Scheduling Jobs in the Cloud
Using On-Demand and Reserved Instances

Siqi Shen', Kefeng Deng'2, Alexandru Iosup!, and Dick Epema’

! Delft University of Technology, Delft, The Netherlands
{S.Shen,A.Iosup,D.H.J.Epema}@tudelft.nl
2 National University of Defense Technology, Changsha, China
Dengkefeng@nudt.edu.cn

Abstract. Deploying applications in leased cloud infrastructure is in-
creasingly considered by a variety of business and service integrators.
However, the challenge of selecting the leasing strategy — larger or faster
instances? on-demand or reserved instances? etc.— and to configure the
leasing strategy with appropriate scheduling policies is still daunting for
the (potential) cloud user. In this work, we investigate leasing strate-
gies and their policies from a broker’s perspective. We propose, CoH, a
family of Cloud-based, online, Hybrid scheduling policies that minimizes
rental cost by making use of both on-demand and reserved instances. We
formulate the resource provisioning and job allocation policies as Inte-
ger Programming problems. As the policies need to be executed online,
we limit the time to explore the optimal solution of the integer program,
and compare the obtained solution with various heuristics-based policies;
then automatically pick the best one. We show, via simulation and us-
ing multiple real-world traces, that the hybrid leasing policy can obtain
significantly lower cost than typical heuristics-based policies.

1 Introduction

A growing number of applications are running in the cloud. Academia [1H7]
and industry [8] are both increasingly using cloud resources as infrastructure
to serve their users, due to the elastic, flexible, and pay-as-you-go features of
Infrastructure-as-a-Service (IaaS) clouds. Cloud brokers need to lease resources
from TaaS clouds cheaply, yet execute the users’ jobs in time. To achieve this,
cloud brokers must use scheduling policies that match diverse requirements.
Finding scheduling polices that can schedule diverse workloads with zero waiting
time yet cheaply is the focus of this work

TaaS clouds offer their users various types of machine configurations: different
amount of CPU cores, memory, and disk. It is non-trivial for a cloud broker
to determine the combination of machine configurations for user demands. This
situation is complicated by the current TaaS pricing models: machines configura-
tions are not priced linearly with their performance. For example, an EC2 large
instance can serve more web requests per core than the small instance, but their
price per core is the same [9]. Moreover, for the same machine configuration, the
clouds offer different billing options on-demand-, reserved-, and spot-instances,

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 242-P57] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances 243

which are charged differently. Scheduling enough resources to meet user demands
yet keep the cost low while adapting to workload changes remains challenging,
despite recent research efforts [9HIT].

In this work, we present a Cloud-based, online, Hybrid scheduling policy
(CoH), which keeps the rental cost of cloud resources low by finding the best
combination of machine configurations and billing options. At the core of this
policy are its provisioning and allocation strategies. We formulate these strate-
gies as Integer Programming Problems (IPP). As CoH needs to be executed
online, the time to obtain a decision should be low. We limit the time to solve
the IPP, and run simultaneously various heuristics. The CoH compares the result
of IPP and heuristics, and picks the best one as its scheduling decision. Thus,
a novel aspect of CoH is its portfolio-based scheduling strategy [12] adapted to
TaaS clouds. Further, we devise, CoH-R, an extension of CoH to also makes use
of reserved instances, which can lead to significant cost reduction compare to
policies that use on-demand instances only.

The major contributions of this work are three-fold.

1. A novel online scheduling policy, CoH, which makes scheduling decision using
a portfolio of IPP and heuristics-based approaches (Section []).

2. A policy extended from CoH, CoH-R, which also makes use of reserved in-
stances to reduce rental cost (Section H).

3. An evaluation of our policies for two broad application domains, grid com-
puting and online game hosting, using trace-based simulation (Section [{l).

2 System Model

2.1 Workload and Resource Model

The workload model in this work is a set of independent jobs. The resource
requirements and the runtime of each job are known when the job arrives in
the system. Once started, jobs run to completion, so we do not consider task
preemption or migration during execution.

Each job can be described by a tuple (r;,a;,d;), where r; is the resource
requirement of job i, a; is the arrival time of job 4, and d; is its departure time.
We assume that a computer can host one or multiple jobs. This model is similar
to the work of Stillwell et al [I3]. This kind of jobs is common: a compute
node can run multiple MapReduce tasks; an online game hoster may consolidate
several game servers on the same machine; etc. The resource requirements of
each job, r;, could be a vector indicating multiple resource requirements (e.g.,
CPU and Memory), or a scalar value (e.g., CPU only). We focus on the CPU
requirement. In practice, r; can be obtained though profiling [9,[14] or can be
provided by the user.

We model the operation and billing model of cloud providers based on the real
case of Amazon EC2. We assume that clouds have infinite capacity. Each newly
provisioned VM needs serval minutes to be booted [I0,I4]. An VM is charged
per hour; even a factional consumption of less than one hour is counted as one
hour. An VM indexed by j, has capacity denoted by w; and hourly cost c;.

244 S. Shen et al.

2.2 Scheduling Model

In our scheduling model, all machines are provisioned exclusively from clouds.
The cloud broker has pre-configured and stored in the cloud all the necessary
VM images to run users’ jobs. All the incoming jobs are enqueued into a queue.
A system-level scheduler, running on a dedicated system, manages all the jobs
and a pool of machines, and decides whether to provision new VM from clouds
and/or to allocate jobs to VMs.

The scheduler is executed periodically (e.g., every 10 seconds). At each schedul-
ing moment, the scheduler performs five tasks: (1) Predicting future incoming
workloads; (2) Provisioning necessary VMs in advance, from clouds; (3) Allo-
cating jobs to VMs, (4) Releasing idle VMs (which don’t have job running on
them) if its Billing Time Unit (BTU) is close to increase (e.g., 10 second before
the leased hour). (5) If the wait time of un-allocated jobs is high, starting the
necessary number of VMs. We design in the next section a scheduling policy,
CoH to perform tasks (3) and (4). We further extend this policy in Section €l
to also use reserved cloud instances. As workload prediction is not the focus
of this paper, we assume that there exists a predictor that can achieve perfect
prediction of future workload. Relatively good predictor [15] already exists for
the type of workload we target in this work.

3 Scheduling Using On-Demand Instances

This section describes CoH, a Cloud-based, online, Hybrid scheduling policy
using on-demand instances. The strategy of CoH is presented in Section [31
CoH needs to take both provisioning and allocation decisions, that is, to find a
combination of VMs, and a mapping between jobs and VMs. We formulate the
above problem as an Integer Programming Problem (IPP) in Section and
then select various heuristics to assist CoH in Section B3l

3.1 Policy Overview

CoH actively provisions VMs before they are needed, and maps jobs to already
provisioned VMs according to the best mapping it can find. CoH finds the combi-
nation of VMs and the mapping by solving an online scheduling problem through
solving (partially) one IPP and by using several heuristics, independently and
simultaneously. As an online scheduler, CoH needs to take scheduling decisions
within limited amounts of time; thus, it limits the time used to solve IPP, and
compares the result of the IPP and heuristics. CoH acts as a portfolio-based
scheduler; in which multiple strategies are considered simultaneously at each
scheduling moment. The strategy that has the best objective value (defined in
formula (1)) is picked as the scheduling decision. Heuristics are needed because
the solution of IPP under limited time may be suboptimal or even infeasible
(CoH may not find a feasible solution of the IPP in limited time).

Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances 245

Table 1. Overview of notations in Section Bl

Tij, whether job i is assigned to jth VM of type k, wiy; € {0,1}
Yik whether jth VM of type k is to-be-provisioned, yx; € {0,1}
Zij whether job 4 is assigned to jth running VM, z;; € {0,1}
Ck hourly cost of VM of type k

cj hourly cost of running VM j

w; capacity of running VM j

fek full capacity of VM type k

T resource consumption of job 4

d; departure/end time of job ¢

S; The start time of VM j: the time when it started to boot
ld; latest departure time: the time that the final running job finish in VM j
ct current time

M number of newly arrived jobs, M ={1,...,M}

N number of running VMs, N={1,..,N}

K number of types of VMs, K={1,..,K}

[t] math operation, divide time ¢ by 3600 and get its ceil value.

3.2 Formalization of the Scheduling Problem

CoH needs to provision enough number of VMs to support all the incoming jobs,
and to allocate all the jobs smartly such that the rental cost is minimized. An
VM that has jobs running on it cannot be shut down, so it will still incur cost.
Unnecessary cost will be incurred if long-running, low-resource requiring jobs are
assigned to expensive VMs. We formulate the scheduling problem as follows. The
goal of the scheduling problem, as defined in formula (1), is to minimize the cost
while ensuring enough VMs for the incoming jobs. All the notations used in this
section are listed in Table[ll An VM to-be-provisioned is identified by its identifier
j and its type k, while a running VM is identified only by its identifier j.

Minimize
K M
DD iy x [Tpe%(di X xij,) —ct] x ex) + R (1)
k=1 j=1
N

R= Z max{max(d X zi5),1dj} — s5)] X ¢j)
j=1
subject to

M
Zzijxrigwj V]EN (2)

K M
Zinjkxmgfckxyjk V]EM (3)
k=1 i=1

246 S. Shen et al.

K M

ZszJrZZx”k 1 VieM (4)
k=1 j=1
xijkgyjk Vi,j € M,Vk € K (5)

The cost of scheduling consists two parts: the cost of to-be-provisioned VMs and
the cost of running VMs (defined by R). Each to-be-provisioned VM is charged
between the current time (ct) and the latest departure time of its allocated
jobs. The sum of the cost of running VMs, denoted by R, is defined similarly:
each running VM is charged between the time it was started (s;) and the latest
departure time of its jobs (jobs that are running on VM and the jobs to-be-
allocated to it).

This IPP is subject to a few constrains, which we describe in turn. Constraint
(2) ensures that the allocated jobs in each VM cannot exceed the running VMs’
capacity. Constraint (3) ensures that the allocated jobs in each to-be-provisioned
VM can not exceed the VM’s capacity. Constraint (4) ensures that each job
is only allocated to one VM. Constraint (5) ensures that each job will not be
allocated to a VM that will not be provisioned. The decision variables z;;, and
Yk ; are binary. If the result of this IPP is that yx; = 0, Vk €K, Vj € M, there
will be enough VM capacity left to allocate all the future jobs. Otherwise, more
VMs are needed. If z;;, = 1, job i will be allocated to the to-be-provisioned
VM with identifier j type k.

3.3 Scheduling Heuristics

We explore for CoH a large class of scheduling heuristic algorithms. They work
as follows. While there are un-allocated jobs, each algorithm performs a loop
consisting of four steps. Firstly, the algorithm sorts all the un-allocated jobs
using job selection criteria and sorts all the VMs using VM selection criteria.
Secondly, the algorithm picks the first un-allocated job. Thirdly, it picks the first
VM which should have enough capacity left for the job. And then allocate the
job to the selected VM. If such an VM does not exist, a new VM is provisioned
according to VM type selection criteria and the job will be allocated in the next
loop.

This general class of heuristic algorithms uses three criteria: job selection,
VM selection, and VM type selection criteria. All job selection and VM selection
criteria used in this work are listed in Tables Bl and Bl For VM type selection,
we use a Cost-Efficient heuristic, which always chooses the VM with the largest
capacity/cost value.

Most of the selection criteria we use in this work are simple, which allows them
to be run online. We describe some of the criteria below. Latest arrival time (LA)
sorts the VM according to the latest arrival time of jobs in each VM in decreasing
order. Opposite to LT, Earliest arrival time (EA) sorts the VM by earliest arrival
time of jobs in increasing order. Similar to LT, Latest departure time (LD) picks
the VM which has the job that has the latest departure time; Earliest departure

Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances 247

time (ED) does the opposite. The latest average arrival time (LAA) and earliest
average arrival time (EAA) sorts VMs according to the average arrival time of
their jobs in decreasing and increasing order, respectively. Close to full hour
(CFH) makes use of the billing model of EC2; it always puts jobs on VM whose
Billing Time Unit (BTU) is closest to be increased, while Far from Full Hour
(FFH) is the opposite. In this work, the scheduling heuristic method specified by
its job and VM selection criteria is uniquely identified as {job selection}-{ VM
selection}. For example, the FCFS-Rnd heuristic uses First-Come-First-Server
(FCFS) for job selection, random (Rnd) for VM selection and the cost-efficient
criteria for VM type selection.

Table 2. Job selection criteria Table 3. VM selection criteria
Name Description Name Description
FCFS First-come-first-server Rnd Random

RR round-robin LM Largest capacity VM first
LJF Largest job first SM Smallest capacity VM first
SJF Smallest job first LA Latest arrival time
LTJF Longest run-Time job first EA Earliest arrival time
STJF Shortest run-Time job first LD Latest departure time

ED Earliest departure time
LAA Latest average arrival time
EAA Earliest average arrivial Time
CFH Close to Full Hour
FFH Far from full hour

4 Scheduling Using Reserved and On-Demand Instances

Cloud providers allow their users to reserve VM instances, long-term, for reduced
cost. For instance, Amazon offers reserved instance, which can be rented for 1-3
years for a lower price than their on-demand counter-parts. When using reserved
instead of on-demand instance, for the same VM configuration, users can pay a
higher upfront cost (UF;) for a lower hourly cost (C;). Currently, there are three
types of reserved instances supported in EC2: lightly utilized, medium-utilized,
and heavily utilized reserved instances. For the lightly utilized and medium-
utilized instances, users need to pay an upfront cost and pay for each hour
the VM is running. For the heavily utilized instances, users need to pay an
upfront cost and pay for each hour during the reserved term even if the VM
is not running. The hourly cost of Amazon EC2 instances are listed in Table
Bl We present CoH-R, an extension of CoH, which uses reserved instances to
reduce the operational cost. We describe the strategy of CoH-R in Section [A.T]
then describe the method used to determine the number and types of reserved
instances to be used in Section

248 S. Shen et al.

4.1 Policy Overview

Assuming that it is given an arbitrary amount of reserved instances, CoH-R
makes use of these reserved instances as follows: the heavily utilized instances
are always on, while the medium and lightly utilized instances are shut-down
when they do not have any jobs running on them before their Billing Time Unit
(BTU) is about to increase (m seconds before the BTU increases). Whenever
CoH plans to start a new VM of type k, CoH-R firstly looks at medium-utilized
instances of type k, and starts one of them if any is off. If no medium-utilized
instance of type k exists, CoH-R tries to use a lightly utilized instance of type
k. As a last resort, CoH-R uses on-demand instance of type k.

Having too few reserved instances will not benefit much from the reduced
price; while reserving too much may actually increase operational cost. We do
not seek to find the optimal number of reserved instances, because obtaining the
optimal solution requires exact workload information of the entire reservation
period (e.g., one year). Even if we can know the workload of the upcoming time
period, obtaining the optimal solution via solving an IPP that takes the exact
workload as input is computationally infeasible.

4.2 Determining the Reservation Plan

CoH-R only requires the workload distribution instead of exact information of
the number of VMs needed at each time interval. For simplicity of analysis, we
assume VM start-up and shut-down time are instantaneous (In experiment, we
set the start-up time as two minutes.). Assuming the number of VMs (resource
demand) needed for the current time interval ¢ is D;, we can obtain the cost
needed at each interval B(D;) as follows. If D; is lower than the number of
heavily-utilized instances (N3), no other VMs will be needed, as the heavily
utilized instances can provide enough computing resources. If Dy is high than N3,
but lower than the total number of heavily and medium-utilized instances (D; <
N3+ Ns), CoH-R needs to provision D; — N3 medium-utilized instances. If D, is
higher than the sum of heavily and medium-utilized instances (D; > N3 + Na)
but lower than the total number of reserved instances, CoH-R needs to provision
all the heavily and medium-utilized instances and D; — (N3 + N3) lightly utilized
instances. Last, if D; is higher than the sum of all reserved instances, CoH-R
needs all the reserved instances and D; — (N1 + N2 + N3) on-demand instances.

CoH-R obtains the number of reserved VMs needed, of each type, via
finding the combination of number of reserved instances (N;) that minimizes
Zthl B(Dy) + 3 e (UFy x Ni), where T' is the number of intervals (e.g, hour)
of a time period (e.g, year or month). Further, if the resource demand of each
interval does not affect the other time intervals (in practice, most of the jobs’
runtime is short, in the order of tens of minutes), the goal can be reformulated
via only using the probability of VMs needed at each time interval as below,
(XCM Pr(D = i) x B(i)) x T + X ex(UFx x Ny), where Pr(D = 1) is the
probability distribution of demand, and K is the set of reserved type, and M is
the maximal number of VM needed.

Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances 249

We extend the above method which deal with one machine configuration only,
to allow it to deal with multiple machine configurations. The goal is to find the
number of reserved instances (N;x) of machine configuration j and reserved type
k, needed, to minimize the cost defined in formula (@l).

(Z Pr(D=1i) x B(i)) x T+ > > (UFjx x Nji) (6)

j€l kek

In formula (@), J is the set of machine configurations and U Fjj, is the upfront cost
of reserved instance of machine configuration j and reserved type k. The billing
function B(D) need to be changed to be the lowest cost to meet the demand
D via finding the combination of reserved and on-demand instances to be used.
B(D) ={Minimize 3 ;5> yex(njk X Cjk) +Zjej(”§d xc9)} , where nj; and cjp,
are the number and the cost of the reserved instance with machine configuration
j and reserved type k, respectively. ngd and ¢] are the number and the cost of
the on-demand instances of machine configuration j, respectively. The capacity
offered by n ;i reserved instances and n;?d on-demand instances should be enough
to satisfy demand D.

5 Experimental Results

In this section, we evaluate the performance of our proposed approaches using
multiple real-world traces corresponding to two separate but popular domains:
grid computing and online game hosting. Firstly, we compare CoH against var-
ious commonly used heuristics. Then, we evaluate CoH-R, which uses reserved
instances to further reduce cost, and compare it to CoH. Our results indicate
that our proposed approaches can lead to significant lower cost than heuristics.

5.1 Experimental Setup

We conduct experiments using three real-world workloads LCG, Grid5000, and
Dotalicious which are taken from public workload archives [I6HIS]. LCG and
Grid5000 contain information about the computing activities of two grids while
DotaLicious contains workload information of a game platform. We use the first
year traces Grid5000 and Dotalicious, and the full trace of LCG (13 days) as
our input workloads. The common data we find in the above traces are, for each
recorded job, its job id, the arrival time, and the departure time. The basic
statistics of these workloads are listed in Table @l Notably, the gaming server
have similar runtime (CPU requirement) to Grid5000 jobs in the order of tens
of minutes. Game servers are also computationally intensive, a result of having
to perform virtual world physical simulation.

As not all the traces contain resource requirements for each job, we generate
for each job resource requirements using 3 different methods: Heterogeneous,
Constant-100, and Constant-10. For Heterogeneous workload, we generate each
jobs’s resource requirements as ten times a random number which is between 1 to

250 S. Shen et al.

10. For Constant-100 method, each job’s resource required is 100. For Constant-
10 method, each job’s resource required is 10. We only consider two instance
types: small and large. We model a small EC2 instance’s capacity as 100 and
a large instance’s capacity is 410. Large instance is more cost efficient than
small instance. Their COS are summarized in Table

As running all the heuristics online is time consuming, we evaluate the heuris-
tics by running simulation and pick the heuristics that have good performance
as alternative method to compete with the solution obtained by solving IPP. We
find that none of heuristics can perform always best, across all scenarios, and
find that the job selection criteria does not have a significant impact on cost but
VM selection criteria does have an important impact on cost. We pick FCFS-SM
when the input workload is heterogeneous, and use FCFS-LD and FCFS-CFH
when the workload is homogeneous (Constant-10 and Constant-100).

All the experiments are conducted using our own simulatoi and repeated
at least 10 times. We set the acquisition time of an VM to two minutes and
the scheduler is executed every 10 seconds. We use IBM CPLEX to solve the
formulated IPP when the number of jobs to be scheduled is lower than 50 and
set the time limited as two seconds. As our methods have proactively provision
VMs for all the jobs, the wait time of each job is zero. We evaluate one metric,
the rental cost. The rental cost is the price paid to cloud providers for all the
rented computing resource. We focus on cost because it is a major barrier for
cloud adoption.

For calculation of the utility of all the methods, we compare the lower-bound
for cost against actually paid cost. The lower bound for cost is calculated by
assuming that we have an ideal computer that it can vertically scale to the
any of the desired capacity. The vertical scaling takes zero time and the VM is
charged by its actual usage of resource which scales linearly with its capacity. So
the optimal cost can be computed as [Zfil ri X (d; —a;)] +wg X ¢, Vi€N,
where IV is the total number of jobs, and wy and ¢ are the capacity and the
cost of the most cost-efficient VM, respectively.

Table 4. Overview of traces

Trace #jobs average runtime [s] duration source
Grid5000 200,450 2728 May 2004 - May 2004 Grid workload archive [I7]
LCG 188,041 8971 Nov 2005 - Dec 2005 Parallel workload archive [I6]
DotalLicious 109,251 2231 Apr 2010 - Apr 2011 Game trace archive [I8[19]

Table 5. Overview of cost of EC2 instances: Small and Large

Small (hourly, upfront) [$] Large (hourly, upfront) [$]

On demand (0.065, 0) (0.26, 0)
Lightly utilized (0.039, 69) (0.156, 276)
Medium utilized (0.024, 160) (0.096, 640)
Heavily utilized (0.016, 195) (0.064, 780)

! http://aws.amazon.com/ec2/pricing/
2 http://www.pds.ewi.tudelft.nl/~siqi/simulator.htm

http://aws.amazon.com/ec2/pricing/
http://www.pds.ewi.tudelft.nl/~siqi/simulator.htm

Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances 251
x 10°
14000] — —
Grid5000 = E3FcFs-sm 4LCG = E3FcFs-sm
12000 = [FCFS-CFH = [FCFS-CFH
= [CJFCFs-LD] [CJFCFs-LD
10000 ‘E 7 CoH 3 ‘E EZ2AcoH
2 ool £y | @ =
3 = \E 7| B \E
3 eo0o| 5 \E 39 E E
O = NS o = N\
H \E \E \E
4000| N5 \E = \E
(T = Tl \E
HEL B ‘ LElH LB
Heterogeneous Constant-100 Constant-10 Heterogeneous Constant-100 Constant-10
Fig. 1. Cost of various scheduling methods: Grid5000 (Left) and LCG (Right)
7000 - 14000 s
Dotalicious o A Grid5000 BRNFCS GrH
6000 \ R 12000 3 T CoH-oneType
§= _ EFACHR §= Ml CoH-R
5000 %E 10000 %E
& 4000 §E & 5000 §E
8 3000 §§ & 6000 §§
2000 %E 4000 §§
\E \E
1000 %E 2000 §§

0 i 0 i
Heterogeneous Constant-100 Constant-10 Heterogeneous Constant-100 Constant-10

Fig. 2. Effect of using reserved instances: Dotalicious (Left) and Grid5000 (Right)

5.2 Results

We first evaluate CoH against various heuristic methods. Figure [shows the
average experiment results using Grid5000 and LCG datasets, respectively. The
error bars are the standard deviation. Figure [I] shows the lower bound for cost
(LB), and results for FCFS-SM, FCFS-CFH, FCFS-LD, and CoH, from left to
right; grouped by type of workloads. We find that CoH performs better than
any of the heuristics. For the Grid5000 dataset, CoH can obtain about 20% to
40% lower cost than any heuristic. For the LCG dataset, CoH can obtain 5% to
20% lower cost. This indicates that CoH can find better combinations of VMs,
and better mapping between jobs and VMs.

The cost obtained through CoH is about 1.1 to 1.6 times higher than LB.
The utilization of CoH, that is, the average use of leased VMs, ranged from 90%
to 63%. We identify three reasons why CoH is higher than the lower bound
(LB): Firstly, our scheduler is run online, thus not having all the necessary in-
formation. Secondly, the billing model of the cloud: a fractional consumption
of a VM’s capacity is charged as the fully busy VM. Thirdly, the boot-up time
of VM is not negligible. One possible way to lower the gap between LB and CoH

252 S. Shen et al.

is to allow the jobs to wait for better scheduling opportunity, so that scheduler
can pack more jobs in the same VM instead of starting a VM for each short job.
This approach would be particularly effective during bursts in the workload.

We evaluate CoH-R using the Dotalicious and Grid5000 datasets. The results
are shown in Figure Bl We do not evaluate LCG dataset because it lasts for
only 13 days (less than the minimal reservation period of EC2). We compare
in Figure & FCFS-CFH, CoH, CoH-oneType, and CoH-R. CoH-oneType is a
variation of CoH-R which only uses heavily-utilized instance. For the Dotalicious
dataset, CoH-R and CoH-oneType obtain lower cost than CoH. CoH-R can
obtain lower cost than CoH-oneType, because it takes advantage of the cost
reduction and flexibility provided by different reserved types. The result obtained
by CoH-R using the Dotalicious dataset is about 13% to 20% lower than CoH
and about 30% to 60% lower than FCFS-CFH. For the Grid5000 dataset, the
performance of CoH-R obtain about 3% to 5% lower cost than CoH, but still
about 20% to 50% lower cost than the heuristic. The reason why CoH-R only
obtains a small improvement on Grid5000 is because Grid5000 contains busty
workloads with short jobs, and some very long jobs. As CoH-R always schedules
jobs to VMs as soon as the jobs arrive in the system, this cause some long
jobs to run on on-demand instances instead of the cheaper reserved instances.
In summary, CoH-R can obtain about 20% and up to 60% lower cost than the
heuristic. CoH-R can obtain significantly lower cost than heuristics which use
on-demand instances only.

6 Related Work

A significant body of work has already focused on cloud resource scheduling
from a cloud provider’s perspective [20H23]. In this context, the common goals
are to reduce the storage/electricity cost and to improve platform utilization. In
contrast, in this study we schedule resources from a broker’s perspective, with
the goal to minimize the rental cost.

Previous studies have focused on provisioning and allocation of cloud re-
sources, under various constraints. In contrast to these studies, which we de-
scribe in the following, we consider multiple instance types, billing models and
heterogeneous workload. Closest to our work, Genaud and Gossa [24] evaluate
provisioning heuristics for on-demand resources. Villegas et al. [I1] conduct a
performance-cost analysis of scheduling policies for TaaS Cloud. Deng [25] et al
develop a portfolio scheduler. Oprescu and Kielmann [26] schedule bag-of-tasks
on clouds focusing on budgets and runtime. They formulate the provisioning
problem as a Bounded Knapsack Problem and allocate jobs to VMs round-robin.
Mao et al. [27] propose a linear program for provisioning, and allocate jobs ran-
domly to VMs. Sharma et al. [9] use on-demand instances and use migration but
only for homogeneous workloads.

Hong et al [28] use a method to determine number of reserved instances of
one reservation type. We show in our experiments that it is necessary to use
multiple reserved instance types to reduce cost. Chaisiri [29] propose an algo-
rithm to determine the number and types of reserved VM to be used by solving

Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances 253

a stochastic IPP to minimize expected cost. They limit the on-demand instances
can be only provisioned in specific provision phase, while we proactively provi-
sion VM at any necessary time. Ostermann and Prodan [30], and Song et al. [31]
use spot-instance to reduce cost. Their work complement ours.

7 Conclusion

It is challenging to select among machine configurations and billing options of-
fered by clouds to fit user demand while reducing operational cost. In this work,
we propose CoH, a Cloud-base, online, Hybrid scheduling policy which make uses
of multiple machine configurations to plan enough capacity for users with less
cost. We formulate the resource provisioning and the job allocation problems as
Integer Programming Problems (IPP). To obtain the scheduling decision online,
CoH limits the time of exploration for a solution and only obtains an intermedi-
ate IPP solution. CoH makes scheduling decision by picking the best among the
solution of IPP and various heuristics; thus, CoH operates as a portfolio sched-
uler. Further, we propose CoH-R, a policy that makes use of both on-demand
and reserved instances to reduce cost. Via simulation using real-world traces, we
show that our approaches can lead to significant lower cost than heuristics while
operating online. We plan to investigate the wait-time and rental cost trade-off
for bursty workload comprised of many short jobs.

Acknowledgement. The work is supported by CSC-TUD grant, the National
Basic Research Program of China (973) under grant No.2011CB302603, NSFC
under grant No.60903042, and by the STW/NOW Veni grant 11881.

References

1. Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically
extend site resources. In: CCGrid 2010, pp. 43-52 (2010)

2. Schwiegelshohn, U., Badia, R.M., Bubak, M., et al.: Perspectives on grid comput-
ing. In: FGCS 2010, vol. 26(8) (2010)

3. Murphy, M., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual
organization clusters. In: CCGrid 2009, pp. 364-371 (2009)

4. Ben-Yehuda, O.A., Schuster, A., Sharov, A., Silberstein, M., Tosup, A.: Expert:
Pareto-efficient task replication on grids and a cloud. In: IPDPS 2012, pp. 167-178
(2012)

5. Folling, A., Hofmann, M.: Improving scheduling performance using a Q-learning-
based leasing policy for clouds. In: Kaklamanis, C., Papatheodorou, T., Spirakis,
P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 337-349. Springer, Heidelberg
(2012)

6. de Assuncao, M.D., Costanzo, A.d., Buyya, R.: Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters. In: HPDC 2009, pp. 141-150
(2009)

7. Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient parallel
data processing in the cloud. In: TPDS 2011, pp. 985-997 (2011)

254

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Shen et al.

Webb, J.: How the cloud helps Netflix (May 2011),
http://radar.oreilly.com/2011/05/netflix-cloud.html

Sharma, U., Shenoy, P., Sahu, S., Shaikh, A.: A cost-aware elasticity provisioning
system for the cloud. In: ICDCS 2011, pp. 559-570 (2011)

Nicolae, B., Cappello, F., Antoniu, G.: Optimizing multi-deployment on clouds by
means of self-adaptive prefetching. In: Euro-Par 2011, pp. 503-513 (2011)
Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning and
allocation policies for infrastructure-as-a-service clouds. In: CCGrid 2012 (2012)
Huberman, B.A.: An Economics Approach to Hard Computational Problems. Sci-
ence 275, 51-54 (1997)

Stillwell, M., Vivien, F., Casanova, H.: Dynamic fractional resource scheduling for
hpc workloads. In: IPDPS 2010 (2010)

Tosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Per-
formance analysis of cloud computing services for many-tasks scientific computing.
TPDS (2010)

Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively multi-
player online games. TPDS 22(3) (2011)

Feitelson, D.: Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/

Tosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.:
The grid workloads archive. FGCS 2008 24(7), 672-686 (2008)

Guo, A.Y., Iosup: The game trace archive. In: NETGAMES (2012)

Guo, Y., Shen, S., Visser, O., Iosup, A.: An Analysis of Online Match-Based Games.
In: MMVE 2012 (2012)

Zhang, T., Du, Z., Chen, Y., Ji, X., Wang, X.: Typical virtual appliances: An
optimized mechanism for virtual appliances provisioning and management. Journal
of Systems and Software 84(3), 377 (2011)

Hadji, M., Zeghlache, D.: Minimum cost maximum flow algorithm for dynamic
resource allocation in clouds. In: CLOUD 2012, pp. 876-882 (2012)

Ren, S., He, Y., Xu, F.: Provably-efficient job scheduling for energy and fairness
in geographically distributed data centers. In: ICDCS 2012, pp. 22-31 (2012)
Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28(2) (2012)

Genaud, S., Gossa, J.: Cost-wait trade-offs in client-side resource provisioning with
elastic clouds. In: CLOUD 2011 (2011)

Deng, K., Verboon, R., Iosup, A.: A Periodic Portfolio Scheduler for Scientific
Computing in the Data Center. In: JSSPP (2013)

Oprescu, A., Kielmann, T.: Bag-of-tasks scheduling under budget constraints. In:
CloudCom 2010, pp. 351-359 (2010)

Mao, M.M., Li, J., Humphrey: Cloud auto-scaling with deadline and budget con-
straints. In: GRID 2010, pp. 41-48 (2010)

Hong, Y.J., Xue, J., Thottethodi: Selective commitment and selective margin:
Techniques to minimize cost in an iaas cloud. In: ISPASS 2012, pp. 99-109 (2012)
Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. Transactions on Services Computing, 164-177 (2012)
Ostermann, S., Prodan, R.: Impact of variable priced cloud resources on scientific
workflow scheduling. In: Euro-Par 2012, pp. 350-362 (2012)

Song, Y., Zafer, M., Lee, K.W.: Optimal bidding in spot instance market. In:
INFOCOM 2012, pp. 190-198 (2012)

http://radar.oreilly.com/2011/05/netflix-cloud.html
http://www.cs.huji.ac.il/labs/parallel/workload/

	Scheduling Jobs in the CloudUsing On-Demand and Reserved Instances
	1 Introduction
	2 System
Model
	2.1 Workload and Resource Model
	2.2 Scheduling Model

	3 Scheduling Using On-Demand Instances
	3.1 Policy Overview
	3.2 Formalization of the Scheduling Problem
	3.3 Scheduling Heuristics

	4 Scheduling Using Reserved and On-Demand Instances
	4.1 Policy Overview
	4.2 Determining the Reservation Plan

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Conclusion
	References

