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a b s t r a c t

With the increasing presence, scale, and complexity of distributed systems, resource failures are becoming
an important and practical topic of computer science research. While numerous failure models and
failure-aware algorithms exist, their comparison has been hampered by the lack of public failure data
sets and data processing tools. To facilitate the design, validation, and comparison of fault-tolerantmodels
and algorithms, we have created the Failure Trace Archive (FTA)—an online, public repository of failure
traces collected from diverse parallel and distributed systems. In this work, we first describe the design
of the archive, in particular of the standard FTA data format, and the design of a toolbox that facilitates
automated analysis of trace data sets. We also discuss the use of the FTA for various current and future
purposes. Second, after applying the toolbox to nine failure traces collected from distributed systems
used in various application domains (e.g., HPC, Internet operation, and various online applications), we
present a comparative analysis of failures in various distributed systems. Our analysis presents various
statistical insights and typical statistical modeling results for the availability of individual resources in
various distributed systems. The analysis results underline the need for public availability of trace data
from different distributed systems. Last, we show how different interpretations of the meaning of failure
data can result in different conclusions for failuremodeling and job scheduling in distributed systems. Our
results for different interpretations show evidence that there may be a need for further revisiting existing
failure-aware algorithms, when applied for general rather than for domain-specific distributed systems.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

As a consequence of increasing presence, complexity, and scale
of distributed systems, resource failures have become inevitable.
Failures can have serious consequences for applications running
on these systems: performance degradation and loss of useful
work for scientific applications, corruption of data, violation of
service-level agreements, and even large losses of customers and
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revenue [26]. Although many models and algorithms exist for
analyzing, predicting, and resolving failures [11,65,50,43,63,4,3],
these models and algorithms are validated using failure traces of
a single or a very limited number of systems. Moreover, for the
few studies that use failure traces collected frommultiple systems,
the data sets are rarely publicly available. Thus, the field of failure
models and fault-tolerant algorithms is severely fragmented, and
the comparison and cross-validation of proposedmodels is difficult
if not impossible. To remedy this situation, we have created, and
we present in this work the Failure Trace Archive (FTA), which
comprises publicly available traces of many different types of
parallel and distributed systems, along with public tools for their
analysis.
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There are numerous causes that can lead to failures in real-
world distributed systems, broadly derived from increasing system
functionality, complexity, and scale. When system functionality
increases, the immaturity of the software stack, and various
security threats and attacks, can lead to unmaskable failures.When
the complexity of the system grows, system misconfiguration
and even scheduled downtime to update the system become
regular sources of failure. When systems are expanded, system
overload and evennatural disasters affecting onepart of the system
may trigger cascading failures that can bring the entire system
down. For example, between 2008 and 2010, both Facebook
and Twitter experienced repeatedly downtime when overloaded
[19,18]. Overloads were also the cause of downtime for the
Microsoft email service Hotmail, at the end of 2010 [71]. Even
Goodreads, a popular social network for book readers, became
unusable on Aug 20, 2012, due to overloads.

We create the FTA as a community archive, an approach that
has been recognized as useful for sharing data and that has
been employed by several communities in the computing domain.
For example, the parallel computing community has built the
Parallel Workloads Archive [29], the grid computing community
has created the Grid Workloads Archive [44], etc. Efforts such as
the Repository of Availability Traces [33], the Computer Failure
Data Repository [66], and the Desktop Grid Failure Traces [50] have
led to making failure-related data public, but did not establish
the premise of a community archive for distributed computing
systems. In particular, they did not build a common format for
storing failure-related data, did not provide a working toolbox for
uniformly processing and interpreting failure-related data, and did
not publish a sufficient number of data sets to encompass a large
variety and number of distributed systems. In contrast to these
early efforts, our main contributions are as follows:

1. We survey the presence and impact of failures in real-world
distributed systems (Section 2).

2. We design a public failure trace archive, creating a standard
format for failure traces, a toolbox for uniformly processing and
interpreting failure-related data, and a simulator that facilitates
comparative trace analysis (Section 3). Currently, the archive
includes 20 traces across 8 classes of distributed systems. We
also present in this section our experience with numerous use
cases of the FTA and our predictions regarding the applicability
of the FTA for future distributed systems.

3. Using the toolbox, we uniformly analyze and model two failure
characteristics across several types of distributed systems
(Section 4).

4. We show that differences in the interpretation of failure-related
data can change significantly the analysis and modeling results
based on derived from the data (Section 5).

5. Using the simulator, we evaluate the effect of differences in
the interpretation of failure traces on the job scheduling in two
distributed systems (Section 6).

We have introduced the FTA in a preliminary conference
paper [51], whichwe expand upon in this workwithmore context,
new traces, more in-depth analysis, and new simulation results.
In particular, we add more examples of failures in real-world
distributed systems and several new traces in the archive, both in
the survey in Section 2 and in the significantly increased amount
of traces currently shared through the FTA. We also provide an
overview of the use of the FTA in different aspects including design,
testing, and procurement of distributed systems. Last, we provide a
new simulator to enable researchers to study the impact of failures
in their proposed fault tolerance models and algorithms, along
with a case study to show the effect of trace interpretation on job
scheduling in distributed systems.

The remainder of the work is organized as follows. In Section 2,
we recall the terminology concerning failures in distributed
systems and we survey many failures that have occurred in
operational systems over the years. We describe the Failure Trace
Archive structure, andpast and future use, in Section 3. In Section 4,
we present a statistical analysis of several types of distributed
systems, based on a selection of data sets from the FTA. We then
present the difference of interpretation for different data sets in
Section 5. We evaluate the effect of trace interpretation on the job
scheduling in two different distributed systems using trace-based
simulations in Section 6. We describe related work in Section 7.
Finally, we summarize our findings and present future directions
in Section 8.

2. Background on failures in large-scale systems

We introduce in this section the terminology on failures used
throughout this work. We also provide more motivation for our
work on failures, through a selective survey of the presence and
impact of failures in large-scale distributed systems.

2.1. Terminology

Throughout this work, we follow the basic concepts and
definitions associated with system dependability as summarized
by Avizienis et al. [6]. We also recommend the topical survey of
Salfner et al. [64]. The basic threats to reliability are failures, errors,
and faults occurring in a system. A failure is an event that makes a
system fail to operate according to its specifications. A failure is
observed as a deviation from the correct state of the system. We
call the continuous period of a service outage due to a failure an
unavailability interval. A continuous period of availability is called
an availability interval. An error is a part of the system state that
may lead to a failure. Some errors may not be visible from outside
of the system, that is, they may not reach the external state of the
system and thus cause failures; such errors are said to be dormant.
Errors that do cause failures are said to be active. The root cause of
an error is a fault.

2.2. Failures in real-world distributed systems

Although we expect distributed systems to be highly available
and reliable, the reality is that unmaskable failures occur often
and with important consequences. In this section, we survey
chronologically the presence and impact of failures in large-
scale distributed systems. This survey focuses on a selection of
exemplary failures affecting a large number of people or large-scale
services based on distributed systems. Moreover, the survey is an
important motivation for our work and has guided the selection of
traces investigated in this work (see Section 3.4).

Our selective survey, albeit not comprehensive, covers in
fifteen examples a variety of application domains in which
failures occurring in distributed systems cause significant service
issues. Our examples cover High-Performance Computing (HPC),
Internet-based file-sharing and content distribution, Internet-
based online gaming, general IT infrastructure, computer science
research, social networking, online retail, and online stock trading.
We also cover numerous causes that can lead to failures in
real-world distributed systems: scheduled downtime, system
overload, system misconfiguration, immaturity of the software
stack, security threats and attacks, natural disasters, etc.

The production multi-cluster grid Grid3 [31] (now the Open
Science Grid) was experiencing a job failure rate of about 30% in
2003 where 90% of failures were due to the site problem (e.g., disk
failure) [31,25]. One of the European ICT infrastructures servicing
hundreds of scientists, Grid’5000, suffered between 2005 and 2007
from cascading and catastrophic failures involving hundreds of
computers [42]. Among the causes, immaturity of the software
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stack is a reasonable explanation that is supported by later
evidence into the quality of grid middleware over the years [40].
Another possible cause is the abuse of the scheduling system by
redundant submissions of batch jobs [17].

Overloads affect even peer-to-peer systems, although they are
by design scalable. For example, since 2003, the BitTorrent file-
sharing system [21] can experience poor performance during
severe overloads (flashcrowds). Intuitively, because in peer-to-peer
systems the users provide additional service capacity while being
online, a (long) flashcrowd can lead to a beneficial accumulation of
(bandwidth) capacity rather than to poor performance. However,
even through 2009 and 2010 the performance of BitTorrent users
during flashcrowds could be up to an order of magnitude lower
than the performance observed in normal conditions [74].

The operators of World of Warcraft, a massively multiplayer
online gaming service, have scheduled since 2003 periods of
downtime of several hours weekly, for updating and managing
their world-wide pool of over 200 clusters. Assuming an average of
4 h of downtime, the maximum availability of World of Warcraft
was and still is under 97%, which affects negatively their players.
Scheduled downtime is currently the de-facto standard for the
online gaming industry.

Natural disasters struck USA and Italy in 2003 [8,9], causing
severe blackouts and thus failure of the IT infrastructure. It is
doubtful that redundant capacity and operational protocols could
have masked failures of this magnitude.

The Akamai content distribution services were unavailable in
May 2004 for over an hour, due to large-scale denial-of-service
attacks [55]. Several major websites, including eBay, Yahoo!, and
Google, which were relying on Akamai’s distributed infrastructure
for content distribution, also suffered downtime.

For shared infrastructure, a large fraction (about 20%) of the
PlanetLab resources were unavailable to researchers several times
during 2004 [56]. Moreover, the performance of the system could
drop significantly during overload periods.

Between 2008 and 2010, both Facebook and Twitter experi-
enced repeatedly downtime when overloaded [19,18]. Overloads
were also the cause of downtime for the Microsoft email service
Hotmail, at the end of 2010 [71]. Even the Goodreads social net-
work for book readers became overloaded on Aug 20, 2012.

Network misconfiguration led to downtime of several Amazon
services in April 2011 [70]. Both BATS (March 2012) and Nasdaq
(May 2012, during the Facebook IPO launch) failed due to
algorithmic problems but also misconfiguration to respond to
request overload [61]. The duration of thematchmaking algorithm
used for trading exceeded the maximal duration of validity of
requests,which allowed the distributed requests to be updated and
ultimately triggered a loop in the process.

The cluster architecture of CCP’s EVE Online, an online
massively multiplayer online game, has crashed repeatedly
between 2011 and 2013 [20]. Although both the hardware and
the distributed middleware, and even the application design were
upgraded periodically, themost important failures continued to be
caused by player flashcrowds. As a consequence, many players lost
assets that took years to develop.

A natural disaster that struck India in 2012 emphasizes
the difficulty of masking large-scale (correlated) failures. As a
consequence of lack of rain, the Indian power grid collapsed [62].
Pre-established fail-overs to different parts of the system failed in
cascade, due to overload. Over 300million peoplewere leftwithout
access to the power and IT infrastructure for days or more.

3. Overview of the failure trace archive

The Failure Trace Archive (FTA) can be used in many ways.
First, the FTA allows the comparison and cross-validation of a
fault-tolerant model or algorithm across identical trace data sets.
Second, it allows the evaluation of the generality of a model or
algorithm across different types of resources (in terms of reliability
or user base, for example). Third, it allows for the evaluation
of the generality of a failure trace, i.e., to determine whether
measurements are biased to a particular platform or middleware.
Fourth, it allows for the determination of which trace data set is
most interesting or applicable for a given algorithmormodel. Fifth,
it allows for the analysis of the evolution of availability in different
systems across long timescales. Sixth, it allows for the integration
of failure models with other types of models (such as workloads).
Seventh, it facilitates the incorporation of traces with a common
format into fault simulators or emulators for model or algorithm
evaluation.

3.1. Archive format

In our experience, the majority of time in measurement
and modeling studies is spent in parsing and interpreting the
measurements. To accelerate this processing and analysis for
others, we have parsed and interpreted 20 diverse distributed
systems in a standard format. Here we describe the rationale of the
format.

The majority of our collection of traces record times of failures
for resources and contain an alternating time series of availability
and unavailability intervals. As such, our format is resource-
centric (versus job-centric or user-centric) with respect to failures
of individual nodes or components of nodes, such as memory,
CPU, or hard disks. We believe the format is also applicable to
failures of services deployed on top of resources. However, our
format does not explicitly describe higher-level failures, such as
job failures, though potentially the FTA format could be extended
for this type of failure or perhaps combined with the Grid
Workload Archive format [44]. Measuring and understanding the
relationship between lower-level failures (for example, of nodes or
components) to higher-level failures (for example, jobs) is an area
for future research.

The trace format is organized hierarchically as follows: Platform
→Node→ Component→ Event Trace. Fig. 1 depicts the structure
of the FTA, where boxes represent database tables. We summarize
the meaning of each table below. Table names are shown in bold.
• A platform contains a set of nodes. Examples of a platform

include desktop PCs atMicrosoft, or nodes in the LANL1 clusters.
• A node contains a set of components, which is a software

module or hardware resource of the node. Each node can have
several components (e.g., CPU speed, available memory, client
availability), each of which has a corresponding trace.

• The node_perf describes the node performance, as measured
through benchmarks, for example.

• A component describes attributes of a software module or
hardware resource of a node.

• A creator is the person responsible for the trace data set. This
table stores details about data copyright, and about projects and
published material that use the data.

• An event_trace is the trace of an event, with all of correspond-
ing timing information (e.g., start and end times).

• The event_state is the state corresponding to an event_trace.
For example, for CPU availability, the event_state could be
the idleness of the CPU. For host availability, it could be the
monitoring information associated with the event.

In addition, we have codes that correspond to different types
of components (for example, memory, CPU, and hard disk), events
(for example, availability or unavailability), and event reason codes
(for example, disk crash and CPU overheating).

1 Los Alamos National Laboratory.
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Fig. 1. Overview of the FTA structure.

Fig. 2. FTA toolbox design.

The best test of a format is its application to real data sets for
different types of systemswith different types of failuresmeasured
in different ways. We applied this format to nine systems ranging
from desktops on the Internet to supercomputing clusters. The
types of failures included host, CPU, and even service failures.
These failures were measured using a variety of methods, such
as periodic probing, event notification, load measurement, and
even human observation. Given that all of these data sets could be
presented in this format with ease, we believe the format is good
first step towards a standard. To anticipate future extensions of the
format, we have several generic tables with double and string field
that can contain additional new information should it arise.

3.2. FTA toolbox

We implemented a FTA toolbox to facilitate the comparative
analysis of failure traces (see Fig. 2). The toolbox is implemented
in Matlab and uses several open-source Matlab packages, such as
the Mysql and DataTable packages.

The toolbox takes as input four functions for initializing, query-
ing, processing, and finalizing the data analysis. The initialization
and query stages allow one to extract the necessary data from
traces located in a MySQL database into Matlab in-memory data
structures. In contrast to loading entire data sets intomemory from
large files, this method allows one to extract into memory only the
data that is needed for processing.

Initialization and querying is separated from processing to
allow expensive initialization queries to be conducted only once,
after which any amount of processing can be done. Also, this
separation allows the same initialization and queries to be used for
many different processing functions. This facilitates code reuse.

The results of initializing and querying are then passed to the
processing function. This function is run across each of those
results. The processing output is then fed into the finalize function,
which produces tables in latex, HTML, text, and wiki formats using
the DataTable module. All graphs and tables in Sections 4 and 5
were produced using the FTA toolbox.

3.3. FTA simulator

The GridSim is a framework which allows modeling and
simulation of entities in parallel and distributed computing
systems for performance evaluation purposes [69]. Although the
processing nodes (i.e., a machine) within a resource in GridSim
can be heterogeneous in terms of processing capability and
configuration, there is no support to simulate resources in the
presence of failures. In order to have this feature, we developed
a set of packages for GridSim simulator to generate a list of failures
based on the FTA format. To do this, we equipped GridSim with a
failure injection mechanism that is able to simulate failure events
collected in the FTA data sets in various distributed systems. It
basically reads the event_trace tabbed file and generates a list of
events that show the availability/unavailability patterns for each
machine for a given resource (i.e., a resource may have more than
one machine). The list of resources also is taken from the node
tabbed file. In the case of resource failure, the target node will
stop working for the duration of unavailability interval and start
working again for the given availability interval.

The failures are simulated in the node level (i.e., the same level
as GridSim simulator) where we provided some fault-tolerance
algorithms such as checkpointingmechanisms to analyze the effect
of failures on job scheduling. In Section 6, we use this simulator
with a perfect checkpointingmechanism to study the impact of the
resource failures on job scheduling.

3.4. FTA traces

The FTA currently has 20 formatted data sets, which are listed
in Tables 1 and 6 others currently with raw data only. Overall, we
study in this work traces coming from distributed systems used
in various application domains: HPC, Internet operation, Internet-
based file-sharing, and various other online applications. The data
represent 8 types of distributed systems, including multi-cluster
grids, HPC clusters, and large-scale P2P systems. The FTA traces
represent a collection that covers significantly more application
domains and system types, in comparisonwith the related archives
described in Section 7; in particular, we have more than doubled
the number of traces shared through the FTA in 2010 [51]. In the
remainder of this section, we describe each formatted data set
and the measurement method used for its collection. We further
study in this work, in Sections 5 and 6, how the interpretation of
the meaning of data collected with these methods can result in
different conclusions for failure modeling and job scheduling in
distributed systems, respectively.

lanl05 is a data set of 22 HPC systems at Los Alamos National
Laboratory. It contains a record for every failure that happened
in these systems as well as the root cause [65]. The g5k06
data set is a trace of a computational grid platform in France
(i.e., Grid’5000) which consists of 9 sites, 15 clusters and more
than 2,500 processors [43]. The data was collected by periodic
inspection and logging of each node’s status through the grid
middleware called OAR. The microsoft99 data set contains log
files of 51,663 desktops PCs at Microsoft Corporation where their
reachability was determined with a ping every hour [11]. The data
set of websites02 was derived from probe-based measurements
where a singlemachine at CarnegieMellon sent a HTTP file request
to web servers periodically every 10 min [7]. pl05 consists of trace
data measured between all pairs of PlanetLab nodes using pings
every 15min [68]. The ldns04 data set includes the probe results of
62,201 local DNS servers where the inter-arrival time of the probes
followed an exponential distribution with mean of one hour [59].
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Table 1
Summary of the data sets in the Failure Trace Archive.

Trace Type # of nodes Target component Period Year

lanl05 SMP, HPC clusters 4,750 Host 9 years 1996–2005
g5k06 Grid 1,288 Host 1.5 years 2005–2006
microsoft99 Desktop 51,663 Host 35 days 1999
websites02 Web servers 131 Host 8 months 2001–2002
pl05 P2P 692 Host 1.5 year 2004–2005
ldns04 DNS servers 62,201 Host 2 weeks 2004
overnet03 P2P 3,000 Host 2 weeks 2003
nd07cpu Desktop grid 700 CPU, host 6 months 2007
skype06 P2P 2,081 Host 1 month 2005
sat09 Desktop grid 226,208 CPU 1.5 years 2007–2009
pnnl07 HPC cluster 980 Host, network 4 years 2003–2007
ucb94 Desktop grid 80 CPU 46 days 1994
sdsc03 Desktop grid 275 CPU 1 month 2003
lri05 Desktop grid 40 CPU 1 month 2005
deug05 Desktop grid 40 CPU 1 month 2005
cae06 Grid 686 Host 35 days 2006
cs06 Grid 725 Host 35 days 2006
glow06 Grid 715 Host 33 days 2006
teragrid06 Grid 1,001 Host 8 months 2006–2007
The overnet03 data set is a probe-based measurement
conducted over the Overnet peer-to-peer file-sharing system [10].
In this data set, the availability of 3,000 hosts was checked every
20 min. The nd07cpu data set contains traces recorded by Condor
from the desktop systems at the University of Notre Dame [63].
The data set is comprised of time-stamped CPU load and idle
times of each system, recorded every 16 min. The skype06 data
set is collected by application-level pings of nodes in the Skype
superpeer network, every 30 min [35]. sat09 is the data set of the
SETI@Home project where the BOINC client [2] is instrumented to
collect CPU availability traces from more than 200,000 hosts over
the Internet [47]. We define CPU availability to be a binary value
indicating whether the CPU was free or not. The traces record the
time when CPU starts to be free and stops.

The pnnl07 is traces of hardware failures on the HPC system
with 980 nodes including dual Itanium-2 processors at Pacific
Northwest National Laboratory (PNNL) [15]. For each hardware
failure, the data set includes a time-stamp, a hardware identifier,
the component that failed, a description of the failure, and the
repair action taken. ucb94 is the data set of theworkstation cluster
used by UC Berkeley CAD group where information about CPU,
memory, disk, keyboard, andmouse activitywere logged every two
seconds [5]. A host was considered available in this measurement,
if the average CPU usage over the pastminutewas less than 5%, and
there had been no keyboard/mouse activity during that time.

The sdsc04 data set consists of availability traces of 275 hosts
at the San Diego Supercomputer Center (SDSC) while running
Entropia’s DCGrid software [52]. lri05 and deug05 are traces
from desktop PCs at the University of Paris South and ran the
open source XtremWeb [27] desktop grid software [50]. The only
difference between two data sets is the type of users where
the lri05 was a cluster used by a computer science research
group for running parallel applications and benchmarks, while
deug05 consisted of desktop PCs in classrooms used by first-
year undergraduates. The cae06, cs06, and glow06 data sets [72]
have been collected by the Condor Team from the test (the
former two) and production (the latter) Condor pools at University
of Wisconsin-Madison; the latter Condor pool was part of an
international Grid system working for the CMS experiment at
CERN. Finally, the teragrid06 data set [72] includes failure traces
collected from the NCSA Linux cluster, which was ranked as the
best site of the TeraGrid system by the NSF Cyberinfrastructure
User Survey 2005. They have crawled with a sampling interval of
5 min the online status page of the NCSA Linux cluster, containing
general, job, and node use and availability information.
3.5. Discussion: on the current and future use of the FTA

In this section, we discuss current and future use of the FTA.
For current use, we discuss impact on research, practice, and
education. For future use, we discuss the extension of FTA with
data collected from several upcoming, non-traditional distributed
systems.
Research impact. To assess the research impact of the FTA, we
have followed the citation record of our FTA article [51] since
the publication of our first report about the FTA at the CCGrid
conference, in May 2010. Overall, the FTA article has attracted
over 65 citations, as reported by Google Scholar in March, 2013.
Google Scholar indicates that the FTA has been used for work
published in conferences such as IEEE IPDPS, ACM HPDC, and ACM
SC and in journals such as CCPE, IEEE Internet Computing, and JPDC.
Thus, we conclude that the FTA has been useful for a large part of
the communities focusing on theoretical and applied research in
distributed systems. For the future, we would like to promote the
use of FTA by two other communities, related to systems reliability
and distributed systems (USENIX-related).
Practical impact: use in system design and operation. The content
of the FTA restates that many large-scale distributed systems ex-
perience failures. System designers and administrators can use
FTA data to design, validate, and evaluate new algorithms, meth-
ods, and practical deployments. FTA data and tools are particu-
larly relevant for work in topics such as backup and checkpointing,
replication, prediction for proactive and reactive resourcemanage-
ment [39], scheduling in general, security [16], storage manage-
ment [38], and data availability and durability in general.

FTA traces have been used for work on checkpointing for
parallel jobs [12],where the failure of nodes needs to beproactively
compensated through periodic saving of application state and
other checkpointing strategies. Using FTA traces, the authors
perform extensive simulations of various checkpointing strategies.

FTA data can be used for various scheduling problems
[23,16,46]. Scheduling in systems with volatile resource, such as
volunteer computing environments, may not be able to use the
same approaches developed for more stable systems. For exam-
ple, a study of scheduling strategies for volunteer computing uses
FTA traces to show that ‘‘the commonly used BOINC scheduling al-
gorithms are unable to enforce fairness and project isolation’’ [23].
They also show that the lack of coordination in the exploitation of
shared resources can be inefficient and socially unfair.
Practical impact: use in system testing and procurement. System
testing and procurement of large-scale distributed systems, which
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is an area that can still see many improvement in both theory and
practice, can use FTA data directly for testing and dimensioning in
general, including in tools for fault injection, testing with varying
node availability, simulation of what-if scenarios, etc. Moreover,
both system testing and procurement can use failure models
derived from FTA data.

Among the simulators that use FTA data [22,58], SimGrid was
extended to support volunteer computing platforms [22]. Themain
challenge encountered by the designers of SimGrid is the scale of
the simulated environments; they showed through experiments
using FTA traces that their proposed scalability mechanisms
perform well in practice.

The FTA traces have been instrumental in the development
of various failure models [72,32,48]. In a recent study [72], we
analyzed and model the time-varying behavior of failures in large-
scale distributed systems. We used nineteen failure traces from
the FTA, concerning production large-scale distributed systems,
including grids, P2P systems, DNS servers, web servers, and
desktop grids. We showed that time-correlated failures occur
often and have an important impact on the performance and
availability of such systems. We also proposed a statistical model
that characterizes the duration of peaks, the peak inter-arrival
time, the inter-arrival time of failures during the peaks, and the
duration of failures during peaks. We showed that, for the systems
we studied, our model characterizes over 50% and up to 95% of the
downtime of these systems.
Practical impact: use in education. The lack of professionals who
can work in distributed systems has become increasingly visible
in the US and EU markets in the recent years, coupled with the
growth in the number and size of data centers. As a consequence,
(large-scale) distributed systems play a prominent role in the
updated Computer Science Curricula 2013 (CS2013, Strawman
draft) published by the ACM and IEEE Computer Society at the
beginning of 2012 [1]. We expect most of the universities with
strong ties to the ACM and IEEE to adopt this new curriculum
guidelines and, already, many universities have already started
having undergraduate and graduate-level courses in large-scale
distributed systems [49,14,60]. Thus, we believe the FTA can
become an important resource for computer science curricula in
academic education.

We target with the FTA university-level courses that teach the
use of grids and Clouds, large-scale distributed systems, perfor-
mance analysis through simulation, and performance modeling.
The reports, the tools, and the data included in the FTA can greatly
help the instructors of such courses. Specifically, the data in the
repository can be used for in-class demonstrations and student as-
signments, the detailed analysis can be used to illustrate concepts
related to system operation, etc. The tools may be used to build
new analysis and simulation tools.

We have used material from the FTA in several undergraduate
and graduate-level courses at TU Delft. For example, we have
used FTA analysis results in the first-year B.Sc. course Computer
Organization,2 to exemplify the concept of system reliability.
Similarly, we have used FTA analysis results in the M.Sc. course
Cloud Computing,3 to explain the concept of cascading failures and
to exemplify potential problems induced by multi-tenancy.
Future use of the FTA: support for upcoming distributed systems.
Although the direction in which distributed systems is difficult
to predict, our study [41] of the past decade’s trends in scientific
workloads has identified trends such as a shortening of job
durations and loose coupling of jobs. These trends, coupled with

2 TU Delft course TI1400 Computer Organization.
3 TU Delft course IN4392 Cloud Computing.
the rise to prominence of the ‘‘data deluge’’ (Big Data) [37],
indicate several possible directions in which distributed systems
may evolve.

First, systems may become increasingly parallel, which means
incorporating in distributed systems highly-parallel GPUs such
as NVIDIA’s T, heterogeneous multi-cores such as Intel MIC, and
even generic architectures such as the FPGA/MISD machines
from Maxeller. Moreover, distributed systems may even start to
incorporate hybrid processing elements, such as the CPU and GPU
devices in NVIDIA’s Project Denver. The current FTA format could
accommodate data collected from such architectures through its
component and component_type elements. Important challenges
here will be making the node_perf information meaningful across
multiple classes of machines and facilitating the grouping of
various members of the same resource family.

Second, systems operated by small companies or systems
that exhibit high workload variation may increasingly rely on
external resources, perhaps acquired from Cloud computing
infrastructure such as Amazon EC2. Such hybrid systems will
be heterogeneous and distributed in nature and may raise new
challenges in recording failure information about the Internet
and about the acquired machines. The current FTA format could
accommodatemachine heterogeneity, through its component and
component_type elements. However, information about these
machines may only be available through a view from the user,
where, similarly to the view provided by desktop grids, details
outside the shared resources (e.g., of the physical machine) are
hidden from the user. Although obtaining failure information
from such distributed systems raises important challenges, early
solutions already exist, for example as test suites [45] or as large-
scale observations [24].

Third, a resource of future interest will be storage. We have not
yet included traces collected from traditionalmulti-tier distributed
storage systems into the FTA, although the overnet03 traces
represent systems with single tier, heterogeneous, P2P, and file-
based storage. Extending the FTA format for the latter is a topic of
future work.

4. Analysis of FTA traces

In this section, we analyze the first nine data sets of FTA
in two steps.4 First, we inspect the basic statistics for two
failure characteristics, duration of availability and unavailability
intervals. Second, we fit distributions for modeling failures in
terms of probability distributions of availability and unavailability
intervals. Third, we present a qualitative comparison of failure
characteristics in distributed systems.

4.1. Basic statistics

We focus in this section on various statistics for the availability
and unavailability intervals: the mean and the trimmed mean
(defined as the mean value after discarding the top 10% of the
values), the median, the standard deviation (std), the coefficient
of variation (CV), the interquartile range (IQR), the maximum and
minimum, the skewness (the third moment), the kurtosis (the
fourth moment), and the number of intervals. Tables 2 and 3
summarize the results obtained for each data set for availability
and unavailability intervals, respectively. These tables contain
three types of descriptive statistics. Statistics of the first type
(mean, median, and trimmedmean) reflect the central tendency of
the distributions; statistics of the second type (CV, IQR, minimum,

4 These nine data sets cover all the distributed system types currently
represented in the FTA.
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Table 2
Statistics of availability intervals for different data sets (values in h).

Trace Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.

lanl05 1779.99 1208.09 280.28 3462.33 1.95 1593.37 34480.23 0.02 3.09 14.29 19874
g5k06 32.41 18.41 7.09 94.24 2.91 24.07 10157.73 0.00 15.06 695.83 294318
microsoft99 67.01 40.39 10.00 138.47 2.07 55.00 840.00 1.00 3.40 15.80 526078
websites02 11.85 5.17 0.83 40.10 3.38 5.17 1196.55 0.00 9.02 135.89 47843
pl05 159.48 71.42 1.71 475.61 2.98 35.60 6051.49 0.00 4.91 34.26 24928
ldns04 140.93 125.79 28.29 193.39 1.37 213.47 559.27 0.00 1.24 2.97 223596
overnet03 2.29 1.48 1.33 4.63 2.02 1.00 120.11 0.00 8.03 113.34 33443
nd07cpu 13.73 5.46 1.07 60.05 4.37 7.11 3783.57 0.00 25.49 1228.74 134176
skype06 16.27 10.12 5.11 34.57 2.12 11.87 465.95 0.00 4.81 34.38 29217
Table 3
Statistics of the unavailability intervals for different data sets (values in h).

Trace Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.

lanl05 5.88 1.67 0.97 78.39 13.32 1.98 5325.70 0.00 43.96 2289.91 23451
g5k06 7.41 0.94 0.05 60.24 8.13 0.19 6314.95 0.00 26.26 1237.26 294145
microsoft99 16.49 9.15 2.00 46.50 2.82 14.00 840.00 1.00 8.52 105.12 493687
websites02 1.18 0.49 0.17 22.92 19.46 0.34 3311.51 0.00 111.03 14311.32 47714
pl05 49.61 12.86 0.50 269.90 5.44 6.36 9329.47 0.00 15.10 340.33 24236
ldns04 8.61 5.47 2.28 20.68 2.40 7.82 533.22 0.00 8.62 123.06 161395
overnet03 11.98 4.00 0.33 36.82 3.07 1.67 167.83 0.00 3.66 15.11 35449
nd07cpu 4.25 0.47 0.27 62.83 14.77 0.36 3616.70 0.04 33.72 1307.29 134026
skype06 14.31 9.45 6.16 30.23 2.11 14.30 596.03 0.02 6.26 62.72 27136
maximum) measure the spread of the distribution; and statistics
of the third type (skewness, kurtosis) reflect the shape of the
distribution.

The results reveal that the ratios between the mean and the
median for the availability and unavailability intervals are quite
different across the data sets. This indicates that single-parameter
distributions might not be a good option for a failure model. This
can be confirmed by the skewness and kurtosis values, indicating
that both availability and unavailability intervals are well modeled
by distributions that are right-skewed and long-tailed. Moreover,
the results indicate that unavailability distributions are more
highly right-skewed and have longer tails than the availability
distributions.

The unavailability intervals are more variable than the avail-
ability intervals, as indicated by the higher values of the CV and
the lower values of the trimmed mean (the cut 10% of the data
accounts for much of the difference between the mean and the
trimmedmean). This further emphasizes the need for distributions
with more degrees of freedom, e.g., phase-type distributions, to
model unavailability intervals for these data sets.

4.2. Towards failure models

In this section, we refer to the distribution of availability
and unavailability intervals as the failure model. The cumulative
distribution functions (CDFs) of the availability and unavailability
intervals are plotted in Fig. 3(a) and (c), respectively. We find
that the data sets differ significantly in scale and shape of these
distributions.

We have conducted parameter fitting for various distributions,
namely the Exponential, Weibull, Pareto, log-normal, and Gamma
distributions. The fitting was done using maximum likelihood
estimation (MLE). We adopted two goodness of fit (GOF) tests,
the Kolmogorov–Smirnov (KS) and the Anderson–Darling (AD)
tests, to evaluate the distribution fits. The results of both tests are
reported in terms of the p-values for availability and unavailability
distributions in Tables 4 and 5, respectively. The p-value we report
is the average of 1000 p-values, each of which was computed by
randomly selecting 30 samples from a data set—this is a standard
method [57,47] for computing p-values when the number of
samples is high.
The exponential function seems to be far from the underlying
distributions. However, it could be a good fit for the availability
distributions of microsoft99, overnet03 and skype06 and
the unavailability distributions of microsoft99, ldns04, and
skype06 as well. So, the skype06 data set with the exponential
failure model is a good candidate to evaluate Markov models
for prediction of host availability/unavailability. However, the
resolution of the measurement method could have caused
the exponential distribution to be a good fit. For example,
the overnet03, skype06, and microsoft99 systems were
measured using probes with periods of 20 min, 30 min, and
1 h, respectively. As a consequence, there are no (un)availability
intervals taking less than this length, and in the CDFs shown
in Fig. 3, there are spikes at those period lengths. Further
investigation of the usability of exponential distributions for failure
characteristics in distributed systems is needed (and enabled by
the FTA); the implications of the findings can affect a large number
of theoretical and practical studies.

Our results reveal that for the availability/unavailability
distributions heavy-tailed distributions do not give a good fit—the
p-values for Pareto are very low. The only exceptions are the distri-
butions of unavailability ofovernet03 andmicrosoft99, which
are close to being heavy-tailed. It is worth noting that the AD test
is more sensitive to the tail than the KS test. This explains the dif-
ference between p-values of the twoGOF tests, especiallywhenwe
have a heavy-tailed data set.

For all data sets, the Gamma distribution is a good candidate
for the failure model as the p-values are relatively high. This
distribution function is very flexible and can also be adopted for
analytical work based on Markov models [28]. Additionally, the
results of the GOF tests show that the best fit for all data sets
are either the Weibull or the log-normal distribution. As expected
from our statistical analysis, the failure model tends to be a long-
tailed distribution. However, several data sets, such as g5k06 and
pl05, show imperfect fits for the unavailability distribution. A
possible explanation is the relation of the model with the system
architecture. For example, the g5k06 platform has 15 clusters in
9 geographically distributed sites, and each cluster could have its
own separate model, as proposed by Iosup et al. [43]. Moreover,
as mentioned before, we need distributions with more degrees of
freedom such as the hyper-exponential tomodel the unavailability
distributions.
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Fig. 3. The cumulative distribution functions of the availability and unavailability intervals.
Table 4
p-values resulting from KS and AD tests for availability. A gray box denotes p-value above significance level of 0.05.

Trace Exponential Weibull Pareto Log-normal Gamma

lanl05 0.005 0.025 0.416 0.571 0.002 0.010 0.475 0.611 0.345 0.488

g5k06 0.012 0.038 0.472 0.597 0.003 0.018 0.394 0.564 0.409 0.507

microsoft99 0.005 0.084 0.294 0.546 0.000 0.049 0.371 0.611 0.198 0.418

websites02 0.000 0.006 0.079 0.354 0.000 0.027 0.188 0.401 0.055 0.182

pl05 0.000 0.000 0.080 0.245 0.002 0.016 0.168 0.321 0.043 0.131

ldns04 0.009 0.042 0.316 0.510 0.002 0.010 0.357 0.527 0.287 0.472

overnet03 0.045 0.460 0.068 0.532 0.000 0.013 0.160 0.660 0.052 0.481

nd07cpu 0.001 0.011 0.348 0.526 0.002 0.063 0.408 0.596 0.167 0.284

skype06 0.048 0.105 0.373 0.493 0.000 0.002 0.452 0.581 0.257 0.375
Table 5
p-values resulting from KS and AD tests for unavailability. A gray box denotes p-value above significance level of 0.05.

Trace Exponential Weibull Pareto Log-normal Gamma

lanl05 0.000 0.004 0.196 0.346 0.000 0.001 0.481 0.607 0.042 0.095

g5k06 0.000 0.000 0.008 0.073 0.000 0.000 0.037 0.144 0.003 0.022

microsoft99 0.004 0.180 0.048 0.529 0.000 0.376 0.076 0.611 0.052 0.368

websites02 0.000 0.023 0.001 0.150 0.000 0.002 0.005 0.209 0.003 0.090

pl05 0.000 0.000 0.035 0.178 0.000 0.004 0.081 0.274 0.019 0.079

ldns04 0.035 0.112 0.404 0.538 0.000 0.001 0.464 0.607 0.277 0.411

overnet03 0.000 0.040 0.003 0.305 0.000 0.204 0.011 0.389 0.005 0.118

nd07cpu 0.000 0.004 0.028 0.219 0.000 0.031 0.126 0.559 0.003 0.032

skype06 0.071 0.191 0.288 0.478 0.002 0.015 0.182 0.449 0.267 0.408
Table 6
Parameters of distributions for availability (left) and unavailability (right). Statistical terms: mean: µ, std: σ , shape: k, scale: λ.

Trace Availability intervals Unavailability intervals
Exp(µ) Wbl(k, λ) LogN(µ, σ ) Gam(k, λ) Exp(µ) Wbl(k, λ) LogN(µ, σ ) Gam(k, λ)

lanl05 1779.99 0.48 816.60 5.56 2.39 0.35 5102.71 5.92 0.58 2.18 0.05 1.42 0.38 15.44
g5k06 32.41 0.48 14.37 1.51 2.42 0.34 94.35 7.41 0.35 0.47 −2.00 2.20 0.19 39.92
microsoft99 67.01 0.55 35.30 2.62 1.84 0.41 162.19 16.49 0.60 9.34 1.42 1.54 0.46 35.52
websites02 11.85 0.46 3.68 0.23 2.02 0.31 38.67 1.18 0.65 0.61 −1.12 1.13 0.50 2.37
pl05 159.49 0.33 19.35 1.44 2.86 0.20 788.03 49.61 0.36 5.59 0.40 2.45 0.21 237.65
ldns04 141.06 0.51 79.30 3.25 2.33 0.39 362.43 8.61 0.63 5.62 0.91 1.64 0.51 16.87
overnet03 2.29 0.85 2.04 0.19 0.98 0.91 2.53 12.00 0.44 2.98 0.08 1.80 0.29 41.64
nd07cpu 13.73 0.45 4.16 0.30 2.20 0.30 46.16 4.25 0.51 0.74 −1.02 1.27 0.28 15.07
skype06 16.27 0.64 10.86 1.60 1.57 0.53 30.79 14.31 0.63 9.48 1.40 1.73 0.50 28.53
We conclude our study towards a failure model for distributed
systems with a summary of parameter values obtained for various
distributions, when fit to empirical data. Table 6 summarizes these
values for the availability and unavailability intervals of all data
sets under study. For the availability distributions, we analyze the
hazard rate, i.e., the probability of the next failure with respect to
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Table 7
Qualitative comparison of nine data sets in the FTA. H: High, M: Medium, L: Low.
For V, A, M, and S, see Table 8 and associated text.

Trace V A M S Failure model

lanl05 L H H H Long-tailed/long-tailed
g5k06 M M H M Long-tailed/long-tailed
microsoft99 M M L H Short-tailed/heavy-tailed
websites02 H H M L Long-tailed/long-tailed
pl05 L M H L Long-tailed/long-tailed
ldns04 L H L H Long-tailed/short-tailed
overnet03 H L L H Short-tailed/heavy-tailed
nd07cpu H M M L Heavy-tailed/long-tailed
skype06 H L L H Short-tailed/short-tailed

Table 8
Parameters in the qualitative comparison (see text).

Parameter
observation

Parameter name Parameter level Parameter
unit

Low High

Node-level V : Volatility V < 50 V > 100 hour
Node-level A: Availability A < 60 A > 90 %
System-level M: Measurement M < 6 M > 12 month
System-level S: Scale S < 1 S > 2 103 nodes

time from the last failure. For the data sets forwhich theWeibull or
Gamma distributions are a good fit, the hazard rate is decreasing.
Recall that for such distributions if the shape parameter is less than
one, i.e., k < 1, then we have a decreasing hazard rate. That means
that if the systems do not have any failure for a long time (longer
availability duration) the probability of a failure occurring in the
near future decreases. In other words, a decreasing hazard rate can
be interpreted as more stability of resources over time. The only
hazard rate that is alarming is with overnet03, where the shape
parameter is close to one.

4.3. Qualitative comparison of failure characteristics in distributed
systems

In this section we create a qualitative comparison of failure
characteristics in distributed systems. We approach this compari-
son through a conceptual framework in which each data set in the
FTA can be characterized through various qualitative parameters,
and then compared qualitatively with other data sets. The main
benefit of this comparison is making the selection of traces easier
for the non-expert user. The qualitative comparison is summarized
in Table 7; the meaning of the values is explained in the following.

Our comparison framework uses four parameters, two based
on data collected at node-level and two based on data collected
at system-level. The volatility (V ) is dependent on the failure rate
of each node in the system. The availability (A) is the percentage of
time that a node is working properly. The measurement duration
(M) and scale (S) are the duration of measurement and scale of the
entire system, respectively. For each itemwe assign three different
levels as described in Table 8. For the qualitative comparison, we
also look at the types of models that fit well the availability and
unavailability. Specifically, for each trace we use the tail behavior
of its availability and unavailability distributions.

For the failure model, we have observed in Section 4.2 that all
best-fits are long-tailed distributions. However, for the qualitative
comparison we have applied another classification, one which is
based on the p-values of the KS and AD tests with a significance
level of 0.05. Specifically, if a data set has acceptable p-values for
Pareto or Exponential distribution, the failure model would be
heavy-tailed or short-tailed, respectively. Otherwise, the failure
model could be classified as long-tailed (for more details about tail
behavior, see [28]).
5. Differences of interpretation

To emphasize the critical need for public data and analysis
methods, we give three examples of where differences of trace
interpretation result in differences in the derived failure models.
In particular, we show that differences of interpretation can
change significantly the distribution of failures in terms of passing
statistical goodness-of-fit tests and the fitted distributions. Overall,
we show significant differences for both empirical and fitted
distribution. This emphasizes the need for public data sets and for
a general framework for data interpretation, expressed inmethods
and tools.

We choose three data sets, namely lanl05, g5k06, and
nd07cpu, where the time of failures can be interpreted differently.
On close examination of the lanl05 trace, we found that there are
overlapping unavailability intervals. This overlapping of intervals
was especially evident in System 16 of this trace, which is a cluster
of 16 NUMA-based nodes, each of which has 128 processors and 4
NICs.

In some cases, one failure interval completely subsumed
another. In other cases, the start time of a failure interval A was
greater than the start time of another interval B but less than the
stop time of interval B. Moreover, the stop time of A was greater
than the stop time B. We believe these intervalsmight be the result
of human error, as the data were manually recorded.

The authors that first described this data set [65] did not detail
the cause of these intervals nor how or why these intervals were
interpreted in a certainway. Comparing our statistics of the failures
with those previously reported by Schroeder and Gibson [65],
we ‘‘reversed engineered’’ the interpretation, and found that the
authors used the union of failures intervals having ambiguity.
For comparison, we interpret the failure intervals in System 16
differently and optimistically using their intersection, calling the
resulting post-processed data set lanl0516B.

We also found different possible interpretations for the g5k06
trace. In the raw trace, the states of nodes are given as available,
unavailable, suspected, or dead. Suspected is a state
(assigned mostly automatically) in which a node does not behave
well according to OAR, the Grid’5000 node manager. The ‘‘bad’’
behavior is detected throughmany tools, such as the nodemonitor
finaud, the jobs monitor sarko, and the internal OAR state manager
NodeChangeState. Pessimistic trace processing would interpret
the suspected state as a failure and assume unavailability. An
optimistic trace processing would interpret the suspected state
as a fault, but not a failure, and assume availability. The former
interpretation is used in the g5k06 trace described in previous
sections andby Iosup et al. [43].Wedenote the latter interpretation
as g5k06B.

The nd07cpu trace is the third data set for which we draw
attention about various possible interpretations. The trace is
comprised of host idle times and CPU loads. Defined by Rood and
Lewis [63], CPUs are available when the host is idle without any
user for more than 15 min and the CPU load (which could be
independent of the user) is less than 50%.We relaxed this condition
to lengthen the CPU availability time by including the time when a
user is present (which, in turn, would cause zero idle time) and
the CPU load is less than 10%. This is a reasonable definition of
CPU availability, as a guest job could still run on the host without
interfering significantlywith local jobs. The data setwith this latter
interpretation is referred to as nd07cpuB.

In the following, we present the analysis of different failure
interpretations for the aforementioned data sets. First, we compare
the empirical distributions graphically. Second, we fit several
distributions to each of the data sets and compare the fitted
distributions for each pair of data sets. We compare the fitted
distributions statistically with p-values and then graphically with
qq-plots.
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5.1. Differences of empirical distributions

We now investigate the statistical properties of availability
and unavailability intervals, under different assumptions. Overall,
we find that the impact of different interpretations is significant.
Specifically, we find that a different interpretation can lead to
increase, decrease, or no change in the characteristics of either
availability and unavailability intervals. Moreover, we find that
the characteristics of availability and unavailability intervals can
change independently of each other, e.g., one can increase while
the other can decrease.

Fig. 4 shows the quantiles of the empirical distributions for each
pair of data sets. If the two data sets have the same distribution,
their qq-plot will match the line y = x, which is plotted in solid red
as a reference. We only show representative results: qq-plots for
g5k06’s availability, lanl0516’s unavailability, and nd07cpu’s
availability.

For g5k06 (Fig. 4(a)), g5k06B has longer availability intervals;
it also has shorter unavailability intervals (not depicted here). This
is due to the optimistic interpretation of the suspected state.
The deviation is greatest at the quantile at 1000 h of g5k06B,
which corresponds to the quantile of 600 h of g5k06. Also, the
mean availability in g5k06B was increased by a factor of 1.50 (!)
because of the difference of interpretation. Themeanunavailability
in g5k06Bwas decreased by a factor of 1.13 due to the decrease in
the number of failures.

For lanl0516, we have observed little differences of inter-
pretation for availability. This is due to System 16 being highly
available over a long period of time, which means that changes in
unavailability periods may not also be reflected in availability pe-
riods. However, there are clear differences in the distribution of
unavailability, as shown in Fig. 4(b). Specifically, the unavailabil-
ity intervals for lanl0516B are statistically much shorter than for
lanl0516.

For nd07cpu, we find that nd07cpuB has statistically longer
availability and unavailability intervals than nd07cpu. In partic-
ular, the mean lengths of availability and unavailability intervals
have increased by a factor of 1.47 and 1.35, respectively. While
the total amount of unavailability decreased in nd07cpuB, small
unavailability intervals were interpreted as availability intervals,
after the optimistic processing of the traces. Thus, both the mean
lengths of availability and unavailability were increased.

5.2. Differences of fitted distributions

We now show how the differences of interpretation affect the
statistical goodness-of-fit tests of fitted distribution and their fitted
parameters. Overall, similar to Section 5.1 we find that the impact
of different interpretations is significant.

Typically, a significance value of 0.05 or 0.10 is used as a thresh-
old for p-values to determine whether to reject the NULL hy-
pothesis that the fitted distribution represents the empirical. We
found several cases where the p-values for different interpreta-
tions would result in conflicting conclusions, i.e., rejection for one
interpretation and failure of rejection for another. For example,
the AD-test for the Weibull distribution fitted to g5k06’s unavail-
ability intervals resulted in a p-value of 0.07, whereas the p-value
corresponding to g5k06B was 0.035. Similarly, for the AD test
for the log-normal distribution the p-value is 0.148 for g5k06
versus 0.057 for g5k06B. Thus, for a significance level of 0.05,
we find that the Weibull distribution would not be rejected as a
good fit for g5k06’s unavailability distribution, but would be re-
jectedg5k06B’s unavailability distribution. For a threshold of 0.10,
the log-normal distribution would not be rejected for g5k06, but
would be rejected for g6k06B’s unavailability distribution.
We found similar cases for lanl0516 and lanl0516B, and for
nd07cpu and nd07cpuB. For lanl0516, the Gamma distribution
is rejected for lanl0516’s unavailability intervals but not rejected
forlanl0516B according to the p-values resulting from theKS test
(0.046 versus 0.056). For nd07cpu, the log-normal distribution is
rejected for nd07cpuB’s unavailability intervals, but not rejected
for nd07cpu according to the p-value for the KS test (0.14 versus
0.01).

In addition to quantitative contradictions, we also depict
contradictions graphically, in Fig. 5. We plot the quantiles for the
fitted Gamma distributions of pairs of data sets. We choose the
Gamma distribution as it is analytically easy to use and has a
relatively high p-value.

Fig. 5 depicts qq-plots of the Gamma distributions for g5k06’s
availability, lanl0516’s unavailability, and nd07cpu availability
distributions. We observe from the qq-plots that the distributions
fitted to different interpretations of the same data set are
significantly different. For example, for lanl0516, we see that the
quantile of 40 h for lanl0516B corresponds to the quantile of
180 h for lanl516.

Furthermore, the impact on the distribution parameters
is significant as shown in Table 9. Significant differences in
parameters are highlighted in gray. For example, the mean of the
exponential distribution forg5k06B’s availability is a factor of 1.50
times greater than g5k06. Moreover, different interpretations can
significantly affect the scale parameter of theGamma. For example,
the scale parameter of the gamma distribution for g5k06B’s
availability is factor of 1.39 times greater than g5k06.

6. Performance evaluation

In this section, we evaluate the effect of resource failures on
the job scheduling for two different case studies. To do this, we
consider a set of parallel jobs to be scheduled on a parallel system
in the presence of resource failures.We also use the results of trace
interpretation explained in Section 5 as the failure traces. The FTA
simulator based on GridSim [69] is used to simulate the considered
case studies.

6.1. Performance metrics

The performance metrics that we consider in all simulation
scenarios are the Average Weighted Response Time (AWRT) [34]
and the Bounded Slowdown (BS) [30]. The AWRT for N given jobs
is defined by

AWRT =

N
j=1

dj · vj · (cj − sj)

N
j=1

dj · vj

, (1)

where dj is the execution time of the job, vj is the number of nodes
used by job j, cj is the time of completion of the job, and sj is its
submission time. The resource consumption dj · vj of a job j is used
as itsweight in the denominator. AWRTmeasures the average time
that users must wait to have their jobs completed weighted by the
weights of the jobs. The BS for a set of N jobs is defined as follows:

BS =
1
N

N
j=1

Wj + max(dj, b)
max(dj, b)

, (2)

whereWj is the waiting time of job j and b is a lower bound on the
runtimes of jobs that is used to eliminate the effect of very short
jobs [30]. We set b to 10 s.

6.2. Experimental setup

The workload model for evaluation scenarios is obtained
from the Grid Workload Archive [44]. We use the parallel
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(a) g5k06, availability. (b) lanl0516, unavailability.

(c) nd07cpu, availability.

Fig. 4. Quantile–quantile plots of empirical data for ambiguous data sets.
Table 9
Parameters of distributions for availability (left) and unavailability (right) for ambiguous data sets (mean: µ, std: σ , shape: k, scale: λ). A grey box indicates a significant
difference of parameters between data sets.

System Exp(µ) Wbl(k, λ) LogN(µ, σ ) Gam(k, λ) Exp(µ) Wbl(k, λ) LogN(µ, σ ) Gam(k, λ)

g5k06 32.41 0.48 14.37 1.51 2.42 0.34 94.35 7.41 0.35 0.47 −2.00 2.20 0.19 39.92

g5k06B 48.61 0.52 22.66 2.08 2.21 0.37 131.78 6.54 0.35 0.31 −2.36 2.07 0.18 37.00

lanl05 1779.99 0.48 816.60 5.56 2.39 0.35 5102.71 5.92 0.58 2.18 0.05 1.42 0.38 15.44

lanl05B 1774.21 0.48 812.98 5.55 2.39 0.35 5087.60 5.06 0.59 2.12 0.03 1.40 0.41 12.28

nd07cpu 13.73 0.45 4.16 0.30 2.20 0.30 46.16 4.25 0.51 0.74 −1.02 1.27 0.28 15.07

nd07cpuB 20.12 0.48 7.21 0.91 2.07 0.33 61.74 5.75 0.49 0.83 −0.91 1.21 0.26 21.72
job model of the DAS-2 multi-cluster Grid [53]. Based on the
workload characterization, the inter-arrival time, the job size,
and the job duration follow Weibull, two-stage Loguniform, and
Lognormal distributions, respectively. These distributions with
their parameters are listed in Table 10. It should be noted that the
number of nodes in the job can be scaled to the system size (e.g.,M
nodes) by setting h = log2 M . Based on the workload model, Pone
and Ppow2 are the probabilities of occurrence in the workload of
jobs that run on one node and of jobs that run on a number of
nodes that is a power of two, respectively. In order to generate
different synthetic workloads, we modify the second parameter
Table 10
Input parameters for the workload model.

Input parameters Distribution/value

Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)
No. of nodes Loguniform (l = 0.8,m, h, q = 0.9)
Job duration Lognormal (µ = 4.5, σ = 2.0)
Pone 0.024
Ppow2 0.788

of the Weibull distribution (the shape parameter β) as shown in
Table 10 to change the inter-arrival time of the jobs.
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(a) g5k06, availability. (b) lanl0516, unavailability.

(c) nd07cpu, availability.

Fig. 5. Quantile–quantile plots of fitted distributions for ambiguous data sets.
The failure traces used for the experiments are g5k06 and
lanl05. We use the failure trace of a cluster in Grid’5000 with
64 nodes (i.e., Cluster number 2) as well as the system number
16 from the LANL system with 16 nodes and 128 processors. The
characteristics of the failure traces are listed in Table 11. For each
failure trace, we use the same interpretations as explained in
Section 5. As one can see, the average availability of g5k06C2B
is significantly increased where the average unavailability slightly
increased. In contrast, the average unavailability of lanl0516B is
decreased where the average availability is marginal increased.

We configure the simulator so that it simulates systems similar
to the ones on which the traces were collected. We use selective
backfilling [67] as the job scheduler, which grants a reservation to
a job when its expected slowdown exceeds a threshold, i.e., when
the job has waited long enough in the queue. The expected slow-
down of a given job, sometimes also called its eXpansion Factor
(XF), is defined as XF = (Wi + di)/di, where Wi and di are the
waiting time and the execution time of job i, respectively. We
use the Selective-Differential-Adaptive scheme proposed in [67],
which sets the threshold for XF to be the average slowdown of pre-
viously completed jobs. It has been shown that selective backfilling
outperforms other types of backfilling algorithms [67], which is the
reason why we use it in our experimentations.

After submitting a job to the scheduler, each job runs on nodes
that are available. In the case of resource (node) failure during the
Table 11
Characteristics of the failure traces used in the experiments.

Traces No. of
events

Avg.
events/node

Avg. avai.
(h)

Avg. unavai.
(h)

g5k06C2 50924 795 22.256 10.223
g5k06C2B 33310 520 37.699 11.948
lanl0516 5092 318 228.806 9.328
lanl0516B 5208 325 229.846 3.006

execution of a job, we assume perfect checkpointing so that the job
is started from where it left off when the node becomes available
again. Checkpointing issues are beyond the scope of this paper,
and we refer interested readers to [13] to see how checkpoint
overheads and periods can be computed bases on the associated
failure model.

For each simulation experiment, we gathered statistics for a
two-month period of the DAS-2 workloads. The first week of
workloads during the warm-up phase were ignored to avoid bias
before the system reach steady state. For the experiments, each
data point is the average of 50 simulation rounds to have a better
confidence on the performance metrics.

6.3. Results and discussion

In Fig. 6 we show the simulation results in terms of AWRT and
BS versus the arrival rate for two traces of g5k06. As can be seen,
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(a) AWRT. (b) BS.

Fig. 6. The AWRT and the BS versus the arrival rate for two traces of g5k06.
(a) AWRT. (b) BS.

Fig. 7. The AWRT and the BS versus the arrival rate for two traces of lanl05.
the response time and slowdown for theg5k06C2B trace aremuch
lower than for the g5k06C2. The main reason for this is the higher
average availability of g5k06C2B as illustrated in Table 11. The
same results for the lanl05 traces are plotted in Fig. 7. While
the AWRT of the lanl0516B trace is a bit higher than that of
lanl0516, the slowdown shows no obvious difference for the two
traces. One possible reason is the high availability of both lanl05
traces (see Table 11).

To be more precise in terms of comparing two interpretations
of a failure trace, we also consider the Cumulative Distribution
Function (CDF) of the job response time for both the g5k06 and
lanl05 traces under a moderate workload. As one can see in
Fig. 8(a), the response time for g5k06C2 is higher than that for
g5k06C2B, similar to Fig. 6. However, Fig. 8(b) shows that in
contrast to what we observe in Fig. 7, the job response time with
lanl0516B is lower than with lanl0516. This reveals that using
average values cannot always provide an accurate reflection of
system performance in the presence of resource failures. In our
case, since the difference of the two g5k06 traces in terms of
availability is really considerable, the AWRT and BS metrics can
show the difference of the system performance. However, both
lanl05 traces have very close availability and the only difference
is the lower unavailability in lanl0516B. In this case, the CDF is
much more informative than the average metrics.

The last, but not least, making both trace data and analytical
methods publicly available is critical to apply the failure traces in
the research and development of reliability algorithms for parallel
and distributed systems.

7. Related work

In this section, we compare our work with related work: other
public-access archives and previous works on statistical modeling.

Differences between the FTA and other public-access archives: The
FTA extends the previous work in public-access archives in three
main ways. First, the FTA defines a comprehensive unified format
that facilitates use and comparison of the traces. In particular, the
FTA data format can accommodate various types of components
and events. None of the archives we survey in this section can
accommodate information from all the distributed system types
investigated in this work. Second, the FTA already hosts a much
broader and deeper collection than all the public-access archives
we survey here. The FTA contains over 20 data sets, covers 8
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(a) g5k06C2 (β = 0.25). (b) lanl0516 (β = 0.225).

Fig. 8. The cumulative distribution functions of the job response time for two traces under a moderate load.
classes of distributed systems and representing over 10 application
domains, and spans with its failure traces over 20 operational
years. Moreover, the FTA also shares raw (!) data and various
scripts for data parsing. Third, the FTA provides a public toolbox for
failure trace analysis. None of the other archives we survey in this
section provides such a toolbox; although such a toolbox is needed
to reduce the interpretation differences when using different data
acquisition processes (see also Sections 5 and 6), none of the other
archives provides a comprehensive toolbox.

Open-access archives for failure data: The Computer Failure
Data Repository [66] provides failure traces for supercomputers
and clusters used for one application domain, HPC. However,
no standard format is defined, and only raw data are shared.
The Repository of Availability Traces [33] contains traces for 5
distributed systems in a common format and scripts used for
parsing the raw data. While a standard format is defined, we
believe this format excludes critical information for capturing a
range of failure types and systems. For example, the format does
not contain the failure cause, the creator, and the component
type. The Desktop Grid Trace Archive [50] is focused specifically
on one type of distributed systems, desktop grids; moreover, a
generic failure format is not provided. The Grid Observatory [54]
provides numerous data sets, some of which could provide
failure information. However, the repository is currently limited
to a single system (i.e., EGEE) and only provides raw data. The
Observatory does not provide a common data format, or scripts for
parsing and analysis.

Other open-access archives for distributed systems, but without
failure data: There are several trace archives that provide workload
data set of parallel and distributed systems. The ParallelWorkloads
Archive [29] includes many workload traces of supercomputers
and parallel machines. The Grid Workloads Archive [44] provides
workload traces of clusters and grids. The P2P Trace Archive [73]
shares many workload and operational traces collected from peer-
to-peer systems. The Game Trace Archive [36] publishes oper-
ational and other traces representative to distributed systems
supporting online gaming, typically massively multiplayer. Al-
though all these archives have their own trace format, they do not
focus on job, service, or resource failures.

Differences between this study and previous work on statistical
modeling of failures in distributed systems: Overall, our work
presents the first uniform and comprehensive statistical analysis
and comparison of the failure characteristics for different types of
distributed systems. Most previous studies, in particular [11,68,59,
10,35], do not focus onmodeling issues. A few other studies [65,43]
have also conducted modeling of various failure characteristics.
However, this body of previous modeling work focuses on a
particular system type or even on a single data set, and so
the generality of the model for distributed systems was not yet
confirmed.

In the study of Bakkaloglu et al. [7], the entity being modeled
is different than ours. Bakkaloglu et al. model the number of
machines available at some time point, considering correlated
failures, in the context of a distributed storage system. In contrast,
our study focuses on the continuous durations of availability
and failures. This latter characteristic is essential for stochastic
scheduling algorithms that conduct task assignment based on the
probability of task completion.

8. Conclusion

Despite the importance and impact of failures in (large-scale)
distributed computing environments, few traces collected from
real environments that contain information on failures are publicly
available. To address this situation,which restricts the applicability
of failure models and the development of failure-aware systems,
our contribution in this work is threefold:

1. We have created the Failure Trace Archive for facilitating the
comparative analysis of failures in distributed and parallel
systems. We defined a standard trace format and showed
its suitability by converting traces of 20 diverse distributed
systems into this format. Given traces in this format, we
implemented a toolbox and a simulator that facilitates the
comparison of failure statistics, models, and algorithms.
Ultimately, we envision that scientists would use the toolbox
as a repository of modeling and predictive methods.

2. Using the toolbox, we gave a uniform and global statistical
analysis of failure in nine distributed systems. One key
finding was that the Weibull, the Lognormal, and the Gamma
distributions are often the best candidates for availability
and unavailability distributions. Moreover, the hazard rate
with respect to the Weibull distribution was decreasing in
all systems. In some cases, the measurement method (in
particular the resolution of probing) seemed to cause bias in
the distribution of availability, andwe identified these data sets
with potential bias.

3. Finally, we have shown how differences of interpretation of
trace data sets can result in significantly different failure
models and statistics. Moreover, we observed that differences
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of interpretation have a major impact on the job scheduling in
the presence of resource failures. This shows that it is critical to
make both trace data and analytical methods publicly available.

As future research, we intend to discover the relationship be-
tween lower-level failures (for example, of nodes or components)
and higher-level failures (for example, of jobs) in large-scale dis-
tributed systems.

9. Availability of FTA data and scripts

The Failure Trace Archive, including technical documentation
on the data format, the toolbox, and the trace data sets are available
online at: http://fta.scem.uws.edu.au.
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