 200 9,895 3,253 6,543 1,564 2,923
LLCC 58 21 44 13 24 2,329 1,243 1,160 519 473
h̄ 1.88 4.04 1.90 1.64 1.74 1.88 2.00 2.18 2.080 1.78
D 2 8 3 2 2 6 3 5 4 3
C̄ 0.58 0 0.70 0.65 0.65 0.79 0.10 0.78 0.88 0.87
ρ −0.46 −0.45 −0.42 −0.58 −0.53 −0.10 −0.12 −0.06 −0.03 −0.10

StarCraft (n = 2) World of Tanks (n = 4)
SM OS SS ML MW SM OS SS ML MW

N 83,199 83,199 25,556 13,995 10,736 78,226 15,618 68,659 27,605 28,274
NLCC 68,335 68,335 6,221 565 2176 20,555 4,932 8,444 163 2,911
L 156,941 125,371 32,489 15,671 13,513 212,103 81,225 124,600 52,697 58,532
LLCC 143,892 113,994 11,907 1,139 3,983 145,141 35,615 38,671 799 14,877
h̄ 7.21 7.58 7.23 3.94 6.62 9.85 13.55 12.42 3.30 17.98
D 29 29 19 12 18 31 35 39 9 47
C̄ 0.31 0.05 0.79 0.89 0.82 0.56 0.01 0.61 0.71 0.71
ρ −0.07 −0.09 −0.12 −0.16 −0.17 0.06 0.09 0.17 −0.003 −0.14

The Metrics we Present are the Number of Nodes N, the Number of Nodes in the LCC NLCC, the Number
of Links L, the Number of Links in the LCC LLCC, the Average Hop Count h̄, the Diameter D, the Average
Clustering Coefficient C̄, and the Assortativity ρ.

Fig. 4. The degree distributions of the friendship and interaction graphs of Dota-League. Straight dashed
lines show the fitted power-law distributions.
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Fig. 5. The degree distributions of the interaction graphs of DotAlicious. Straight dashed lines show the
fitted power-law distributions.

are lighter tailed than a power-law distribution. We have found similar results for
interaction graphs of DotAlicious, StarCraft II, and World of Tanks.

Comparison With Regular Online Social Networks: In Section 2, we have classified
online social networks, including MOGs, into socializing-driven and target-driven net-
works. Here, we compare the differences in their degree distributions.

For friendship graphs, the degree distributions in socializing-driven networks such as
Facebook and Orkut do not follow power-law distributions [Mislove et al. 2007; Wilson
et al. 2009]. In contrast, the degree distributions in many target-driven networks
are found to follow power-law distributions, as shown above for Dota-League, and in
Mislove et al. [2007] for Flickr, LiveJournal, and YouTube.

For interaction graphs, in socializing-driven networks such as Facebook, node degrees
are significantly fitted by power-law distributions [Wilson et al. 2009], whereas for
target-driven networks they are not: depending on the number of users involved in a
target, they can be lighter tailed or heavier tailed than power-law distributions. For
example, DotA limits the number of players per game to 10, whereas Meetup allows
thousands of people participate in the same event. As a consequence, we observe that
degree distributions of Dota-League’s interaction graphs are lighter tailed than power-
law distributions, and previous work [Liu et al. 2012] shows that for Meetup, it is
heavier tailed than a power-law distribution.

Moreover, in Dota-League, we observe smaller probabilities for high degree nodes
going from the SM graph to the SS and OS graphs, and further to the MW and ML
graphs. We believe that as the relationship constraints get more restricted (i.e., from SM
to SS and OS, and further to MW and ML), fewer player pairs will pass threshold n and
establish links between them. A similar phenomenon has been found in the interaction
graphs extracted from Facebook [Wilson et al. 2009] and LiveJournal [Mislove et al.
2007].

5.3. The Correlation of Friendship and Interactions

We use the PRCC [Rodgers and Nicewander 1988] to measure the correlation between
the number of friends and the number of interactions of a player in MOGs. In brief,
PRCC measures the linear dependence between two variables. We find that in Dota-
League, there is a positive correlation between the number of friends in the FR (Friend-
ship) graph and the number of interactions in the SM (Same Match), SS (Same Side),
OS (Opposite Sides), MW (Matches Won together), and ML (Matches Lost together)
graphs, achieving a PRCC of 0.3838, 0.4356, 0.4271, 0.4850, 0.5192, respectively. And
in DotAlicious, as shown in Figure 5, the node degree in general is higher when the SM
graph consists of players with clan membership, compared to the case when all players
are considered. Note that a clan is a self-organized group of players who often form a
league and play on the same side in a match. These results indicate that players with
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strong explicit social relationships, like friendship and clan membership, tend to play
more games.

Further, we find from Table II that for Dota-League (DotAlicious), its OS has similar
(smaller) network size than its SS graph, that is, compared to players in Dota-League,
players in DotAlicious are more prone to play on the same side. Possibly due to the clan
feature in DotAlicious, players who often play on the same side are committed to each
other.

5.4. The Influence of Game Genre

So far, taking DotA, StarCraft II, and World of Tanks as the examples, we have shown
a structural similarity in MOGs: naturally emerging social structures centered around
highly active players. Nevertheless, as introduced in Section 2, these MOGs repre-
sent different game genres, and therefore, differences in their user relationships are
expected. In this section, we further investigate these game genres.

Alone or Together? As shown in Table II, for the same threshold n = 10, while tens of
thousands of players have played in StarCraft II and World of Tanks, their interaction
graphs only contains a few thousands of players, and the fractions of nodes in the LCC
are extremely small. Apparently, StarCraft II and World of Tanks have much fewer
players that would engage in repeated games with same players. Further, as shown in
Table I, StarCraft II and World of Tanks have larger numbers of players but smaller
numbers of matches compared to Dota-League and DotAlicious, which implies lower
user activities in these two communities.

The aforementioned result also indicates that n = 10 is so strict that it filters out
most player pairs in StarCraft II and World of Tanks. In the following sections, we use
the default values as we chose earlier in Section 4, that is, n = 2 and 4 for StarCraft II
and World of Tanks, respectively.

Bonding or Fighting? Comparing the size of the SS and OS graphs, we see that
players tend to play on the opposite side in StarCraft II (83,199 players in its OS graph
versus 25,566 players in its SS graph), on the same side in World of Tanks (15,618
vs. 68,659), and with no strong preference on the playing side in Dota-League (26,373
vs. 24,119). Players in DotAlicious tend to play on the same side (29,377 vs. 11,198),
but the tendency is not as strong as in World of Tanks. We believe this is due to the
clan feature provided by DotAlicious, rather than the game genre. Intuitively, from
RTS to MOBAs and further to MMOFPS games, the requirement of team cooperation
increases, and therefore, players are more likely to maintain an SS relationship with
each other.

Balance or Challenge? Assortativity measures to what extent players link to other
players with similar node degree. As node degree represents player popularity, a pos-
itive assortativity indicates that players with similar popularity often play together,
and a negative assortativity indicates the opposite. We find that DotA and World of
Tanks always achieve positive assortativities for their SM, SS, and OS graphs, whereas
StarCraft II always achieves negative ones.

The aforementioned result suggests that in games where individualistic skill pre-
vails, for example, RTS games exemplified by StarCraft II, players tend to seek chal-
lenges by playing with popular players. Intuitively, this is an effective way to improve
player skills, since popular players have played with many others so that they po-
tentially attained high skill levels. In fact, we do find a positive correlation (with
a Pearson Correlation Coefficient of 0.6191) between node degree and player skill
level in Dota-League, where the skill level is defined based on the fraction of matches
a player has won. In StarCraft II, teammates and opponents are either chosen by
players themselves, or assigned by the community based on the similarity of skill
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Fig. 6. The fraction of nodes remaining in the LCC as a function of the fraction of the top nodes that are
removed.

levels (see also Section 2.2). Therefore, we attribute the proneness of playing with
highly skilled players in StarCraft II to a player’s willingness to seek challenges.

Overall, our analysis in this section shows that different game designs have differ-
ent influences on the social relationships emerging among players. For one application,
game designers and MOG community administrators could use our analysis as a refer-
ence to adjust their designs and to maneuver, or manipulate, their players. For example,
our analysis shows that players in StarCraft II tend to seek challenge and compete with
each other (by playing on the opposite side). Administrators of MOG communities that
are similar to StarCraft II can therefore create a competitive environment, for example,
by organizing some tournaments or publishing player ranks, to promote the activity
level of their players and potentially achieve a higher commercial revenue.

We also conjecture that these game genres vary in the extent to which players
socialize. However, our data do not allow an analysis on this topic. To do so, we will need
extra information, like how many private messages have exchanged between players.
We consider this an interesting topic for future work.

5.5. The Importance of Top Players

In this section, we analyze how the network is connected when top players are removed
gradually. We compare two types of top players, that is, the ones who have many
friends and the ones who have played games with many others, which are identified
by their node degrees in friendship and interaction graphs. As Dota-League is the only
community for which we have obtained both friendship and interaction information,
we use it as the example.

Previous work [Mislove et al. 2007] has shown that, in some online social networks
where the friendship graphs have power-law distributed node degrees (for example,
YouTube), removing top nodes quickly breaks the whole graph apart. Consistent with
this observation, as shown in Figure 6, the FR graph of Dota-League also breaks down
quickly as more top nodes are removed: with 10% top nodes removed, the fraction of
nodes in the LCC is almost decreased to zero. Further, we observe that interaction
graphs also break down quickly when top nodes are removed. Similar observations in
other online social networks, but not in online games, have been found in Jiang et al.
[2013].

The aforementioned results indicate that top players are important for keeping the
connectivity and holding the whole community together. Community administrators
can adopt special policies to keep the activity of these top players, and therefore, the
activity of the community.
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Fig. 7. The seven classes of triads and their ids. Triads 1 to 3 are connected but not closed, and triads 4 to
7 are closed. The transition of triad 1 to triad 4 represents an example of triadic closure.

Table III. The Fraction of Triads That are Closed in the SS and OS Graphs,
Respectively, of Four MOG Communities

Dota-League DotAlicious StarCraft II World of Tanks
SS graph 9.24% 6.62% 2.83% 64.68%
OS graph 7.52% 6.89% 0.17% 3.03%

5.6. Triadic Closure

A closed triad is a group of three nodes who are connected with each other. In psychology,
it has been shown that triadic closure is more likely to happen with positive rather than
negative relationships, that is, a friend of my friend is likely to be a friend, whereas an
enemy of my enemy is less likely to be an enemy [Heider 1946; Cartwright and Harary
1956]. In this section, we test whether this phenomenon also happens in MOGs.

The prosocial and the enmity relationships are strongly expressed in gaming,
whereas the latter may be repressed in some real-world settings, especially profes-
sional. Therefore, here we consider playing on the same side (SS) as a positive rela-
tionship (represented by “+” in Figure 7) and playing on the opposite side (OS) as a
negative relationship (represented by “−” in Figure 7). In Figure 7, we show the classes
of triads that can happen in MOGs. The transition of triad 1 to triad 4 represents the
triadic closure that may happen in the SS graph. Similarly, the transition of triad 2 to
triad 7 represents the triadic closure that may happen in the OS graph.

In Table III, we show the percentage of triadic closures in the SS and OS graphs
of the four MOG communities we study. We see that Dota-League, StarCraft II, and
World of Tanks achieve higher triadic closures in their SS graphs than in their OS
graphs. This result confirms that triadic closure is more likely to happen among positive
relationships, that is, playing on the same side. For DotAlicious, we find similar triadic
closures for its SS and OS graphs. One possible reason is that the clan feature provided
in DotAlicious diminishes the significance of playing on the opposite side being a
negative relationship. It remains for future work on other datasets to establish whether
our conjecture is valid.

5.7. Social Balance

The social balance theory reveals a phenomenon that is often observed in signed graphs,
that is, graphs with a “+” or “−” sign for each link. In this theory, a triad is defined
as positive (balanced) if the product of the signs of its links is positive, and negative
(unbalanced) otherwise. The social balance theory claims that balanced (unbalanced)
triads in social networks should be over (under) represented compared to random
graphs [Heider 1946; Cartwright and Harary 1956; Heider 1944]. In this section, we
test the social balance theory based on our data.
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Table IV. The Number and the Percentage of Class 4 to Class 7 Triads (as shown in Figure 7) in the Original
Signed Graph (N�) and in the Random Signed Graph (Nrand

� ), Respectively

Triad id Class 4 triad Class 5 triad Class 6 triad Class 7 triad
Dota-League N� 297,495 (8.98%) 1,078,516 (32.56%) 1,341,609 (40.50%) 594,991 (17.96%)

Nrand
� 353,745 (10.68%) 1,172,524 (35.40%) 1,302,035 (39.31%) 484,307 (14.62%)

DotAlicious N� 364,475 (9.37%) 1,198,269 (30.82%) 1,592,434 (40.95%) 733104 (18.85%)
Nrand

� 548,411 (14.10%) 1,514,709 (38.96%) 1,395,471 (35.89%) 429,691 (11.05%)
StarCraft II N� 16,551 (10.12%) 5,344 (3.27%) 130,494 (79.72%) 11,216 (6.86%)

Nrand
� 2,060 (1.26%) 19,625 (12.00%) 66,291 (40.52%) 75,629 (46.23%)

World of Tanks N� 1,217,812 (18.85%) 407,918 (6.32%) 4,677,089 (72.41%) 156,396 (2.42%)
Nrand

� 1,217,812 (12.5%) 3,653,436 (37.50%) 3,653,436 (37.50%) 1,217,812 (12.50%)
The results shown in the bold font represent cases that follow the social balance theory.

For each of the four MOG communities, we first combine its SS and OS graphs into
one signed graph, which we call the original signed graph. Then, we randomize the
sign of each link in this signed graph to generate a random signed graph. Note that
the random signed graph keeps the same fractions of “+” and “−” signs, and the same
graph structure as the original signed graph. Therefore, our following analysis on social
balance will not be influenced by the graph structure.

To test the social balance theory, we consider the four classes of closed triads (triads
4 to 7) as shown in Figure 7. In Table IV, we show the number and the percentage of
class 4 to class 7 triads in the original signed graph and in the random signed graph,
represented by N� and Nrand

� , respectively. The results in bold font represent cases
that follow the social balance theory, that is, balanced (unbalanced) triads in social
networks should be over (under) represented compared to random graphs.

We see that the social balance theory holds in most cases, except for triads 4 and 7 in
Dota-League and DotAlicious. Recall that Table III shows that, compared to StarCraft
II and World of Tanks, Dota-League and DotAlicious also have more similar percentages
of triadic closure for their SS and OS graphs. These results suggest that while the
social balance theory holds for most MOG communities, the significance of SS being a
positive relationship and OS being a negative relationship varies across different MOG
communities.

Szell and Thurner [2012] have also observed a similar social balance phenomenon in
an MOG named Pardus. Nevertheless, in their analysis, the positive and the negative
relationships are identified by users, while in our analysis they are revealed explicitly
by user interactions.

6. BEHAVIORAL CHANGE AND NETWORK EVOLUTION

In Sections 4 and 5, we have always considered the whole datasets. For Dota-League, it
contains user interactions from November 2008 to February 2012. Obviously, players
may change their interaction patterns, and therefore, the network evolves over time.
In this section, we study user behavioral change and network evolution in MOGs.

6.1. Two Models for Network Evolution

In this section, we propose two models for analyzing network evolution in MOGs.
Existing network evolution models are insufficient for our analysis, for two reasons.
First, they are mostly based on friendship [Garg et al. 2009; Kairam et al. 2012;
Hu and Wang 2009], whereas we consider more dynamic relationships, that is, user
interactions. Secondly, a few models [Viswanath et al. 2009; Leskovec et al. 2005;
Merritt and Clauset 2013; Ribeiro et al. 2013; Caceres and Berger-Wolf 2013] do include
user interactions, but they only consider one perspective on network evolution, whereas
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we differentiate and compare two types of network evolution, network dynamics and
network growth.

Without this comparison, contradicting conclusions can be drawn from the incom-
plete analysis. For example, researchers in Leskovec et al. [2005] have proposed a
densification law, which states that many social networks densify over time, with the
number of edges growing superlinearly in the number of nodes. And researchers in
Merritt and Clauset [2013] contradicted this finding by showing that the friendship
network they examined is nondensifying. The problem is that they have considered
different types of network evolution. And as we will show later, depending on the evo-
lution models, both densification and nondensification can happen even for the same
network.

We define the periodic graphs of a network for a certain time duration as the sequence
of graphs obtained by only considering those user interactions that have occurred in
the successive periods of that duration—one can think of a periodic graph of a network
as starting at the beginning of the corresponding period without any edges, and with
only edges added for interactions that occur within the specific period. In contrast, the
cumulative graph of a network up to a certain point in time has edges for all interactions
that have ever occurred up to that time. We consider the periodic and the cumulative
graphs to capture network dynamics and network growth, respectively. Under both
models, we examine the network periodically based on a predefined checkpoint interval
(the length of the period). At each checkpoint, we generate a periodic graph from
the interactions that happened within the corresponding interval, and we generate a
cumulative graph based on all the interactions that happened before that checkpoint.

Previous work on network evolution that comes closest to our analysis is [Krings et al.
2012], in which the authors examined the effects of time window size (corresponding
to the checkpoint interval in our approach) and placement (which decides whether it
is a cumulative or a periodic graph in our approach) on the structure of aggregated
networks. Nevertheless, they only consider one type of interaction, that is, phone calls,
and they assume a link exists between two users as long as they have interacted before,
regardless of their interaction strength. In contrast, as introduced in Section 3.2, we
consider different types of interactions, and we use threshold n (which reflects the
interaction strength) to decide whether links should be added between players. We
also analyze the influence of n on the network evolution models.

In our analysis, for each of the four MOG communities, we consider the aforemen-
tioned two models with three checkpoint intervals, that is, one week, one month, and
half a year, and two interaction thresholds, that is, n = 1 and n = 10. In total, we gen-
erate 12 sets of graphs for each community (two types of evolution, three checkpoint
intervals, and two thresholds), and each set consists of five interaction graphs (SM,
SS, OS, MW, and ML graphs). In general, we observe similar patterns for the network
evolution of the interaction graphs in these communities, and therefore, we only show
the results for the SM graph of Dota-League in Figures 8–10.

6.2. Network Dynamics Versus Network Growth

For the cumulative graphs, regardless of the checkpoint interval, the network size
[Figure 8(a)], the number of links [Figure 8(b)], and the average node degree [Fig-
ure 8(c)] increase over time, indicating that the whole network is getting denser. We
also observe from Figure 8(d) that after a short period of increase, the diameter of LCC
actually decreases over time. Similar phenomena in network growth, that is, network
densification and shrinking diameter, have been observed in many other networks as
well [Leskovec et al. 2005].

While the cumulative graphs seem to demonstrate the prosperity of the network, the
periodic graphs show different, or even opposite trends in the network. We see from
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Fig. 8. Network evolution: cumulative graphs (checkpoint interval equal to one month, n = 10).

Fig. 9. Network evolution: periodic graphs (checkpoint interval equal to one month, n = 10).

Figure 9(a) and 9(b) that, after a short period of increase (within the first five months),
the network size and the number of links in fact decrease over time, indicating that
as time evolves, the whole network becomes less active. This is partially due to the
decreasing popularity of Dota-League, which eventually led to its shut down in 2012.
Meanwhile, we observe that the increase of the node degree and the decrease of the
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Fig. 10. Network evolution: the special case of the first half year (checkpoint interval equal to half year or
one month, n = 10).

diameter over time are more obvious in the cumulative graphs (Figure 8) than in the
periodic graphs (Figure 9).

The aforementioned results indicate that the understanding of network evolutions
depends significantly on the network evolution model, and a clear definition of network
evolution is crucial for understanding the network.

6.3. Committed Early Members

As shown in Figure 10, for both evolution models, the first half year (i.e., 6 months
and around 24 weeks) is a very special case. Compared to the rest of the data, it has
the smallest network size and the smallest LCC size [Figure 10(a) and 10(b)], yet
it achieves the highest clustering coefficient [Figure 10(c) and 10(d)]. Intuitively, one
would expect a higher clustering coefficient for the graph with a smaller network size,
simply because there will be fewer nodes to choose at endpoints. However, we observe
that in the first half year, both the network size [Figure 9(a)] and the average clustering
coefficient [Figure 10(f)] increases with time. These results show that in the early days,
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Fig. 11. Network evolution: the influence of threshold n (periodic graphs, checkpoint interval equal to one
month, n = 1).

though Dota-League had not attracted as many players as it later did, players were
connected more closely then, than later. We conjecture that this phenomenon—in the
early days, members are often more committed to the community—also happens in
many other online and offline communities.

6.4. The Influence of Threshold n

We have also tested the case of n = 1 for our models using Dota-League SM graph
as the example, and we observe a similar trend of network evolution as in the case of
n = 10. As an example, Figure 11 shows the network size and the average node degree
for our periodic graph model. The case for n = 10, which requires a different scale, is
depicted in Figure 9. Similar to the case of n = 10, we observe that after the first six
weeks, the network size decreases and the node degree increases slightly over time.
This result indicates that the threshold n influences mostly the scale of the evolution,
but not the trend.

7. SOCIAL RELATIONSHIP AND MATCH RECOMMENDATION

Taking match recommendation as the example, in this section, we study the implica-
tions of our model on gaming services.

7.1. Overview

Match recommendation in an MOG community predicts player pairs that are likely
to form gaming relationships in the future, such as playing together, playing on the
same and/or the opposite sides. Match recommendation often includes two types of
predictions, that is, predicting new relationships between players who previously had
no relationships at all, and predicting repeated relationships between players who have
formed the same relationships in the past.

Good match recommendation algorithms help improve user experience, and hence,
the commercial value of MOGs. However, they are often neglected or seem to have
been only casually designed. For example, in Dota-League, players can only join a
waiting queue, and, only when there are enough players, teams are formed considering
the skill levels of the players in the game. Although this algorithm enforces balanced
matches, it does not take into account the social relationships of players. As a possible
consequence, we observe that 41% of the games in Dota-League are aborted at the
very beginning of the match. Moreover, deficient matchmaking algorithms, for exam-
ple, those solely based on skill, are likely to be subject to user manipulation [Caplar
et al. 2013]. Given the aforementioned reasons, in this section, we study the match
recommendation problem in MOGs.
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Predicting new relationships is in fact a form of the link prediction problem, which,
given a snapshot of a network, seeks to accurately predict links that will be added to
the network in the future [Liben-Nowel and Kleinberg 2003]. In this section, we will
assess the performance of traditional link-prediction algorithms, with some variations
based on our models, for predicting new relationships in MOGs. Combining the tasks
of predicting new and repeated relationships, we also propose SAMRA, a Socially
Aware Match Recommendation Algorithm that takes social relationships revealed by
our model into account. We show that our model not only improves the precision of
traditional link prediction approaches, but also, via a domain-specific metric derived
from gaming studies [McGonigal 2011], potentially helps players enjoy the game to a
higher extent.

7.2. Link Prediction Approaches Applied to MOGs: Predicting New Relationships

In this section, we will assess the performance of traditional link-prediction algorithms
for predicting new relationships in MOGs.

7.2.1. Link-Prediction Algorithms. To predict new links, a link-prediction algorithm first
calculates the similarity between nodes. Assuming that similar nodes are more likely
to establish new links, it then produces a list of potential new links. The definition of
similarity varies across algorithms. For our analysis, we consider the following four
popular algorithms.

Common Neighbors. The idea behind this algorithm is that the larger the intersection
of the neighbor sets of any two nodes, the larger the chance of future interactions
between them [Liben-Nowel and Kleinberg 2003].

Adamic/Adar. This algorithm also measures the intersection of neighbor sets of a
user pair, but emphasizes a smaller overlap [Adamic and Adar 2001].

Katz Measure. The rationale behind this algorithm is that the more paths exist
between any two nodes and the shorter these paths, the larger the chance of future
interactions between them [Katz 1953].

Rooted PageRank. This algorithm captures the probability of random walks starting
from two nodes in the graph to meet each other, and uses this probability to quantify
the chance of future interactions between them [Song et al. 2009].

7.2.2. Experiment Setup. As link predictions are often needed within a short time span,
we take one year worth of data of Dota-League, from March 2011 to February 2012,
as the example to test the performance of link-prediction approaches on match rec-
ommendation. First, we divide the data into two parts, the training and the testing
data. Next, we generate two sets of interaction graphs based on interactions observed
in the training and testing data, indicated by SM1 and SM2 (Same Match), SS1 and
SS2 (Same Side), and so on, respectively. Then, we run a link-prediction algorithm on
the training data, which produces a list of predicted links ranked in decreasing order
of prediction confidence. Finally, we take the set PN of top-N links from this prediction
list and we check whether these links indeed occur in the testing data. Indicating the
set of links in the testing data by L2, we use precision defined as |PN ∩ L2|/|PN| as the
metric to measure the performance of top-N link prediction.

We have tested different partitionings of the data, and we have found that using the
first half year as the training data and the second half year as the testing data gives the
best prediction performance. We use this partitioning for all the following experiments.
Under this partitioning, the number of new links in the testing data as compared to the
training data for the SM, SS, OS graphs are 66,612, 18,912, and 25,340, respectively.

7.2.3. Unitary Prediction and Hybrid Prediction. We call predictions based on the same type
of interactions for training and testing unitary predictions, and predictions based on
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different types of interactions hybrid predictions. Traditional link predictions are often
unitary, for example, using links in SM1 to predict links in SM2. As our model captures
different types of interactions, it provides the opportunity for hybrid predictions. For
example, matches won together (MW) often generate a strong social attachment and
players who have won together are very likely to play on the same side (SS) in the
future. Thus, it may be beneficial to use links in MW1 to predict links in SS2.

7.2.4. Results. Here, we consider five types of relationships, that is, SM (Same Match),
SS (Same Side), OS (Opposite Side), MW (Matches Won together), and ML (Matches
Lost together). As discussed in Section 4, we use n = 10 as the default value to generate
the interaction graphs from the training and the testing data. We focus on two predic-
tion tasks, that is, predicting player pairs that will play on the same (SS) and opposite
sides (OS). Note that the precision of predicting the SS and the OS relationships are
in fact lower bounds for the precision of predicting the SM relationship. We use both
unitary and hybrid predictions for these tasks. In Figure 12, we show the precisions of
these predictions, from which we obtain the following observations.

First, we see that among the four link-prediction algorithms we consider, there are no
dominant algorithms that outperform the others for all cases. This result is consistent
with previous work [Liben-Nowel and Kleinberg 2003] on evaluating the performance
of link-prediction algorithms. Secondly, we find that in general, for any link-prediction
algorithm, a higher value of N leads to a smaller precision, since the predicted links
are ranked in decreasing order of prediction confidence. Thirdly, we observe that the
predictions based on MW1 and ML1 perform better than the predictions based on SS1
and OS1, which in turn perform better than the predictions based on SM1. We believe
the reason is that, as we use the default value n = 10 for generating the these graphs,
the relationships presented in MW1 and ML1 are stronger (i.e., less casual) than in
SS1 and OS1, which in turn are stronger than in SM1. For the gaming datasets we
study, the relationships inferred from strong relationships in the past are more likely
to happen in the future.

Further, we find that predictions based on SS1 perform better than predictions based
on OS1. We observed earlier in Section 5.6 that for Dota-League, triadic closure is
more likely to happen for the SS relationship than for the OS relationship. These
results suggest that the SS is less casual than the OS relationship. On the other hand,
predictions based on MW1 and ML1 achieve similar performance. One possible reason
is that in Dota-League, winning and losing together do not have significantly different
impacts on user relationships.

7.3. Beyond Precision and Link Prediction

In the previous section, we have assessed the performance of link prediction to the
match recommendation problem based on the well-known metric of precision. This
analysis does not completely solve the match recommendation problem, for two reasons.

First, precision alone is not sufficient for measuring recommendation quality, since
the actual new links in the testing data are affected by the current recommendation
algorithms. If a player did not play with recommended players in the period of the
testing data, it may be because the current system did not introduce them and the
player did not know about the possibility of playing with these players, and not because
the recommendation is of low quality. Therefore, we need new metrics beyond precision.

Secondly, traditional link-prediction algorithms can only predict new relationships.
Match recommendation, on the other hand, requires predicting both the new and the
repeated relationships. For the latter case, we need new algorithms that go beyond link
prediction.
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Fig. 12. The performance of link-prediction algorithms for match recommendation (horizontal axis with
logarithmic scale).

Our approaches to solve the aforementioned two problems are discussed in the fol-
lowing two sections.

7.4. Bonding Score: A Prosocial Metric for Online Games

To solve the first problem in Section 7.3, we propose a new metric for measuring match
recommendation quality called the bonding score, which takes the social components
in games into consideration. There are multiple ways to define bonding score. Never-
theless, our goal is not to propose a unique scoring method, but rather to show how

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 2, Article 11, Publication date: October 2015.



11:24 A. L. Jia et al.

Fig. 13. The CDF of component size for different values of interaction threshold n (Dota-League, SM graph).

Fig. 14. An example of a match with a bonding score of 7.

to compare and possibly improve match recommendation based on one such socially
aware scoring system.

To do so, we consider the findings of McGonigal [2011], who have pointed out that
matches played by players with strong social ties are enjoyed to a higher extent than
those played amongst players that have weak or no social ties. In our model, identifying
strong social ties amounts to increasing the threshold n of the number of interactions.
As we have shown in Figure 1, when n increases, the fraction of nodes in the LCC
decreases dramatically. We further show in Figure 13 the CDF of the component size
in Dota-League’s SM graph, for different values of the threshold n. We see that, when
n increases, players are grouped into small, intensely interacting components. For
example, when n = 10, less than 10% players are outside the LCC, while when n = 100,
more than 90% players are outside the LCC and form connected components with sizes
smaller than 40.

We calculate the bonding score of a match of two teams in the following way. First, we
generate the interaction graph for the interaction type we are interested in based on a
large value of the threshold n, so that only strong ties are present in the graph. This
interaction graph consists of a number of connected components. Then, we calculate
the overlap of components across the players of both teams: a match receives one score
point for every player (of any of the two teams) who is in a connected component that
is represented in the match by at least two players (again, of any of the two teams).
As an example, consider the match between the two teams shown in Figure 14. Here,
Components 1, 2, and 3 have more than one player in the match, namely players a
and c in Component 1, players b and f in Component 2, and players d, h and j in
Component 3, respectively. Therefore, the bonding score of this match is equal to 7.
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Fig. 15. The average bonding score of all Dota-League matches, for random recommendation, the original
recommendation algorithm used in Dota-League, and SAMRA. We use n = 10 to generate the interaction
graphs from the training data.

7.5. SAMRA: A Socially Aware Match Recommendation Algorithm

To solve the second problem introduced in Section 7.3, we propose a Socially Aware
Match Recommendation Algorithm (SAMRA), which takes the bonding score into con-
sideration.

In SAMRA, first, for each 10min time interval,3 we build a list of all the players
who are online and have not yet been assigned to a match. Secondly, for each of these
online players, we compute their connected components based on the interaction graphs
extracted with a large value for threshold n. Thirdly, we rank these components in
decreasing order of their size, and from the top to the bottom of this ranking, we
assign all online players from the same component to the same match if size permits;
otherwise we split the component into a number of parts, with the number of players
in each part equal to the match size, who then are assigned to the same match.

We test the performance of the SAMRA using both the bonding score and the pre-
cision. We set n = 100 to generate the interaction graphs based on which our match
recommendation algorithm works. The online time of users and the duration of matches
are obtained from the original data.

7.5.1. Performance: Bonding Score. First, we compare the bonding scores obtained via
SAMRA with those observed in practice. For comparison, we have also scored the
matches obtained via random matching. We use the Dota-League dataset as the ex-
ample. The results are shown in Figure 15. We see that SAMRA, albeit simplistic, can
reach higher match bonding scores than its nonsocial counterparts. We attribute this
improvement to the difficulty of seeing whether friends are online in real systems due
to shortcomings in the offered matchmaking methods. We have tested different values
of n and we have obtained similar results.

7.5.2. Performance: Precision. Here, we test the precision of SAMRA for predicting new
relationships and repeated relationships, respectively.

Predicting New Relationships: Using the same training and testing data as in
Section 7.2, we calculate the precision of SAMRA in predicting new relationships, that
is, the percentage of player pairs it recommends that indeed occur in the future. We
compare SAMRA with traditional link-prediction algorithms exemplified by Common
Neighbors.

As we use n = 100 to generate the interaction graphs based on which SAMRA works,
to have a fair comparison, for the Common Neighbor method, we use n = 100 to generate
the interaction graphs from the training data as well. (Recall that in Section 7.2 we

3Most matches in Dota-League last for around 40min. Therefore, 10min intervals provide enough granularity
for capturing most of the online sessions.
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Fig. 16. The precision of SAMRA and Common Neighbors in predicting new relationships (horizontal axis
with logarithmic scale). To have a fair comparison, for the Common Neighbor method, we use n = 100 to
generate the interaction graphs from the training data.

used n = 10 as the default value.) We consider the same prediction tasks as in Section
7.2, that is, predicting the SS and OS relationships, and we focus on unitary predictions.
The results are shown in Figure 16.

We see that Common Neighbors achieve a better top-N precision for a smaller value
of N (i.e., N < 250) while SAMRA performs better for a larger value of N (i.e., N > 250).
As Common Neighbors ranks predicted links based on prediction confidence, when N
increases, the decrease of its precision is more skewed compared to SAMRA.

Predicting Repeated Relationships: As link-prediction algorithms are not able to
predict repeated relationships, here we only show the results of SAMRA. For the task
of predicting repeated SS and OS relationship, we find that SAMRA achieves precisions
of 60.60% and 65.88%, respectively.

We have tested different values of n for generating interaction graphs based on
which SAMRA works. Consistent with our intuition, the choice of n imposes tradeoffs
on the recommendation performance: a larger value of n extracts stronger relationships
that will help our recommendation algorithm to achieve better precision, but on the
other hand, it also excludes players that are without strong relationships and for these
players it cannot make any recommendation. Therefore, in general, a larger value of n
yields a higher top-N precision when N is small and a lower top-N precision when N
is large. Depending on the design philosophy, MOG community administrators could
use large values of n to emphasize the prediction precision or small values of n to cover
most of their users.

8. RELATED WORK

In this paper, we propose graph models to analyze social relationships and network
evolutions in Online Multiplayer Games (MOGs). We further use match recommen-
dation as the example to show the application of our models to gaming services. We
summarize related work within each research topic as follows.

Graph Models in Regular Online Social Networks. An increasing number of social
network analyses adopts the complex network approach, that is, using graphs to rep-
resent user relationship. A comprehensive overview of research on complex networks
can be found in Newman [2003]. Some previous work considers only static relationship
like friendship [Garg et al. 2009; Kairam et al. 2012; Hu and Wang 2009; Mislove
et al. 2007]. In contrast, we consider user interactions that are more dynamic. Some
previous work like [Wilson et al. 2009; Viswanath et al. 2009; Leskovec et al. 2005;
Xiang et al. 2010; Liu et al. 2012] has also considered user interactions. However, in
their approaches graphs are extracted based on a single, domain-specific, and usually
threshold-based rule for mapping interactions to links. Choudhury et al. [2010] have
analyzed the influence of thresholds on graph properties. Nevertheless, they have only
considered one type of threshold, that is, the number of interactions (equivalent to n
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used in our paper), and one type of interaction, that is, email exchange. In contrast,
in this paper, we conduct a sensitivity study of various thresholds and rules based on
different types of interactions.

Graph Models in MOGs. Within MOGs, Kirman and Lawson [2009] proposes a graph
model in which interactions are simply considered as homogeneous and are mapped
to undirected and unweighted links. Merritt and Clauset [2013] considers the number
of interactions when forming the links, but they still consider interactions as homoge-
neous. Existing work is complemented by considering and comparing friendship and
enemy relationships [Szell and Thurner 2012], but they still do not differentiate inter-
actions with various types and strengths. In Ang [2011], differences in graphs extracted
based on different types of interactions are studied, but their dataset is rather small,
with only 74 users involved, whereas our datasets in this paper cover millions of users.
In Balint et al. [2011] and Posea et al. [2010] several graph extraction strategies are
investigated, but they do not form a formalism as comprehensive as we propose here.

Our previous work [van de Bovenkamp et al. 2013; Iosup et al. 2014] propose graph
models to analyze social relationships in MOGs, but they lack a thorough study of
the impact of mapping functions and thresholds on the characteristics of the resulting
graphs.

Network Evolution Models. Most previous works on network evolution only consid-
ers static relationships such as friendship [Garg et al. 2009; Kairam et al. 2012; Hu
and Wang 2009], where the deletion of links are rare and therefore, networks are
expected to grow. In contrast, we focus on more dynamic relationships, that is, user in-
teractions. A number of previous works have considered interactions [Viswanath et al.
2009; Leskovec et al. 2005; Merritt and Clauset 2013; Ribeiro et al. 2013; Caceres and
Berger-Wolf 2013], however, they can be arbitrary when defining network evolution and
they often consider only one of the two types, network growth and network dynamics.
Instead, we consider both of them and we analyze their differences.

Previous work on network evolution that comes closest to our analysis is [Krings
et al. 2012], in which the authors have analyzed both the network growth and the
network dynamics. Nevertheless, they only consider one type of interaction, that is,
phone calls, and they assume a link exists between two users as long as they have
interacted before, regardless of their interaction strength. In contrast, we consider
different types of interactions, and we use threshold n (which reflects the interaction
strength) to decide whether links should be added between players. We also analyze
the influence of n on the network evolution models, as well as on the predictions made
by the models.

Applications. Besides understanding the nature of the network, graph models are
useful in many applications, including regenerating and predicting the evolution of
the network [Garg et al. 2009; Kairam et al. 2012; Leskovec et al. 2005], analyzing
information diffusion [Liu et al. 2012], and exporting trustworthy user relationships
to social-based distributed applications like Reliable Email and SybilGuard [Wilson
et al. 2009]. In this paper, we use match recommendation as the example to show the
application of our models. We complement our previous work [van de Bovenkamp et al.
2013; Iosup et al. 2014] by showing how our models not only improve the traditional
link prediction approaches, but also potentially help players enjoy games to a higher
extent.

9. CONCLUSION

MOGs have attracted hundreds of millions of players world-wide among whom rich
social relationships have developed. With traditional complex network approaches and
extensive datasets from three MOGs that contain in total years of behavioral history
for millions of players and games, in this paper, we are able to propose and evaluate
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a graph model that captures a variety of social relationships in MOGs. Among many
interesting observations, we find that MOGs quickly become disconnected when the
constraints for relationships to exist increase, that friendship has a positive influence
on user interactions, that MOGs can exhibit growth even when their player activity
declines, and that members in the early days of MOGs are often more committed to
the communities. Taking match recommendation as the example, we further study the
implications of our model on gaming services. We propose SAMRA, a socially aware
match recommendation algorithm that takes social relationships into account. Results
show that our model not only improves the precision of traditional link prediction
approaches, but also potentially helps players enjoy the games to a higher extent.
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