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Abstract Infrastructure-as-a-Service (IaaS) cloud computing is an emerging
commercial infrastructure paradigm under which clients (users) can lease resources
when and for how long needed, under a cost model that reflects the actual usage of
resources by the client. For IaaS clouds to become mainstream technology and for
current cost models to become more clientfriendly, benchmarking and comparing
the non-functional system properties of various IaaS clouds is important, especially
for the cloud users. In this article we focus on the IaaS cloud-specific elements of
benchmarking, from a user’s perspective. We propose a generic approach for IaaS
cloud benchmarking, discuss numerous challenges in developing this approach, and
summarize our experience towards benchmarking IaaS clouds. We argue for an
experimental approach that requires, among others, new techniques for experiment
compression, new benchmarking methods that go beyond blackbox and isolated-
user testing, new benchmark designs that are domain-specific, and new metrics for
elasticity and variability.

1 Introduction

Infrastructure-as-a-Service (IaaS) clouds are becoming a rich and active branch of
commercial ICT services. Users of IaaS clouds can provision “processing, storage,
networks, and other fundamental resources” [51] on-demand, that is, when needed,
for as long as needed, and paying only for what is actually consumed. For the past
five years, commercial IaaS clouds such as Amazon’s EC2 have gained an increasing
user base, from small and medium businesses [3] to scientific HPC users [14, 43].
However, the increased adoption of clouds and perhaps even the pricing models
depend on the ability of (prospective) cloud users to benchmark and compare
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commercial cloud services. In this chapter, we investigate the IaaS cloud-specific
elements of benchmarking from the user perspective.

An important characteristic of IaaS clouds is good performance, which needs
to be ensured on-demand and sustained when needed over a long period of time.
However, as we have witnessed happening with several other new technologies
while still in their infancy, notably with grid computing in the 1990s, it is likely
that IaaS clouds will also undergo a period of changing performance management
practices. In particular, we foresee that the branch of performance management that
focuses on measuring the performance will evolve from traditional practices to meet
the requirements of cloud operators and customers.

Benchmarking is a traditional approach to verify that the performance of a
system meets the requirements. When benchmarking results are published, for
example through mixed consumer-provider organizations such as SPEC and TPC,
the consumers can easily compare products and put pressure on the providers
to use best-practices and perhaps lower costs. Currently, the use of clouds is
fragmented across many different application areas, including hosting applications,
media, games, and web sites, E-commerce, On-Demand Workforce and CRM,
high-performance computing, search, and raw resources for various usage. Each
application area has its own (de facto) performance standards that have to be met by
commercial clouds, and some have even developed benchmarks (e.g., BioBench [1]
for Bioinformatics and RUBiS [63] for online business).

For IaaS clouds, we conjecture that the probable characteristics of current and
near-future workloads can be derived from three major trends emerging from
the last decade of grid and large-scale computing. First, individual jobs are now
predominantly split into smaller compute or data-intensive tasks (many tasks [58]);
there are almost no tightly coupled parallel jobs. Second, the duration of individual
tasks is diminishing with every year; few tasks are still running for longer than 1 h
and a majority require only a few minutes to complete. Third, compute-intensive
jobs are split either into bags-of-tasks (BoTs) or DAG-based workflows, but data-
intensive jobs may use a variety of programming models, from MapReduce to
general dataflow.

Cloud benchmarking is not a straightforward application of older benchmarking
techniques. In the past, there have been several large-scale computing environments
that have similarities with clouds. Already decades ago, institutes such as CERN
and the IBM T.J. Watson Research Center had large numbers of mainframes
(using virtualization through the Virtual Machine operating system!) that also used
multi-tenancy across their departments. Similarly, some vendors had large-scale
installations for paid use by customers through Remote Job Entry facilities. In these
environments, benchmarking and capacity planning were performed in close col-
laboration between owners and customers. An important difference, and advantage,
for customers wishing to benchmark their prospective computing environments
is that they can simply use access by credit card to deploy and benchmark their
applications in the cloud: clouds do not only offer elasticity on demand, they also
offer (resources for) capacity planning and benchmarking on demand. The new
challenge is that customers will have to gain, through benchmarking, sufficient trust
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in the performance, the elasticity, the stability, and the resilience of clouds, to rely
on them for the operation of their businesses. As a matter of fact, cloud customers
may want to benchmark both when migrating to the cloud, and, after migration, to
assess continuously the operation of their applications in the cloud. Thus, of great
importance is the ability of cloud benchmarks to allow users to gain trust without
requiring long setups and costly operation.

We discuss in this chapter a focused, community-based approach to IaaS cloud
benchmarking in which the main challenges are jointly identified, and best-practice
and experiences can be easily shared. Although we have seen in the past few
years numerous approaches to benchmarking and performance evaluation of various
systems, there is no unified view of the main challenges facing researchers and
practitioners in the field of benchmarking. This chapter aims at providing this
unified view and should thus be useful in system procurement and performance
management. From traditional benchmarking, the unified view borrows from earlier
efforts on benchmarking middleware [8,9], on benchmarking databases [24], on the
performance evaluation of grid and parallel-system schedulers [10, 15, 20, 35], and
on benchmarking systems in general [2, 44].

The unified view includes a generic architecture for IaaS cloud benchmarking.
We have designed the architecture so that it can be familiar to existing practitioners,
yet provide new, cloud-specific functionality. For example, current IaaS cloud
operators lease to their customers resources, but leave the selection of resource
types and the selection of the lease/release moments as a customer task; because
such selection can impact significantly the performance of the system built to use
the leased resources, the generic benchmarking architecture must include policies
for provisioning and allocation of resources.

In additional to traditional benchmarking elements and the generic architecture,
the unified view introduced in this chapter focuses on ten important methodological,
system-, workload-, and metrics-related issues. For example, how should cloud-
bursting systems, that is, systems that lease resources to complement the customer’s
own resources, be benchmarked? What could be realistic models for the workloads
of IaaS clouds? For IaaS clouds that share resources between multiple customers,
how to benchmark their ability to isolate user-environments and thus to prevent
performance variability [39]? etc.

This chapter has evolved from a number of regular articles [19, 26, 27] and a
series invited talks given by the authors between 2012 and 2014, including talks at
MTAGS 2012 [41], HotTopiCS 2013 [32], etc.1 This work has also benefited from
valuable discussion in the SPEC Research Group’s Cloud Working Group (see also
Sect. 5.1).

1In inverse chronological order: Lecture at the Linked Data Benchmark Council’s Fourth TUC
Meeting 2014, Amsterdam, May 2014. Lecture at Intel, Haifa, Israel, June 2013. Lecture at IBM
Research Labs, Haifa, Israel, May 2013. Lecture at IBM T.J. Watson, Yorktown Heights, NY, USA,
May 2013. Lecture at Technion, Haifa, Israel, May 2013.
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The remainder of this chapter is structured as follows. In Sect. 2, we present a
primer on benchmarking computer systems. Then, we introduce a generic approach
for IaaS cloud benchmarking, in Sect. 3. In Sect. 4, we discuss numerous challenges
in developing our and other approaches for cloud benchmarking, with focus on
methodological, system-, workload-, and metrics-related issues. We summarize our
experience towards benchmarking IaaS clouds in Sect. 5. Our summary focuses
on the initiatives of the SPEC Research Group and its Cloud Working Group, of
which the authors are members, and our own experience with building models and
tools that can become useful building blocks for IaaS cloud benchmarking. Last, we
conclude in “Conclusion” section.

2 A Primer on Benchmarking Computer Systems

We review in this section the main reasons for benchmarking and the main elements
of the typical benchmarking process, which are basically unchanged since the early
1990s. For more detail, we refer to canonical texts on benchmarking [24] and
performance evaluation [44] of computer systems.

2.1 Why Benchmarking?

Benchmarking computer systems is the process of evaluating their performance
and other non-functional characteristics with the purpose of comparing them with
other systems or with industry-agreed standards. Traditionally, the main use of
benchmarking has been to facilitate the informed procurement of computer systems
through the publication of verifiable results by system vendors and third-parties.
However, benchmarking has grown as a support process for several other situations,
which we review in the following.

Use in System Design, Tuning, and Operation Benchmarking has been shown to
increase pressure on vendors to design better systems, as has been for example the
experience of the TPC-D benchmark [24, Ch. 3, Sec. IV]. For this benchmark,
insisting on the use of SQL has driven the wide acceptance of the ANSI SQL-
92; furthermore, the complexity of a majority of the queries has lead to numerous
improvements in the design of aggregate functions and support for them. This
benchmark also led to a wide adoption of the geometric mean for aggregating
normalized results [2]. The tuning of the DAS multi-cluster system has benefited
from the benchmarking activity of some of the authors of this chapter, developed in
the mid-2000s [33]; then, our distributed computing benchmarks exposed various
(fixable) problems of the in-operation system.

Use in Training One of the important impediments in the adoption of a new
technology is the lack of expertise of potential users. Market shortages of qualified
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personnel in computer science are a major cause of concern for the European
Union and the US. Benchmarks, through their open-source nature and representation
of industry-accepted standards, can represent best-practices and thus be valuable
training material.

On Alternatives to Benchmarking Several alternative methods have been used for
the purposes described earlier in this section, among them empirical performance
evaluation, simulation, and even mathematical analysis. We view benchmarking as
an empirical evaluation of performance that follows a set of accepted procedures
and best-practices. Thus, the use of empirical performance evaluation is valuable,
but perhaps without the representativeness of a (de facto) standard benchmark. We
see a role for (statistical) simulation [17, 22, 55] and mathematical analysis when
the behavior of the system is well-understood and for long-running evaluations that
would be impractical otherwise. However, simulating new technology, such as cloud
computing, requires careful (and time-consuming) validation of assumptions and
models.

2.2 Elements of Benchmarking

Inspired by canonical texts [24, 44], we review here the main elements of a bench-
marking process. The main requirements of a benchmark—relevance, portability,
scalability, and simplicity—have been discussed extensively in related literature,
for example in [24, Ch. 1].

The System Under Test (SUT) is the system that is being evaluated. A white
box system exposes its full operation, whereas a black box system does not expose
operational details and is evaluated only through its outputs.

The workload is the operational load to which the SUT is subjected. Starting from
the empirical observation that “20 % of the code consumes 80 % of the resources”,
simple microbenchmarks (kernel benchmarks [24, Ch. 9]) are simplified or reduced-
size codes designed to stress potential system bottlenecks. Using the methodology
of Saavedra et al. [59] and later refinements such as Sharkawi et al. [61], the
results of microbenchmarks can be combined with application profiles to provide
credible performance predictions for any platform. Synthetic and even real-world
(complex) applications are also used for benchmarking purposes, as a response to
system improvements that make microbenchmarks run fast but do not affect the
performance of much larger codes. For distributed and large-scale systems such as
IaaS clouds, simple workloads comprised of a single application and a (realistic)
job arrival process represent better the typical system load and have been used for
benchmarking [33]. Complex workloads, that is, the combined simple workloads
of multiple users, possibly with different applications and job characteristics, have
started to be used in the evaluation of distributed systems [33, 65]; we see an
important role for them in benchmarking.
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Fig. 1 Overview of our generic architecture for IaaS cloud benchmarking

The Benchmarking Process consists of the set of rules, prior knowledge (invari-
ants), and procedures used to subject the SUT to the benchmark workload, and to
collect and report the results.

3 A Generic Architecture for IaaS Cloud Benchmarking

We propose in this section a generic architecture for IaaS cloud benchmarking. Our
architecture focuses on conducting benchmarks as sets of (real-world) experiments
that lead to results with high statistical confidence, on considering and evaluating
IaaS clouds as evolving black-box systems, on employing complex workloads
that represent multi-tenancy scenarios, on domain-specific scenarios, and on a
combination of traditional and cloud-specific metrics.

We introduce in Sect. 4 the main challenges that need to be addressed for our
architecture to be realizable. In Sect. 5.2, we discuss a partial implementation of
this architecture that has already achieved good results in practice [65].

3.1 Overview

Our main design principle is to adapt the proven designs for benchmarking to IaaS
clouds at scale. Thus, we design an architecture that builds on our GrenchMark
framework for grid benchmarking [33], as presented in Fig. 1.

The Benchmarking Process consists of the set of rules, prior knowledge (invari-
ants), and procedures used to subject the SUT to the benchmark workload, and to
collect and report the results. In our architecture, the process begins with the user
(e.g., a prospective IaaS cloud user) defining the benchmark configuration, that is,
the complex workloads that define the user’s preferred scenario (component 1 in
Fig. 1). The scenario may focus on processing as much of the workload as possible
during a fixed test period or on processing a fixed-size workload as quickly or
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cheaply as possible. The benchmarking system converts (component 2) the scenario
into a set of workload descriptions, one per (repeated) execution. The workload
may be defined before the benchmarking process, or change (in particular, increase)
during the benchmarking process. To increase the statistical confidence in obtained
results, subjecting the SUT to a workload may be repeated or the workload may be
long-running.

After the preparation of the workload, the SUT (component 3 in Fig. 1) is
subjected to the workload through the job and resource management services
provided by the testing system (component 4, which includes components 5–10).
In our benchmarking architecture, the SUT can be comprised of one or several
self-owned infrastructures, and public and private IaaS clouds. The SUT provides
resources for the execution of the workload; these resources are grouped into a
Virtual Resource Pool. The results produced during the operation of the system
may be used to provide a feedback loop from the Virtual Resource Pool back into
the Workload Generator and Submitter (component 5); thus, our architecture can
implement open and closed feedback loops [60].

As a last important sequence of process steps, per-experiment results are
combined into higher-level aggregates, first aggregates per workload execution
(component 11 in Fig. 1), then aggregates per benchmark (component 12). The
reporting of metrics should try to avoid the common pitfalls of performance evalu-
ation; see for example [2, 23]. For large-scale distributed systems, it is particularly
important to report not only the basic statistics, but also some of the outliers, and full
distributions or at least the higher percentiles of the distribution (95-th, 99-th, etc.).
We also envision the creation of a general database of results collected by the entire
community and shared freely. The organization and operation of such a database is
within the scope of future work.

3.2 Distinguishing Design Features

We present in the remainder of this section several of the distinguishing features of
this architecture.

In comparison with traditional grid environments, commercial IaaS clouds do
not provide services for managing the incoming stream of requests (components 5,
6, and 8 in Fig. 1) or the resources leased from the cloud (components 7 and 8). Our
architecture supports various policies for provisioning and allocation of resources
(components 6 and 7, respectively). In contrast to GrenchMark, our generic cloud-
benchmarking architecture also includes support for evolving black-box systems
(components 9, 11, and 12), complex workloads and multi-tenancy scenarios
(components 1, 2, and 5), domain-specific components (component 10), etc.

Experiments conducted on large-scale infrastructure should be designed to mini-
mize the time spent effectively using resources. The interplay between components
1, 2, and 5 in Fig. 1 can play a non-trivial role in resolving this challenge, through
automatic selection and refinement of complex test workloads that balance the
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trade-off between accuracy of results and benchmark cost; the main element in a
dynamic tuning of this trade-off is the policy present in component 5. The same
interplay enables multi-tenancy benchmarks.

Several of the possible SUTs expose complete or partial operational information,
acting as white or partially white boxes. Our architecture allows exploiting this
information, combining results from black-box and white-box testing. Moreover,
the presence of the increasingly higher-level aggregations (components 11 and 12
in Fig. 1) permits both the long-term evaluation of the system, and the combination
of short-term and long-term results. The policy for monitoring and logging in
component 8 allows the user to customize what information is processed and stored
in the results database. We conclude that our architecture goes far beyond simple
black-box testing.

Supports domain-specific benchmarks is twofold in our architecture. First,
components 5–7 support complex workloads and feedback loops, and policy-
based resource and job management. Second, we include in our architecture a
domain-specific component (component 10) that can be useful in supporting cloud
programming models such as the compute-intensive workflows and bags-of-tasks,
and the data-intensive MapReduce and Pregel. The policy element in component
10 allows this component to play a dynamic, intelligent role in the benchmarking
process.

4 Open Challenges in IaaS Cloud Benchmarking

We introduce in this section an open list of surmountable challenges in IaaS cloud
benchmarking.

4.1 Methodological

Challenge 1. Experiment compression.

Long setup times, for example of over a day, and/or long periods of continuous
evaluation, for example of more than a day per result, reduce the usefulness of a
benchmark for the general user. This is a general problem with any experimental
approach, but for IaaS clouds it has the added disadvantage of greatly and visibly
increasing the cost of benchmarking. We argue that research is needed to reduce
the setup and operational time of benchmarks for IaaS clouds. This can be achieved
through reduced input and application sets, a clever setup of the experiments, and
sharing of results across the community. We also envision the use of combined
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experimental approaches, in which real-world experiments are combined with
emulation [64,66] or simulation. Our vision for experiment compression represents
an extension of the concept of statistical simulation [17,22,55], which has been used
for computer architecture studies, to real-world experimentation.

Reduced benchmark input and application sets can be obtained by refining input
workloads from real complex workloads, using theoretically sound methods (e.g.,
statistical models and goodness-of-fit tests). Such reduced benchmark inputs will
contrast with traditional synthetic benchmarks, which incorporate many human-
friendly parameter values (e.g., “10 % queries of type A, 90 % queries of type B”)
and thus may lack theoretical guarantees for representativeness.

Challenge 2. Beyond black-box testing through testing short-term dynamics
and long-term evolution.

Similarly to multi-cluster grids, which frequently added clusters or individual
nodes to the distributed infrastructure, clouds are continuously extended and
tuned by their operators. Moreover, commercial clouds such as Amazon EC2
add frequently new functionality to their systems. Thus, the benchmarking results
obtained at any given time may be unrepresentative for the future behavior of the
system. We argue that IaaS clouds should not be benchmarked only using traditional
black-box and even white-box testing, for which the system under test does not
change in size and functionality, but also through new benchmarking methods that
evaluate the impact of short-term dynamics and long-term evolution. Specifically,
short-term dynamics characterize system changes occurring over short periods (at
most hours), and long-term evolution characterizes system changes occurring over
long periods (months, years).

A straightforward approach to benchmark both short-term dynamics and long-
term evolution is to measure the system under test periodically, with judiciously
chosen frequencies [40]. However, this approach increases the pressure of the so-far
unresolved Challenge 1.

Challenge 3. Impact of middleware.

IaaS clouds are built on several layers of middleware, from the guest operating
system of the VM to the data-center resource manager. Each of these layers
adds new complexity to testing and possibly also visible or invisible performance
bottlenecks. One of the key issues in benchmarking IaaS clouds is to measure the
performance of each layer of the middleware in isolation. We argue that a solution
for this problem may not be possible under the current assumption of black-box
testing, and propose instead to focus on a new methodology that accounts for
imprecision in the isolation of root causes of performance.
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We believe that good steps towards understanding the performance of various
middleware layers can be and have already been taken [8], for example in assessing
the impact of virtualization, but that more work is needed to reconcile the results
(the situation presented in Challenge 2, where IaaS clouds change over time, may
be a source of conflicting experimental results). We have surveyed in our previous
work [39, 40] over ten performance studies that use common benchmarks to assess
the virtualization overhead on computation (5–15 %), I/O (10–30 %), and HPC
kernels (results vary). We have shown in a recent study of four commercial IaaS
clouds [39] that virtualized resources obtained from public clouds can have a much
lower performance than the theoretical peak, possibly because of the performance
of the middleware layer.

4.2 System Properties

Challenge 4. Reliability, availability, and related system properties.

One of the factors affecting the behavior of large-scale systems is the presence of
failures, which are likely inevitable at scale. We have found endemic presence of
failures in many popular large-scale systems, from grids [36] to DNS and other
distributed services [47]. Benchmarking reliability and related systems properties is
difficult, not in the least because of Challenge 2.

Challenge 5. Massive scale, multi-site benchmarking.

One of the main product features of IaaS clouds is the promise of seemingly
infinite capacity. We argue that benchmarking this promise is difficult, very time-
consuming, and very costly. We have seen in our previous work that testing tools
can be built to test infrastructures of thousands of cores [33], but performance
evaluation tools that work at much larger scale in heterogeneous IaaS clouds have
yet to be proven in practice. An important challenge here may be the ability to
generate massive-scale workloads.

We have already had experience with companies building hybrid clouds [51]
out of their own infrastructure and resources leased from IaaS clouds (this process
is also referred to as cloud-bursting, for example by NIST and Microsoft). Other
cloud deployment models require the use of multiple sites, because the application
functionality requires it [12], to improve load balancing or performance [62], to
fulfill reliability targets, to avoid vendor lock-in [5], etc. We and others [53] expect
multi-site cloud use to increase, as more companies, with or without existing
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computational capacity, try out or even decide to use cloud services. We also
expect multi-site cloud use to reuse mechanisms of traditional co-allocation, that
is, simultaneous allocation of resources across several organizational components
with (wide) geographical spread. We argue that benchmarking across multiple sites
raises additional challenges, not in the least the combined availability for testing and
scalability of the infrastructure, and the increased cost.

Challenge 6. Performance isolation.

The negative effects of the interaction between running jobs in a complex
workload have been observed in distributed environments since at least the mid-
1990s [6]. Following early work [30, 49], we argue that quantifying the level of
isolation provided by an IaaS cloud is a new and important challenge.

Moreover, as IaaS clouds become more international, their ability to isolate
performance may suffer most during periods of peak activity [30]. Thus, studying
the time patterns of performance interference, and their impact on the targets of
performance isolation, is worthwhile.

4.3 Workload

Challenge 7. Realistic yet tunable models of workloads and of system
performance.

Statistical workload modeling is the general technique of producing synthetic
models from workload traces collected from real-world systems that are statistically
similar to the real-world traces, yet may be sufficiently easy to tune for a community
of non-expert users. We argue that building such statistical models raises important
challenges, from data collection to trace processing, from finding good models to
testing the validity of the models. We also see as an open challenge the derivation
of statistical performance models, perhaps through linear regression, from already
existing measurements.

We envision that IaaS clouds will also be built for specific, even niche appli-
cation domains, charging premium rates for the expertise required to run specific
classes of applications. This is similar to the appearance of domain-specific grids,
such as BioGrid, in the early 2000s; and of domain-specific database-related
technology, such as transaction-processing and data warehousing solutions, in the
early 1990s [24, Ch.1]. We argue that IaaS cloud benchmarking should begin with
domain-specific benchmarks, before transiting to general benchmarks.
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Besides regular user workloads, most commercial IaaS clouds offer value-adding
features such as backup, upgrade, (live) migration, load-balancing, scheduling
and message queues, publish/subscribe-based communication services, etc. These
value-adding features generate additional, cloud-internal workloads.

Toward building domain-specific benchmarks, we argue for building statistical
models of domain-specific or at least programming model-specific workloads.
We have conducted in the past extensive research in grid workloads [34], with
results in modeling BoTs [38], and in characterizing scientific and engineering
workflows [34]. Several studies [11, 21, 46, 68, 69], including our own study of
four large MapReduce clusters [13], have focused on characterizing workloads
of MapReduce, which is one of the most popular programming models for data
processing in the loud. Open challenges in this context are the formulation of
realistic models for workflows, MapReduce, and other programming models for
data processing. We also find that the many-task programming model [58] is
worthwhile for investigation in this context. We also refer to a recent survey of
challenges associated with large-scale log analysis [54].

Challenge 8. Benchmarking performance isolation under different multi-
tenancy models.

Unlike traditional system benchmarking, where interference of different
elements that affect performance—multiple users competing for resources, stressing
multiple system resources at the same time—is generally avoided, the expected
cloud workload is complex. We argue that for IaaS clouds interference should
be expected and benchmarked. Specific focus for this challenge, as an extension
of Challenge 8, is to benchmark under a specific multi-tenancy model, from the
shared-nothing approach of multi-cluster grids, to shared-hardware and shared-
virtualized machine approaches prevalent in today’s commercial clouds [48, 52],
and possibly others.

4.4 Metrics

Challenge 9. Beyond traditional performance.

Traditional performance metrics—such as utilization, throughput, and makespan—
have been defined for statically-sized, homogeneous systems. We have raised in
our previous work [35] the challenge of adapting these metrics for distributed
on-demand systems, such as the contemporary multi-cluster grids and commercial
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IaaS clouds. IaaS clouds raise new challenges in defining cloud-related metrics, such
as elasticity [7, 29, 42]; they also require revisiting traditional metrics, including
dependability-related [31].

We also argue for revisiting the analysis of results and their refinement into
metrics. For example, due to their change over time and imperfect performance
isolation, IaaS clouds may require revisiting the concept of variability, beyond the
traditional mean (or median) and standard deviation. Our preliminary work [40]
on the variability of performance in IaaS and other types of clouds indicates that
variability can be high and may vary with time.

Traditionally, system warm-up is excluded from performance evaluation, leaving
only the steady-state period of the system for study. However, especially for hybrid
and other multi-site cloud architectures, we argue for the need to also measure the
transitional period that occurs when a significant fraction of the system resources
are in the process of being leased or released.

Challenge 10. The cost issue.

Although cost models were discussed in benchmarking and performance eval-
uation of both databases and grids, a variety of issues have not been addressed.
Specifically, the sub-leasing cost model used in today’s commercial IaaS clouds
(e.g., Amazon’s “spot” instances) provides a new focus. It is also unclear how to
define costs for a hybrid cloud infrastructure, especially when the performance of
the cloud—throughput, makespan, etc.—does not match the expectation [39, 67].
Last but not least, it is unclear how to define the source of budgets, for example either
infrastructural or operational funds, a situation which affects a variety of economic
metrics. Early approaches exist [14, 43].

5 Experience Towards IaaS Cloud Benchmarking

In this section, we present our experience in joining a community of experts working
on benchmarking IaaS clouds and in conducting independent research on the topic.

5.1 Methodology: The SPEC Cloud Working Group

The SPEC Research Group2 (RG) is a new group within the Standard Perfor-
mance Evaluation Corporation (SPEC). Among other activities, the SPEC RG
facilitates the interaction between academia and industry by co-organizing the Joint

2http://research.spec.org/.

http://research.spec.org/
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ACM/SPEC International Conference on Performance Engineering (ICPE). The
Cloud Working Group3 (CWG) is a branch of the SPEC RG that aims to develop
the methodological aspects of cloud benchmarking (Challenges 1–3 in Sect. 4). In
this section we summarize two initiatives of the SPEC RG and CWG.

Beyond Traditional Performance Traditional performance metrics such as uti-
lization and normalized schedule length [50] have been defined for statically
sized systems. Redefining these metrics for dynamic systems, especially in the
context of black-box resources leased from clouds, is a topic of interest for the
CWG (Challenges 5 and 6). Beyond performance, the CWG is also interested in
other non-functional metrics, such as elasticity, utility, performance isolation, and
dependability (Challenges 4, 9, and 15).

Reproducibility of Experiments (Orthogonal to Our Challenges) Being able to
reproduce experimental results is critical for the validity and lifetime of obtained
results. However, this goal is difficult to achieve when the system under test
is complex, dynamic, or large-scale; IaaS clouds have all these characteristics.
A recent initiative of the RG is to build a repository4 that can be used to share
experimental results, setups, and other meta-data. Moreover, the call for papers
issued by ICPE 2013 includes a focus on reproducibility of experiments.

5.2 SkyMark: A Framework for IaaS Cloud Benchmarking

We have recently implemented a part of the architecture described in Sect. 3 as our
SkyMark tool for IaaS cloud benchmarking [4]. SkyMark already implements two
of the distinguishing features of our architecture (see Sect. 3.2). First, SkyMark
provide services for managing the incoming stream of requests (jobs) and the
resources leased from the cloud [65]. For the former, SkyMark provides single or
multiple job queues, depending on the configuration of the experiment, and each
queue supports a variety of simple scheduling policies (e.g., FCFS). For the latter,
SkyMark supports several static and dynamic resource provisioning policies.

Second, SkyMark supports complex workloads (Challenge 7). Workloads are
split into units. Each unit is defined by the characteristic resource to be stressed (e.g.,
through CPU-intensive jobs), the job arrival pattern (one of uniform, increasing, and
bursty), and the job durations. SkyMark is able, for a given target configuration, to
generate workloads that lead to a user-specified average utilization in the absence of
system overheads.

Using SkyMark, we were able [65] to benchmark three IaaS clouds, including
Amazon EC2. We have used in out benchmarks six provisioning policies and

3http://research.spec.org/working-groups/rg-cloud-working-group.html.
4ICPE Organizers, Reproducibility repository approved, http://icpe2013.ipd.kit.edu/news/
single_view/article/reproducibility-repository-approved/.

http://research.spec.org/working-groups/rg-cloud-working-group.html
http://icpe2013.ipd.kit.edu/news/single_view/article/reproducibility-repository-approved/
http://icpe2013.ipd.kit.edu/news/single_view/article/reproducibility-repository-approved/
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three allocation policies, with provisioning and allocation policies considered
either independently or together. We were also able [4] to evaluate, for our
OpenNebula private clouds, the interference occurring in various multi-tenancy
scenarios (Challenge 8).

5.3 Real-World Evaluation of IaaS Cloud Performance

Several of the challenges we formulated in Sect. 4 are the outcome of our previous
research conducted from the past three years in benchmarking and understanding
the performance of several cloud infrastructures. We summarize in the following
some of our main results that motivated this classification.

Challenge 2 We have observed the long-term evolution in performance of clouds
since 2007. Then, the acquisition of one EC2 cloud resource took an average time
of 50 s, and constantly increased to 64 s in 2008 and 78 s in 2009. The EU S3
service shows pronounced daily patterns with lower transfer rates during night hours
(7 PM to 2 AM), while the US S3 service exhibits a yearly pattern with lowest mean
performance during the months January, September, and October. Other services
have occasional decreases in performance, such as SDB in March 2009, which later
steadily recovered until December [40]. Finally, EC2 spot prices typically follow a
long-term step function [56].

Challenge 3 Depending on the provider and its middleware abstraction, several
cloud overheads and performance metrics can have different interpretation and
meaning. In IaaS clouds, resource acquisition is typically the sum of the installation
time and boot times, and for Amazon EC2 has a stable value in the order of
minutes [39]. Other IaaS providers, such as GoGrid, behave similarly to grids and
offer highly variable resource acquisition times, i.e., one order magnitude higher
than EC2. In contrast, the Google App Engine (GAE), which offers a higher-level
PaaS abstraction, defines the acquisition overhead as the time between the issue of
a HTTP request until the HTTP response is returned; the overhead of GAE is in the
order of seconds [57], an order of magnitude lower than for EC2. The performance
interpretations and differences can have similarly high variations depending on
the middleware. The black-box execution approach in IaaS clouds of externally-
compiled software encapsulated in VMs generates high degradations from the
expected peak performance, up to six to eight times lower than the theoretical
maximum of Amazon’s “Elastic Compute Unit” (ECU, 4.4 GOPS) [39]. Parallel
computing-wise, the performance of today’s IaaS is below the theoretical peak of
today’s dedicated parallel supercomputers even for demanding conveniently parallel
applications by 60–70 %. Furthermore, benchmarking the sustained performance
of other infrastructures such as GAE is almost prohibited by the sandboxed
environment that completely hides the underlying hardware on which the instance
is started with no user control, raising the need for Challenge 6 [57].
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The IaaS middleware has a significant impact on the PaaS environments
researched on top. An interesting example is Amazon Simple Workflow (SWF)5

that enables programming and executing workflow applications on the EC2 cloud.
Our previous analysis[45] indicates that SWF represents an attractive environment
for running traditional workflow applications, especially those consisting of
numerous relatively short activities affected by the large grid middleware overheads.
In contrast, porting existing grid workflow middleware environments such as
ASKALON to the cloud, although effective, exhibit performance losses due to
their high middleware stacks required for portability in supporting a wider range of
distributed and heterogeneous cluster, grid, and cloud computing infrastructures, as
opposed to the SWF restricted, but highly optimized for the EC2 infrastructure.

Challenge 4 With respect to reliability, the payment models and compensations in
case of resource failures make clouds a more promising platform than traditional
distributed systems, especially grids. Interesting from the reliability point of view
are the EC2 spot instances that allow customers to bid on unused capacity and run
those instances for as long as their bid exceeds the current spot price. Our analysis
on this risk-reward problem between January 2011 and February 2012 demonstrates
that spot instances may represent a cheaper but still reliable solution offering up to
99 % availability provided that users make slightly generous bids, such as $0.35 for
m1.large instances [56].

Challenge 5 Although multi-cloud environments promise seemingly infinite scal-
ability and performance, our experience revealed that this is not always the case for
communicating non-embarrassingly parallel applications. For example, our study
on using Amazon EC2 and GoGrid as independent providers[16] illustrated that
multi-clouds can help in shortening the makespan for workflow applications which
do not require transferring large amounts of data among activities. In situations
when data transfers dominate the computation time, the workflow does not benefit
from a federation of Clouds and performs better in a single provider configuration.
A deeper analysis of the results also reveals that cheap schedules targeting cost
minimisation rarely consider federated resources and rather use resources from a
single provider. An explanation for this behavior is the hourly based price model
offered by the providers, cheap solutions trying to increase resource utilisation
instead of launching simultaneous instances.

Challenge 9 Regarding the importance of system warmup, an interesting case is
the modern just-in-time (JIT) compilations of Java application running on GAE
infrastructure which can boost the performance of interpreted Java byte code by
a factor of four in a predictable manner (from the third request onwards in case of
GAE) [57].

Challenge 10 The variety of cost models combined with performance variability
makes the cloud provider selection a difficult problem for the cloud user. For

5https://aws.amazon.com/de/swf/.

https://aws.amazon.com/de/swf/
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example, our analysis in [57] shows that computing costs are lower on GAE than
in EC2 for very short jobs, mostly due to the cycle-based payment granularity,
as opposed to the hourly billing intervals of EC2. The cost model may also vary
within one provider. For example, the EC2 reserved instances are cheaper than
standard instances if their usage is of about 50 % for for one year reservations, and
of about 30 % for three year reservations [56]. In contrast, spot instances on EC2
may represent a 60 % cheaper but equally reliable alternative to standard instances
provided that a correct user bet is made [56].

5.4 Statistical Workload Models

Challenge 7 In our previous work, starting from multi-cluster grid traces, we
have proposed statistical models of BoTs [38], and characterized BoTs [34, 38]
and workflows [34]. We found, notably, that BoTs are the dominant programming
model for compute-intensive workloads in grids—they account for 80–90 % of both
number of tasks and resource consumption. We have characterized and modeled
statistically MapReduce workloads, starting from four traces of large clusters,
including Google’s [13].

A recent trend in data-intensive processing is the increasing automation of work,
as workflows of inter-dependent tasks. We have modeled conceptually and charac-
terized empirically [28] the workflow of a class of MapReduce applications, where
time-stamped data collected from super-nodes in a global-scale deployment of a
hundred-million-node distributed computing system are analyzed. This MapReduce
use case has challenging features for MapReduce systems such as Hadoop and its
successor YARN: small (kilobytes) to large (hundreds of megabytes) data sizes
per observed item, very poor (100:1) to excellent (1:1 million) output:input ratio,
and short (seconds) to long (hours) individual-job duration. Our findings indicate
that traditional benchmarks for MapReduce that rely on single applications, such
as PUMA, HiBench, ClueWeb09, and Grid/PigMix, are well complemented by
workflow-based benchmarking.

5.5 Open Data: Several Useful Archives

Challenge 7 Workload and operational trace archives are an important tool in
developing benchmarks. Although IaaS clouds are new, several online archives
could already provide interesting data.

General workload traces for parallel systems and multi-cluster grid are provided
by the Parallel Workloads Archive [18] and the Grid Workloads Archive [37],
respectively. For an example of domain-specific workload traces, the Game Trace
Archive [25] publishes data representative for online gaming.
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For operational traces, the Failure Trace Archive [47] and the P2P Trace
Archive [70] provide operational information about general and domain-specific
(peer-to-peer) distributed systems.

Conclusion
The importance of IaaS cloud benchmarking has grown proportionally to the
increased adoption of this technology, from small and medium businesses
to scientific HPC users. In contrast to the fragmented field of today, we
discuss in this work a more focused, unified approach to IaaS benchmarking,
in which the community can join into identifying the main challenges,
and then share best-practices and experiences. This approach could greatly
benefit (prospective) cloud users with system procurement and performance
management.

The unified view includes a generic architecture for IaaS cloud bench-
marking, and focuses on ten important methodological, system-, workload-,
and metrics-related issues. In our generic architecture, resource and job
management can be provided by the testing infrastructure, there is support
for black-box systems that change rapidly and can evolve over time, tests are
conducted with complex workloads, and various multi-tenancy scenarios can
be investigated.

We also discuss four classes of challenges in developing this approach:
methodological, system property-related, workload-related, and metric-
related. We identify ten main challenges to benchmarking IaaS clouds:

1. Experiment compression. (Methodological)
2. Beyond black-box testing through testing short-term dynamics and long-

term evolution. (Methodological)
3. Impact of middleware. (Methodological)
4. Reliability, availability, and related system properties. (System)
5. Massive scale, multi-site benchmarking. Cloud-bursting. Co-allocation.

(System)
6. Performance isolation. (System)
7. Realistic yet tunable models of workloads and of system performance.

(Workload)
8. Benchmarking performance isolation under different multi-tenancy mod-

els. (Workload)
9. Beyond traditional performance. Elasticity and variability. (Metric)

10. The cost issue. Relate with metrics such as utilization, throughput, and
makespan. (Metric)

Last, we summarize our experience towards benchmarking IaaS clouds.
We have initiated various community-wide efforts via our work in the SPEC
Research Group and its Cloud Working Group. We also present here a sum-
mary of our work in building models and tools for IaaS cloud benchmarking.
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