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ABSTRACT
Movement, one of the most common actions of avatars in
virtual worlds, can have an important impact on the per-
formance of networked virtual environments (NVEs). In
this work, we propose SAMOVAR, a Statistical Area-based
MObility model for VirtuAl enviRonments. SAMOVAR
models four mobility characteristics: pause duration, ve-
locity, area popularity, and distinct visited areas using em-
pirical distribution; and then uses a map generation and
a traveling procedure to generate movement trajectories of
avatars. We show through simulation that the traces gen-
erated by our model can produce many mobility character-
istics observed in virtual world. Further by comparing to
trace-based simulation, the results obtained from SAMO-
VAR are similar to results obtained with traces from World
of Warcraft and Second Life.

Categories and Subject Descriptors
H.5 [Information Systems Applications]: Multimedia
Information Systems

Keywords
Network virtual environment, mobility model

1. INTRODUCTION
Networked virtual environments (NVEs) such as World of

Warcraft (WoW) and Second Life (SL), have millions of ge-
ographically distributed users. The popularity of NVEs has
excited many researchers in the past decade. Much research
effort has been proposed to scale NVEs, to manage com-
puting resources, and to reduce communication overhead.
The effectiveness of those approaches is affected heavily by
the players’ movements, behaviors, and interactions. The
mobility of players’ avatars can have an important impact
on the performance of NVEs regarding: stability of peer-to-
peer overlay [7], and load balancing of client/server archi-
tecture [3]. Despite a significant amount of research dedi-
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cated for designing NVEs [5, 10, 21], there is little research
that validates their approaches against real-world mobility
traces [4, 9] or realistic mobility models. The most com-
monly used mobility models in NVEs are Random Waypoint
mobility model (RWP) and HotSpot model. Although these
models can serve as inputs for NVEs architectures, the sim-
ulation obtained from real world traces and those simple
models can be significantly different [6, 13]. Thus, a re-
alistic mobility model for NVEs is needed to evaluate the
performance of NVE designs. In this work, we develop SA-
MOVAR, a Statistical Area-based MObility model for Vir-
tuAl enviRonments. We show through extensive evaluations
that SAMOVAR can produce many of the mobility patterns
observed in NVEs. Further we show that SAMOVAR can
produce similar simulation results compared to traces from
WoW and SL.

There are two ways to provide input mobility workloads
for NVE evaluations: mobility traces obtained from real
world and models that can generate realistic NVE move-
ments. Using mobility traces to drive the simulations and
experiments of NVEs is a good approach because of their
credibility, but the flexibility of using traces is limited, it
is hard to extend the traces to apply to another mobility
scenarios besides the original scenarios [8]. Besides, due to
the limitation of data collections, it is a challenge to col-
lect a large number of players’ movement traces over the
whole virtual world without the NVEs operators’ coopera-
tion. Mobility models are important tools for the evaluation
of NVEs. Mobility models can help to generate large scale
and realistic traces that fit different situations, to evaluate
the impact of a mobility pattern on system performance by
parameter tuning, and to better evaluate system architec-
tures for NVEs.

SAMOVAR is built as a mobility model to capture many
mobility characteristics which are important for the compu-
tation and network load of NVEs. More specifically, SAMO-
VAR explicitly models four mobility characteristics: pause
duration: the duration that an avatar has not moved; ve-
locity : the speed of an avatar; area popularity : spatial dis-
tribution of players in different areas; distinct visited areas:
different number of distinct visited areas by different play-
ers. SAMOVAR models the mobility characteristics by first
modeling each characteristics separately using mathemati-
cal distributions; and then integrating them using a map
generation and a traveling procedure. Through extensive
validation, we show that SAMOVAR can produce all four
mobility characteristics. Further, we use the traces gen-
erated by SAMOVAR, RWP and HotSpot model to drive



the simulation of client/server based NVEs. Comparing to
traces from WoW and SL, the simulation results for SAMO-
VAR are very similar while RWP and HotSpot models are
significantly different.
In summary, our main contributions in this work are:

1. We propose a mobility model for NVEs; which can
model four mobility characteristics: pause duration,
velocity, area popularity, and distinct visited areas.

2. We perform a large amount of simulations to show
that the proposed mobility model can reproduce many
mobility patterns observed in NVE traces. We show
that the simulation results obtained from our model on
a client/server architecture are similar to traces from
World of Warcraft and Second Life.

The remaining parts of this work are structured as fol-
lows. In Section 2 we present the terminology used in this
work and related work. We introduce the mobility model,
SAMOVAR, in Section 3. We validate and evaluate SAMO-
VAR with real NVE traces in Section 4. Last, we conclude
in Section 5.

2. TERMINOLOGY AND RELATED WORK
In this section we introduce the terminology and the re-

lated work on modeling and characterization of NVEmobility.

2.1 Terminology

• Avatars (players, persons) are the moving entities.

• Map in which movement takes place is well modeled
by a grid of rectangular, non-overlapping areas.

• Waypoints are the positions on a map. An avatar can
only pause (stay in a position without movement) in
waypoints.

• Pause duration is the time spent by an avatar in a
waypoint.

• Visit, we define a visit to a waypoint only if an avatar
pauses in that waypoint.

• Area popularity is the popularity of an area defined as
the total number of distinct persons visited that area
for a specific time duration (1 day in this work).

• Distinct visited areas is the set of areas that an avatar
visit. According to our measurement study [14] and
others [12], avatars tend to visit only a small amount
of areas of the virtual world.

2.2 Related work
Mobility models for NVEs are rare [8, 6, 15]. The most

commonly used mobility models used in NVEs are the ran-
dom walk (RW), the random waypoint (RWP), and the Hot-
Spot model. In the RW model, an avatar randomly chooses
a direction and a speed to travel, each movement in RW
occurs in predefined time interval or movement distance. In
the random waypoint model, each avatar randomly chooses
a waypoint in the simulated map, and goes to the waypoint
using a predefined speed. Different from RW, in RWP, if
an avatar has reached a waypoint, the avatar will pause for
a duration that is sampled from some distributions. The

HotSpot model can be viewed as a weighted random way-
point model. In HotSpot model, a number of waypoints are
randomly selected and each waypoint is assigned a weight,
and the probability to go to a waypoint is proportion to its
weight. Pittman and GauthierDickey [12] propose that the
weight of waypoints follows a Weibull distribution. SAMO-
VAR models pause duration, velocity, area popularity, and
distinct visited areas, while RW, RWP and HotSpots do not.

There are some workload models proposed for First Per-
son Shooter (FPS) games. The Networked Game Mobility
Model (NGMM) [18] is a variation of the HotSpot model
which adds perturbations to movement paths and waypoints.
Others [1, 17] use artificial intelligence (AI) players to gen-
erate workloads for FPS games. Using AI players to drive
simulation is computationally intensive; thus, it is difficult
to conduct large-scale NVE experiments. Besides, the ma-
jor user behaviors in NVEs are socializing, trading, finishing
quests etc; instead of constantly moving and shooting as in
FPS games. SAMOVAR does not model the mobility pat-
terns of NVEs in fighting scenarios, but in more real-life
activities.

Several studies [6, 19] analyze mobility traces from NVEs.
Pittman and GauthierDickey [12] find that the popularity of
different areas inWoW are skewed. Miller and Crowcroft [11]
find that, in WoW battleground, despite there is an incen-
tive to move together, most movements are individual rather
than group-based. Varvello et al. [19] find that in Second
Life (SL), many players form groups of good friends and
meet frequently at the same locations. Liang et al. [6] col-
lect trace from SL, and analyze the session behavior, con-
tact patterns, and mobility patterns. Our own measurement
study [14] focuses on the characterization of mobility pat-
terns of both virtual worlds and real worlds, and analyze the
differences. These measurement work serve as good start
point for SAMOVAR.

3. SAMOVAR: A MOBILITY MODEL FOR
NETWORKED VIRTUAL ENVIRONMENTS

In this section we introduce SAMOVAR, the Statistical
Area-based MObility model for VirtuAl enviRonments. SA-
MOVAR models microscopic, individual mobility in virtual
environments, but can be used to generate macroscopic,
population-wide mobility traces. The core of our model is a
generative process, in the sense that the model incorporates
the notion of time and predicts what sequence of movements
would be taken by each individual, so that movement traces
are generated.

SAMOVAR consists of three parts, the Characteristics
modeling, the Map generation, and the Walking. The char-
acteristics modeling models each characteristic of an NVE
trace using empirical modeling. The Map generation pro-
cedure generates a map with waypoints and paths between
waypoints. TheWalking part of SAMOVAR determines how
avatars walk between waypoints.

For this study, we use two NVE traces: Ironforge and
Freebies. Ironforge is a one day trace we collected in July
2011 from the popular city Ironforge of WoW. The trace
was collected using customized clients to obtain the avatars’
detail position every second [14]. In total, the Ironforge

trace contains 1,302 avatars’ movement trajectories. Free-

bies is a one day trace collected by [6] from the Freebies



zone of SL, and contains movement information of 3,153
avatars.

3.1 Characteristics modeling
We assume that each of the mobility characteristic is inde-

pendent from each other. And we model each of the mobility
characteristics separately by using empirical distributions.
To avoid overfitting and to simplify the procedure of mod-
eling, we use some well known statistical distributions to
model each characteristic instead of developing a specific
empirical model for each characteristic.
For each of the characteristic considered in this work, we

attempt to fit the empirical data corresponding to each char-
acteristic with a set of well-known probability distributions
that are available in most simulation and experimental tool-
boxes, namely the exponential, the Weibull, the LogNormal,
the Gamma, the Normal, and the general Pareto distribu-
tions. The fitting is performed using maximum likelihood
estimation, which determines for a distribution the param-
eters that lead to the best fit with given empirical data.
Then, we use a method for assessing the goodness-of-fit

(GoF) that has been shown to have good results for large
datasets in distributed systems studies [2]. In this method,
the results of MLE fitting are tested using a goodness-of-
fit (GoF) procedure that combines the Kolmogorov-Smirnov
(KS) and the Anderson-Darling (AD) GoF tests. Using both
of these tests provides a more robust GoF test than using
any of the KS and AD tests individually, since the KS test
is more sensitive to the center of distributions and the AD
test is more sensitive to the tail. The method uses 0.05 as
the significance level for the p-value, below which the null
hypothesis that the fitted distribution represents the empir-
ical data is rejected. The p-value used by this method is
the average of 1,000 p-values, each of which is calculated by
randomly selecting 30 samples from the empirical data and
applying the GoF tests to the selected data. The distribu-
tion which passes the GoF test and has the lowest D value,
the largest gap between the empirical cumulative distribu-
tion function (CDF) and fitted CDF, is selected as the best
fit.
Figure 1 (left) shows the CDF and fitting result for pause

duration for the Ironforge trace. Most of pause durations
(Δt) in the Ironforge trace are shorter than 30 seconds, and
only a few avatars pause for more than 5 minutes. As shown
in Table 1, the best fit distribution for pause duration is the
LogNormal distribution with parameters (mean μ = 1.82,
standard deviation σ = 1.57), the D value is 0.12, and the p-
values for KS test and AD test are 0.322 and 0.613. Figure 1
(right) shows the probability distribution function (PDF) of
velocity (v), most of the velocities are slower than 20m/s,
only a few avatars travel much faster. the velocity is can be
best fitted using the LogNormal Distribution (μ = 1.82, σ =
0.67) too.
For the area popularity (p) of Ironforge trace, we parti-

tion the trace into 10m × 10m areas; there are about 80%
of the areas are not visited at all. For popularity of the
areas have been visited, as Figure 2 (left) shows, the weight
of popularity (p) follows a long-tail distribution and can be
best fitted using the LogNormal distribution. For the Dis-
tinct visited areas, as as Figure 2 (right) shows, most of the
avatars only visited a small number of areas in Ironforge,
and the number of distinct visited areas (k) can be best mod-
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Figure 1: Distribution fitting results for Pause du-
ration (Left) and Velocity (Right).
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Figure 2: Distribution fitting results for Popularity
(Left) and Number of Visited Areas (Right).

Characteristic Distribution (Parameters) D value KS AD
Pause duration Δt LogNormal (1.82, 1.57) 0.12 0.322 0.613

Velocity v LogNormal (1.82, 0.67) 0.09 0.353 0.570
Popularity weight p LogNormal (1.65, 1.30) 0.14 0.310 0.672

Number of visited areas k LogNormal (2.27, 1.02) 0.06 0.416 0.688

Table 1: Fitting results for Ironforge trace.

Characteristic Distribution (Parameters) D value KS AD
Pause duration Δt LogNormal (3.50, 1.22) 0.16 0.189 0.578

Velocity v LogNormal (0.82, 0.74) 0.14 0.220 0.323
Popularity weight p LogNormal (2.51, 1.47) 0.07 0.398 0.636

Number of visited areas k LogNormal (1.78, 0.88) 0.10 0.364 0.715

Table 2: Fitting results for Freebies trace.

eled using the LogNormal distribution (μ = 2.27, σ = 1.02),
and the D value is 0.06.

Table 1 shows the distribution fitting results for all four
characteristics of Ironforge trace, while Table 2 shows the
distribution fitting results for Freebies traces. All four char-
acteristics of these traces are best fitted by LogNormal dis-
tributions. In Section 3.2 and 3.3, SAMOVAR uses the fitted
distributions to reproduce each of the characteristic.

3.2 Map Generation in SAMOVAR
In SAMOVAR, map consists of waypoints and paths. Avatars

only travel along the generated paths. The generation of
SAMOVAR mimics the traffic network path of virtual world
that some places of interest are well connected, in order to
trave from a less popular zone to a popular zone far away,
it is common to go to a nearby popular zone first and then
using the transportation service of that popular zone to go
to zones far away. The map is generated in SAMOVAR in
six steps:

1. Partition the map into 10m × 10m areas. Randomly
select n area distributed across the map. The center
point of each selected area is used as a waypoint.



Figure 3: A generated map.

2. Assign a Popularity weight (p) according the LogNor-
mal distribution to each waypoint obtained in last step,
then classify each waypoint to one of m levels accord-
ing to p. Each waypoint is classified by a level, the
level of a waypoint is determined by p. We use loga-
rithmic binning to determine the level of a waypoint,
that is, each waypoint level contains a fixed multiple
of the number of waypoints included in the previous
level.

3. Connect the heaviest waypoint with each other.

4. Connect each waypoint with its closest waypoint of
higher level.

5. Connect same-level waypoints with each other, if they
are connected to same higher level waypoints.

6. Connect waypoints with each other if their distance is
lower than a threshold value r.

We illustrate the map operation in SAMOVAR in Fig-
ure 3. Each waypoint has a level between 1 (highest) and
3 (lowest). To travel from waypoint A to waypoint E, an
avatar would first go from waypoint A to waypoint B, then
to C, etc. Waypoints F and G subordinate to different way-
points but are directly connected, because their distance is
smaller than r. The generation of map of SAMOVAR is
inspired by HTM [20]. Different from HTM, which assigns
a same weight for waypoints of the same level, SAMOVAR
assigns LogNormal distributed weighs to waypoints. SAMO-
VAR connects waypoints with each other if their distance is
lower than r while HTM does not.

3.3 Walking Paths Generation in SAMOVAR
Walking paths in SAMOVAR are generated via simula-

tion. The generation process includes the path generation
and the path traveling processes. The generation process as-
signs to each avatar a limited number of waypoints to visit
during the simulation. And each avatar will have different
visitation frequencies to different waypoints. The traveling
process determines how an avatar will travel to the assigned
waypoints. We describe path generation and path traveling,
in turn.

3.3.1 Generation process
The path generation process is based on an observation

of the Ironforge trace that many avatars only visit a small
amount of areas of the whole city. Besides, different avatars
like to visit different areas of a city: auction houses, pro-
fession trainers etc. The generation process is described as
follows:

1. Assign to each avatar the number of waypoints this
avatar can visit, k, sampled from a LogNormal distri-
bution.

Name Values
World size 791m× 528m

Number of avatars 1,302
Number of waypoints n 1,378
Number of levels m 9
Connection range r 20

Area of Interest range R 100 meters

Table 3: Parameters for simulation.

2. Assign to each person a start waypoint. We explore
two ways to assign the start waypoint for each avatar,
SAMOVAR-U and SAMOVAR-W. SAMOVAR-U as-
signs the start waypoint randomly while SAMOVAR-
W assigns the start waypoint according to the weight
of waypoint established by the map generation part
of SAMOVAR. Higher weight waypoints have a higher
number of avatars.

3. For each avatar, iteratively add the waypoints neigh-
boring the already assigned waypoints, until the num-
ber of assigned waypoints reaches k (step 1). The com-
plete set of waypoints assigned to an avatar is the visit
set of that avatar.

4. For each avatar, assign a personal preference w for
the waypoints in the visit set of the avatar, as a per-
waypoint personal weight. The personal preference
weight is sampled from Zipf distribution (θ = 1). The
personal weights are randomly assigned to the way-
points in visit set. The reason why we assign a per-
sonal weight to each waypoint lies that avatars do have
different visitation frequencies to different areas. Cur-
rently we model the personal weight to follow a Zipf
distribution (θ = 1), we plan to investigate more on
the personal preference modeling.

3.3.2 Path traveling process
Traveling occurs for an avatar only within the personal

waypoint graph, that is, the sub-graph of the map that spans
only the waypoints in the visit set of the avatar, and includes
all the paths between them (generated in map generation
part). The path traveling process has the following steps:

1. Each avatar starts in the start waypoint assigned in
generation process at time t = 0.

2. When not traveling or pausing, a person will change
location by first selecting a waypoint to visit, from
the waypoints in the visit set and according to the
personal weight of each eligible waypoint. Then, the
avatar travels using the shortest path in the personal
waypoint graph with a speed v sampled from a Log-
Normal distribution.

3. After reaching the selected waypoint, each person pauses
for Δt time units, which is drawn from a LogNormal
distribution.

4. VALIDATION AND APPLICATION
In this section, we validate SAMOVAR (SAMOVAR-U

and SAMOVAR-W) against NVE traces using four mobility
characteristics: pause duration, velocity, area popularity,
and distinct visited areas. We show that SAMOVAR can re-
produce all four characteristics while random waypoint and
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Figure 4: SAMOVAR-U: Pause duration (Left) and
Velocity (Right).

HotSpot model fail. Then, to show the practicality of SA-
MOVAR, we use the mobility traces produced by SAMO-
VAR, RWP, and HotSpot to drive the simulation of NVEs
architecture. The simulation results produced by SAMO-
VAR are close to the results obtained by using traces from
two NVEs: WoW and SL, while the results obtained from
RWP and HotSpot are significantly different. We conclude
that SAMOVAR is a valid human mobility model which can
be used for NVE evaluations.

4.1 Experimental setup
In default, the simulation is conducted in a 791m×528m

map, this is the same map size as the Ironforge city. For
SAMOVAR we set the number of waypoints to be 1,378,
because there are 1,378 areas are visited in Ironforge. We
describe the mobility models that we compare with in turn.
In the random waypoint (RWP) model, each avatar will ran-
domly select a destination in the simulation area and goes to
destination along the straight line connecting current way-
point and destination; upon arrival, the avatar will pause
for Δt which is uniformly distributed between [1, 60]. The
HotSpot models can be viewed as a weighted random way-
point model, in which the probability to go to a waypoint is
proportional to its weight, we assigned a popularity weight
to each waypoint. The popularity weight is assigned using
the same distribution as SAMOVAR. For RWP and HotSpot
models, the velocities for traveling is 1m/s. All the default
simulation parameters are listed in Table 3.

4.2 Validation
For validation, we record all the traces generated by each

mobility model, and extract four characteristics from the
generated traces: pause duration, velocity, popularity, and
number of distinct visited areas. After extracting the four
characteristics, we compare the distribution of generated
characteristics against the distribution of characteristics of
Ironforge. For velocity and number of distinct visited areas,
the generated properties of SAMOVAR-U and SAMOVAR-
W are very close to the original data; for pause durations,
the distributions generated by SAMOVAR are slightly higher
(10%) than the real trace; for area popularity, the distribu-
tion for both models is a bit higher (5% to 10%) than the
values in the Ironforge trace. For the Freebies trace, we
obtain similar results that the fitting to empirical data is
much better than the alternatives.
Figure 4 (left) shows the pause duration for Ironforge,

SAMOVAR-U, SAMOVAR-W, RWP and HotSpot models.
The distribution of pause durations generated by SAMO-
VAR is a bit (5% to 10%) higher than Ironforge when the
pause durations are lower than 20 seconds, after that SAMO-
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Figure 5: SAMOVAR-U: Popularity (Left) and
Number of Visited Areas (Right).

VAR matches well with the trace. As Figure 4 (right) shows,
the velocities predicted by SAMOVAR matches closely to
real trace when the speed is lower than 8m/s, after that the
velocities predicted by SAMOVAR is slightly slower (about
5%) than real trace.

Figure 5 (left) shows the area popularity distributions for
Ironforge, SAMOVAR-U, SAMOVAR-W, RWP and Hot-
Spot models. The area popularity distribution predicted
by SAMOVAR is a bit (about 10%) higher than Ironforge

trace when the area popularity is lower than 20. After
that the area popularity predicted by SAMOVAR-U and
SAMOVAR-Wmatches the trace well. Comparing to SAMOVAR-
U, SAMOVAR-W has a longer tail, this will lead to more
avatars concentrate in popular areas. The area popularity
distribution predicted by SAMOVAR is much better than
the results obtained using RWP and HotSpot model. Fig-
ure 5 (right) shows the distribution of number of distinct
visited areas per avatar, the distribution curve of SAMO-
VAR is very close to the curve of Ironforge. Figure 4 and
Figure 5 show that the map generation and walking pro-
cedure of SAMOVAR does not distort the characteristics
which are modeled explicitly.

4.3 Application
To show the practicality of SAMOVAR, we use the traces

generated by SAMOVAR-U, SAMOVAR-W, RWP, and Hot-
Spot models to drive the simulation of NVEs, and compare
the results obtained using real traces: Ironforge from WoW
and Freebies from SL. As SAMOVAR, RWP and HotSpot
are mobility models which does not model session behaviors
(when a player is online or not); to enable comparison with
real traces, for each of the simulated avatar with id i, we pick
an avatar with the same id from the real trace, and use the
avatar’s session behavior as the behavior of the simulated
avatar. The SAMOVAR can be easily integrated with ses-
sion behavior model such as [16], to enable capturing both
the mobility patterns and session behaviors of avatars.

We adopt client/server (C/S) architecture as the NVE
architecture, because it is the most commonly adopted ar-
chitecture in industry, and it is also commonly used as a
baseline for comparison with different architectures. In C/S
architecture, a central server is responsible for the simulated
virtual world, informing clients about events via network
communication. The server needs to inform all clients of
any position change event within the clients’ circular view
of radius R (are of interest). We set the range R to be 100m
for Ironforge, as it is the area of interest (AoI) range of
WoW. To mimic the environment of SL, for Freebies trace,
we set R to be 64m (the AoI range of SL) and the simulation
area to be 256m× 256m (the size of that zone). The move-
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Figure 6: Simulation results for C/S architecture.

ment trajectories in Freebies are sampled every 10 seconds.
For each avatar in Freebies we interpolate the movement
trajectory to drive the simulation. For each experiment, we
count the number of messages sent by the server to clients
and normalize the message count by dividing the value by
the message count obtained using real traces.
Figure 6 (left) shows the normalized message count (NMC)

with increasing number of players for Ironforge, RWP, Hot-
Spot, SAMOVAR-U and SAMOVAR-W. The results ob-
tained by using RWP and HotSpot models predict higher
message count than the real trace, especially when the num-
ber of avatars is larger (120% more messages when there
are 1,000 avatars). For SAMOVAR, the message count pre-
dicted by SAMOVAR-U and SAMOVAR-R is very close to
Ironforge. The maximal gap between SAMOVAR-U and
the real trace is only about 15%. As expected, SAMOVAR-
U predicts a lower message count than SAMOVAR-W, and
the message count predicted by SAMOVAR-U is closer to
real trace than SAMOVAR-W.
For the Freebies trace, as Figure 6 (right) shows, for

the HotSpot model, the predicted message counts are about
4 to 5 times than the real trace. The RWP model pre-
dict slightly lower messages count than HotSpot, but its
predictions are highly inaccurate too (about 4 to 5 times
higher). For SAMOVAR-W, when the number of avatars is
lower than 600, the NMC are about 1.8 to 1.4, but NMC
quickly drops to 1.1 when the number of avatars is 800. For
SAMOVAR-U, the simulation results made by it are closer
to real trace than the others. When the number of avatars
is lower than 300, the NMC ranges from 1.5 to 1.15. When
the number of avatars is larger, SAMOVAR-U matches the
real trace well, especially when number of avatars is higher
than 800, the simulation results are only 5% different from
real traces.

5. CONCLUSION AND ONGOING WORK
In this work, we propose SAMOVAR, a Statistical Area-

based MObility model for VirtuAl enviRonments. SAMO-
VAR models four mobility characteristics that are impor-
tant to the performance of networked virtual environments:
pause duration, velocity, area popularity, and distinct vis-
ited areas. SAMOVAR first model each mobility charac-
teristics separately using statistical distributions, and then
generates a map consist of waypoints and paths between
waypoints, then SAMOVAR uses a traveling procedure to
produce movement of avatars. Through simulation, we val-
idate that SAMOVAR can produce all four characteristics.
Further, comparing to results of simulation using real world
traces, SAMOVAR can produce very close results, while the
results for Random Waypoint and HotSpot models are sig-

nificantly different. We are working to model more mobility
characteristics such as the relationship between pause dura-
tion and popularity. In the future, we would like to validate
our mobility model against more NVEs such as MineCraft.
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