
1

Procedural Content Generation for Games: A Survey
MARK HENDRIKX, SEBASTIAAN MEIJER, JOERI VAN DER VELDEN, and ALEXANDRU IOSUP,
Delft University of Technology, The Netherlands

Hundreds of millions of people play computer games every day. For them, game content—from 3D objects to abstract puzzles—
plays a major entertainment role. Manual labor has so far ensured that the quality and quantity of game content matched
the demands of the playing community, but is facing new scalability challenges due to the exponential growth over the last
decade of both the gamer population and the production costs. Procedural Content Generation for Games (PCG-G) may address
these challenges by automating, or aiding in, game content generation. PCG-G is difficult, since the generator has to create the
content, satisfy constraints imposed by the artist, and return interesting instances for gamers. Despite a large body of research
focusing on PCG-G, particularly over the past decade, ours is the first comprehensive survey of the field of PCG-G. We first
introduce a comprehensive, six-layered taxonomy of game content: bits, space, systems, scenarios, design, and derived. Second,
we survey the methods used across the whole field of PCG-G from a large research body. Third, we map PCG-G methods to game
content layers; it turns out that many of the methods used to generate game content from one layer can be used to generate
content from another. We also survey the use of methods in practice, that is, in commercial or prototype games. Fourth and last,
we discuss several directions for future research in PCG-G, which we believe deserve close attention in the near future.

Categories and Subject Descriptors: A.1 [General Literature] Introductory and Survey; K.8.0 [Personal Computing]: Gen-
eral—Games; I.2.4 [Computing Methodologies]: Knowledge Representation Formalisms and Methods—Representations, pro-
cedural; Representations, rule-based; H.4.0 [Information Systems Applications] General

General Terms: Theory, Design, Standardization, Algorithms

Additional Key Words and Phrases: Game content generation, procedural, survey

ACM Reference Format:
Hendrikx, M., Meijer, S., van der Velden, J., and Iosup, A. 2013. Procedural content generation for games: a survey. ACM Trans.
Multimedia Comput. Commun. Appl. 9, 1, Article 1 (February 2013), 22 pages.
DOI = 10.1145/2422956.2422957 http://doi.acm.org/10.1145/2422956.2422957

1. INTRODUCTION

Computer games are increasingly present in our lives. Every day, hundreds of millions of players
around the world are entertained by games such as FarmVille, World of Warcraft, Call of Duty, The
Sims, and StarCraft. The U.S. Entertainment Software Association (ESA) reports [ESA 2010] that,
in 2009, over 68% of American households play computer or video games; inside these households,
the average game player age is 35, and the average experience with computer or video games is 12

This work was supported by the STW/NWO Veni grant @larGe (11881).
Authors’ addresses: M. Hendrikx, S. Meijer, J. van der Velden, A. Iosup (corresponding author), Delft University of Technology,
Mekelweg 4, 2628CD, Delft, The Netherlands; email: A.Iosup@tudelf.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2013 ACM 1551-6857/2013/02-ART1 $15.00

DOI 10.1145/2422956.2422957 http://doi.acm.org/10.1145/2422956.2422957

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:2 • M. Hendrikx et al.

years. The same ESA reports show a growing use of computer games in U.S. households over the past
decade. Game content is an important factor in keeping players engaged in gaming worlds. We take
for granted the ability of computer games to present players with engaging content, whereas demand
for new and even player-customized content keeps increasing while manual content production is al-
ready expensive [Takatsuki 2007] and unscalable [Iosup 2011]. In contrast to manual content produc-
tion, Procedural Content Generation for Games (PCG-G) is the application of computers to generate
game content, distinguish interesting instances among the ones generated, and select entertaining
instances on behalf of the players. PCG-G is difficult: generating most types of game content requires
from a computer not only computational power, but also the ability to judge the technical and cultural
values of the generated instances. It is not surprising that, despite over three decades of research
and development, the community has yet to design a general-purpose procedural game content gen-
erator. In this article we conduct a systematic survey of PCG-G techniques and their application in
practice.

The most popular commercial games get larger, prettier, more atmospheric, and more detailed with
each generation. For example, the Massively Multiplayer Online Role-Playing Game (MMORPG)
World of Warcraft (WoW) immerses its players into a virtual fantasy world of great complexity. Each
of the two main continents in this world is about the size of Manhattan and includes a detailed
landscape, a diverse ecosystem, complex renditions of fantasy towns, and a comprehensive road net-
work. The game features many types of content, such as sound, textures, terrains, buildings, cities,
object behavior, and game scenarios. In total, WoW was comprised in 2008 [ComplexityGaming.com
2008] of over 1,400 interesting geographic locations, 30,000 items, 5,300 interactable creatures, 7,600
quests, and 2,000,000 words of text; this content was produced during almost five years of
development.

Today, the production of high-quality commercial games may require the work of a few hundred peo-
ple, including artists, designers, programmers, and audio engineers, many of whom work on producing
game content. As a consequence, content production has grown to the point at which it has become a
bottleneck in both game budgets and product time-to-market [Kelly and McCabe 2007; Lefebvre and
Neyret 2003; Smelik et al. 2009; Iosup 2009]. In the early-to-mid-1990s, the successful game develop-
ment company id created popular commercial games such as Commander Keen, Wolfenstein 3D, and
Doom with a single full-time content developer in a team of five or six game developers [Kushner 2003].
In the early 2000s, game production teams already employed hundreds of people [Krueger et al. 2005].
An increasing growth trend for both production cost and team size with time was observed as early as
2005 [Krueger et al. 2005]. The actual production budgets remain unknown for many of the popular
commercial games, but educated guesses place the budgets of contemporary games such as WoW at
$20,000,000–$150,000,000 [Johnson 2006; Reynolds 2010b; Video Game Sales Wiki 2009]. Anecdotal
evidence suggests an increase in the fraction of the game production costs spent on generating con-
tent, toward 30–40% of the game budget [Irish 2005, p.231, p.281; Elas 2010]. Apart from the cost,
finding qualified people has become a major problem as early as 2005 [Krueger et al. 2005], even when
considering the global workforce [Fields 2010, p.99]. Fast-growing production costs have already been
at least partially responsible for the dissolution of once successful game companies such as Interplay
and Factor 5. Ultimately, the current situation of game content production means that fresh content
cannot be not produced anymore at the rate and player customization that gamers would want, and
for the cost that would keep games affordable for their current gamer communities.

Procedural techniques are an alternative to making complex game worlds in a limited amount of
time without putting a large burden on the game content designers. The main idea behind procedu-
ral content generation is that game content is not generated manually by human designers, but by
computers executing a well-defined procedure. To avoid losing control over the design process, it is

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:3

desirable that artists and designers can still influence the final product by adjusting the parameters
of the procedure.

Following three decades of research, many methods exist for procedurally generating many types
of game content. One of the simplest and earliest approaches to procedural game content generation
is based on Pseudo-Random Number Generation (PRNG). The space exploration game Elite used this
approach in the 1980s to generate a very large universe. A similar approach can be used to generate
textures for game objects [Perlin 1985]. The Demoscene, a loose community of artists and coders, has
used procedural techniques since the mid-1980s to create vast virtual environments with small disk
space requirements. The game “.kkrieger” [Farbrausch Prod. 2006] is a 3D first-person shooter, similar
in genre to Halo 3 (a $20,000,000-plus budget game). Having Demoscene-like goals, “.kkrieger” uses
procedural techniques to generate textures, meshes, and sounds that are used to create a complex,
immersive game. This game requires under 100 KB of disk storage—three to four orders of magnitude
less than a similar game. Can the techniques employed by “.kkrieger” be used by other games? Re-
search such as 3D model streaming [Mondet et al. 2009] may benefit from the techniques employed
by “.kkrieger”, and vice versa. What other techniques can be used to generate the content present in
“.kkrieger”? Some techniques may focus on stochastic outcome [Ashlock 2010; Edwards 2011], rather
than the deterministic outcome present in Elite and “.kkrieger”; other [Chen et al. 2008; Smith et al.
2010; Smelik et al. 2010] may focus on human-aided content generation.

Despite an abundance of PCG-G techniques, their application in commercial products is not main-
stream. PCG-G methods have been successfully applied to generate many game content types (see
Section 2), but the existing solutions are not general purpose. The literature on procedural game con-
tent generation is scattered across numerous disciplines (computer graphics, image processing, artifi-
cial intelligence, computer-human interfaces, psychology, linguistics, social sciences, ludology, etc.) and
publication venues. In this sense, PCG-G is coevolving with many other areas in science, and in partic-
ular of computer science. We found relevant material for our survey in IEEE Trans. on Visualization
and Computer Graphics, ACM Trans. on Graphics, ACM Trans. on Multimedia Computing, Commu-
nications and Applications, IEEE Trans. on Computational Intelligence and AI in Games, the J. of
Visualization and Computer Animation (recently renamed Computer Animation and Virtual Worlds),
the Int’l. Conf. on Game Design and Technology, the IEEE Conf. on Computational Intelligence and
Games, the ACM Int’l. Conf. on Foundations of Digital Games, the Artificial Intelligence and Interac-
tive Digital Entertainment Conference, the Int’l. Workshop on Procedural Content Generation in Games,
etc. While there currently exists no textbook on the subject of general procedural game content gen-
eration, we point out one book [Ebert et al. 2002] and two surveys [Kelly and McCabe 2006; Smelik
et al. 2009]. Ebert et al. introduce a variety of methods for procedural generation of textures and ma-
terials, including methods for noise, solids, gases, fire, water, earth, and cloud generation. Kelly and
McCabe survey techniques for procedurally generating cities, focusing on the generation of cityscapes,
individual buildings, and road networks. For five procedural city generation methods, they analyze the
realism, the scale, and the variation of the generated content. Last, they introduce and use several
evaluation criteria for user-control and efficiency in procedural city generation. Smelik et al. survey
procedural generation of terrain and urban environments. They investigate over 50 papers that ad-
dress the generation of terrain elevation, bodies of water, road networks, and urban environments. It
is symptomatic for the state of the field that there exists no structural overlap in these two surveys,
despite the topical overlap and time difference between them. Structuring the entire field of research
in procedural game content generation is the main goal of this work.

In this work we survey the methods used for procedurally generating game content for a whole
spectrum of game content types, with an emphasis on methods that have been used and demonstrated
in commercial applications, or that are new trends or ideas. In Section 2 we present several game

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:4 • M. Hendrikx et al.

Fig. 1. Types of game content that can be procedurally generated. The numbers in each box refer to the subsection
dedicated to the content type in Sections 2 (definition) and 4 (application of procedural generation methods).

content types, including game bits, game space, game and systems. We introduce a taxonomy of general
PCG-G methods, which, for reasons of space, we summarize in Section 3 and detail in the Online
Appendix. In Section 4 we survey various applications of PCG-G methods, by game content type, and
map these applications to our taxonomy of methods. In Section 5, we provide an overview of games
that use PCG-G techniques. Finally, we provide recommendations for future research in Section 6, and
conclude in Section 7.

2. WHAT’S IN A GAME?

In this section we review six main classes of game content that can be generated procedurally. In
addition to classes of content present strictly inside games, we consider derived content, that is, content
derived from the content or the state of a game with the goal of immersing the player further into the
game world. We structure the six classes as a virtual pyramid (see Figure 1), in which classes of content
closer to the top may be built with elements from the classes closer to the bottom.

2.1 Game Bits

Game bits are elementary units of game content, which typically do not engage the user when consid-
ered independently. We identify six main types of game bits, which we describe in turn.

2.1.1 Textures. Textures are images used in games for adding detail to geometry and models, and
for giving a visual representation to game elements such as menus. Textures often define the art style
of a game. Often, the texture has to additionally represent the material of the object and the way
the environment is reflected on, by, and through the material. Stimulated by the degree of skill and
amount of work necessary to produce realistic textures—shading and material representation have
often formed the advanced part of drawing courses for the past 50 years [Loomis 1951; Edwards 1989;
Hillberry 1999]—many games now use artists only for contour generation and difficult to generate
materials, and procedural techniques for most general and material-specific textures.

2.1.2 Sound. Sound has an important function within games [Bartle 2003]; for example, music is
used to set game atmosphere and pace, and sound effects are used to give feedback to the player on
actions and environment change. Current game production relies mainly on prerecorded sound clips
that are triggered by game events [Manocha et al. 2009, p.160], which would be akin to the use of
video clips instead of visual object representations, a decade ago. There is considerable resistance to
algorithmic compositions from musicians and the general public [Edwards 2011], but when it comes
to procedural generation, the importance of computational thinking about sound cannot be ignored.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:5

However, prerecording under financial constraints leads to several limitations, including unrealistic
sounds due to unexpected or complex scene configurations.

2.1.3 Vegetation. Vegetation is used in many games for a more realistic and thus immersive look.
For example, trees can cover the ridge of a mountain and reeds can be found along river banks. The
presence of vegetation is not merely aesthetic; it may serve as hiding place or raw material for inven-
tive players, and clarify the climate in which the player operates and thus lead to changes in gameplay.

2.1.4 Buildings. Buildings are essential to represent urban environments in games. Even more so
than for vegetation, buildings may be significant to players and often influence gameplay—players
often plan their game activities in relation with buildings, for example, by ending resource collection
activities closer to warehouses or marketplaces. Modern game buildings need to be diverse yet be-
long to a unitary architectural style; even fictional environments such as World of Warcraft’s require
interesting and believable buildings to maintain immersion.

2.1.5 Behavior. Behavior is the way in which objects interact with each other and the environment,
for example, by breaking or exploding when hit. The behavior of objects makes a game more lively and
interesting. Procedural behavior is often employed in games to create the illusion of complexity; in
response, players may find creative ways to bend or use object behavior.

2.1.6 Fire, Water, Stone, and Clouds. Fire, Water, Stone, and Clouds are often used in games to
create a more believable world. In early games, the role of these elements of nature was purely decora-
tive, and only textures and sounds were necessary for this type of content. However, recent advances in
computation and modeling [Ebert et al. 2002; Dorsey and Rushmeier 2009] have made more common
the use of detailed, realistic, and interactive representations of these elements.

2.2 Game Space

The game space is the environment in which the game takes place, and is partially filled with game bits
among which players navigate. The game space plays a major role in creating dramatic experience, as
players often construct their interpretation of the game starting from the game space [Nitsche 2009].
In contrast to Nitsche [2009], we consider space as only the one-, two-, or three-dimensional area where
residing artifacts have relative position and direction.

Our distinction between indoor and outdoor maps stems from aesthetic, cultural, and technical con-
siderations. Aesthetically, outdoor maps of natural and even urban areas have consistent themes,
which is less likely for indoor maps. Culturally, indoor maps increasingly feature many inter-related,
possibly one-of-a-kind artifacts. Technically, outdoor maps require different algorithms and data struc-
tures than indoor maps to generate and operate.

2.2.1 Indoor Maps. Indoor Maps are depictions of the structure and relative positioning of indoor
space partitioned into rooms. Rooms may be interconnected by corridors, overlapped in layers intercon-
nected by stairs, and grouped altogether in dungeons. Another form of indoor maps are caves, which
can have varying and unusual geometry. Yet another form of indoor maps focuses on human-like build-
ings, where the position and size of rooms, and sometimes their content, are important. The game genre
Multi-User Dungeons (MUDs), the ancestor of today’s popular MMORPGs, is a type of game in which
indoor map navigation is central to gameplay. The platform game Prince of Persia, which is set inside
a multileveled dungeon, is one of the few to make extensive use of indoor maps.

2.2.2 Outdoor Maps. Outdoor Maps are depictions of the elevation and structure of an outdoor
terrain. It is common for games with outdoor maps to also have indoor maps; due to important tech-
nological differences in the representation and rendering of outdoor and indoor maps, the transition

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:6 • M. Hendrikx et al.

between the two is often made discrete. For example, World of Warcraft has large outdoor areas and
numerous indoor areas; players transition between them through the use of special entrance areas
and teleportation portals. Many commercially successful platformer games, such as Nintendo’s Super
Mario World and Number None Inc.’s Braid, make extensive use of outdoor, albeit stylized, maps; other
platform games, such as the Commander Keen series, mix outdoor and indoor maps.

2.2.3 Bodies of Water. Bodies of Water such as rivers, lakes, and seas are often used as map ob-
stacles or even as interactive game space. Other map features, such as teleportation areas, etc., and
mountains, ridges, ravines, grottoes, etc., may also be part of game space.

2.3 Game Systems

The use of complex systems theory and modeling to generate or simulate parts of a game is not uncom-
mon. The use of game systems can make games more believable and thus appealing. Many systems
used in games are similar to textbook complex systems and models [Alexander 1977; Strogatz 1994;
Edelstein-Keshet 2005].

2.3.1 Ecosystems. Ecosystems govern the placement, evolution, and interaction of flora and fauna
through algorithms and rules. The designers of Ultima Online, a game which established the game
genre of MMORPG [Loguidice and Barton 2009], focused on generating large ecosystems that included
complex food chains [Barron 1999, p.21; Bartle 2003, Chapter 4].

2.3.2 Road Networks. Road Networks form the basic structure of an outdoors map, serving differ-
ent purposes such as transportation between points of interest, and structuring of and transportation
within cities. The main difficulties in generating road networks are finding the right balance between
randomness and structure, and conveying the view of the game designer about places of interest, such
as remoteness (through interrupted roads), difficulty (labyrinthine roads), and importance (broader
roads).

2.3.3 Urban Environments. Urban Environments are large clusters of buildings where many peo-
ple live together and interact with their surroundings. Realistic cities take centuries to grow, and
evolve by influence of the people that live there. Procedural algorithms often take a different approach
by first generating the road networks, then dividing the terrain between the roads in building lots, and
at last generating buildings on these lots. The realism of these generated cities can be improved by
applying effects like erosion caused by people and weather.

2.3.4 Entity Behavior. Many types of complex player-environment interaction need to be possible
to make the player experience that a virtual world is life-like. Entities such as nonplayable characters
(NPC) that interact with the player are a powerful tool to achieve this illusion. Procedurally generat-
ing entity behavior based on player action and interaction has the potential to create immersive and
realistic experiences. Not only player interaction requires complex entity behavior; group movement
patterns are examples where procedural algorithms could achieve more realistic results.

2.4 Game Scenarios

Game scenarios describe, often transparently to the user, the way and order in which game events
unfold.

2.4.1 Puzzles. Puzzles are problems to which the player can find a solution based on previous
knowledge or by systematically exploring the space of possible solutions embedded in the problem
[Colton 2002]. For puzzles, the process of finding the solution is the game and thus a rewarding expe-
rience. Many quests present in commercial games may be expressed as a sequence or graph of puzzles.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:7

Examples of puzzles are riddles, crosswords, and chess endings. The size of the solution space and the
previous experience of the player largely determine the difficulty of a puzzle.

2.4.2 Storyboards. Storyboards are design aids for the game developer or player. Storyboards are
often presented as comics, with sequential panels describing scene events through a visual/textual
hybrid. Storyboards can also be used to entertain and guide players, for example, through cut-scenes
interleaved with normal gameplay. Depending on how they are produced and used, storyboards may
also be an example of derived content (see Section 2.6 and 4.6).

2.4.3 Story. The story of a game is often key in creating a good gaming experience. It keeps the
player motivated, presents a logical basis for the events that unfold in the game, and provides a goal
for the player to accomplish. Besides revelation through cut-scenes and quests, the game story may
be embedded entirely in the game universe. Albeit rare in commercial games, perhaps mostly in text-
based adventures such as Skoto’s Castle Marrach and in artistic games such as Façade, story-intensive
quests may not be easily represented as graphs of individual puzzles; for these quests, the dramatic
arc plays an important role.

2.4.4. Levels. The concept of levels is used in nearly every game as a separator between gameplay
sequences. For example, a level in a platform game, such as Nintendo’s Super Mario World, Rare’s
Donkey Kong Country, and Sega’s Sony the Hedgehog, would consist of a separate, playable game
space in which the player may be required to move from the start to the end position through a series of
movements on and jumps to/from platforms, while completing (optional) tasks and avoiding obstacles.

2.5 Game Design

The design of a game is comprised of content such as rules (what can be done in the game?) and goals
(what is the player trying to achieve?); an aesthetic component, such as a dramatic arc or a graphical
theme, are also important elements in design [Norman 2002]. A game can be seen as an instance of a
game design, in which the parameters of the rules and of the goal have been set. A game design can
refer to game content of all the types described in Section 2, including the recursive reference to other
game design content. Game design can be complemented by (semi-)automatic game generation or by
providing tools that help the designer convert ideas into game design content.

2.5.1 System Design. The system design of a game entails “the creation of mathematical patterns
underlying the game and game rules” [Brathwaite and Schreiber 2008]. An example of generating
game rules is the generator by Pell [1993] which generates symmetric, chess-like games. One of the
main challenges in system design generation is ensuring that the rules are balanced between all play-
ers.

2.5.2 World Design. The world design of a game is “the design of a setting, story, and theme”
[Brathwaite and Schreiber 2008]. An example includes the generation of novel games based on be-
forehand unknown story structures by Hartsook et al. [2011].

2.6 Derived Content

We define derived content as content that is created as a side-product of the game world. Generation
of derived content can greatly increase the feeling of immersion the player has with the game world,
as players record their in-game experiences for review inside or outside the game; this “game beyond
the game” [Garfield 2000] was the basis of the “metagame” notion (ibid.)

2.6.1 News and Broadcasts. A game may show its players news items based on their actions and
other changes in the game’s universe; the same news items could then be presented as television

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:8 • M. Hendrikx et al.

Fig. 2. Taxonomy of common methods for generation game content. The label in each box (such as “A.1” in the
“Pseudo-Random Number Generator” box, at the top) refers for each method to its section in the Online Appendix.

broadcasts and newspaper articles. Similarly, game sessions may be broadcasted—a popular part of
television schedules in Asia [Rossignol 2008, Chapter 2] and, more recently, U.S. and Europe.

2.6.2 Leaderboards. Leaderboards—player ranking tables—are popular for a variety of game gen-
res and are used by fan-sites to serve millions of players [Iosup et al. 2010].

3. A TAXONOMY OF METHODS FOR PROCEDURAL CONTENT GENERATION

The usefulness of our survey depends partially on the existence of a set of methods for PCG-G that can
be used to generate content across the different content types introduced in Section 2. These methods,
which we call fundamental, could then be part of a generic content generator, and our survey could
help alleviate overlapping efforts in this direction.

We identify five groups of methods for PCG-G, which we discuss in more detail in the Online Ap-
pendix. An overview of the fundamental methods discussed in this work is depicted in Figure 2.
The methods are grouped in classes such as Pseudo-Random Number Generators (PRNG), Generative
Grammars (GG), Image Filtering (IF), Spatial Algorithms (SA), Modeling and Simulation of Complex
Systems (CS), Artificial Intelligence (AI), etc. We show in Section 4 how methods belonging to these
groups can be used across different content types.

4. A SURVEY OF PROCEDURAL CONTENT GENERATION FOR GAMES

In this section we survey the state-of-the-art and use of PCG-G techniques. We focus, in turn, on each
of the six game content types introduced in Section 2. For each game content type, we begin with the
techniques discussed in the previous section, then look at other PCG-G techniques.

4.1 Game Bits

4.1.1 Textures. Textures can be generated procedurally through a variety of techniques, includ-
ing PRNG, IF, SA, and CS techniques. Perlin noise and other PRNG-based techniques are commonly
used for texture generation. Noise-generated textures can be mapped easily on complex objects, un-
like raster 2D images. The implementation of noise is relatively simple, and is present in many soft-
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:9

ware shaders and hardware graphics cards, such as NVIDIA’s. Pattern-based procedural texturing
is an IF-based technique to imitate the level of detail that a large resolution texture can provide
[Lefebvre and Neyret 2003]; this technique also requires a procedural algorithm for breaking the reg-
ularity of the pattern, without putting limitations on the mesh. Convolution filters such as sharpening
or smoothing can improve game textures, even dynamically. SA techniques such as tiling and layering
are common in games; their small computational and memory requirements lead to their adoption by
many commercial RTS games. To imitate different ornamental styles, geometric decorative patterns
can be developed using a range of mathematical algorithms [Whitehead 2010]. From the AI techniques,
Genetic Algorithms have been used [Sims 1991] to generate textures procedurally. Chromosomes de-
scribe texture-generating functions, such as noise, as expression trees. Crossover occurs by combining
branches from the expression trees. The fitness of a gene (texture) is evaluated against a goal set by
the user.

4.1.2 Sound. Procedural sound can be used for most types of sound [Farnell 2007], for example,
through PRNG, CS, and GG techniques. A variety of procedural techniques for generating sound,
including GG, CS, AI, and mathematics have been surveyed by Edwards [2011]; some of them date
from the 1950s and 60s. CS techniques have been used to generate sound corresponding to different
level of detail by simulating sound attenuation [Farnell 2007] or propagation through a liquid [Moss
et al. 2010]. Procedural sound can be obtained using GG techniques like a context-free language [Smith
2009] or other rule-based systems [Farnell 2007] specified by a composer or sound modeler.

4.1.3 Vegetation. Real vegetation is often self-similar or has a structure. Thus, vegetation can be
procedurally modeled [Kelly and McCabe 2006] using GG, SA, and CS techniques. For example, self-
similar plants such as ferns and cauliflower can be generated using fractals, and L-systems can be used
to model non-self-similar vegetation; symbols may represent plant parts such as the trunk or a leaf, and
rules may determine the “growth” of the plant from the initial trunk. An advanced GG-based technique
that uses a graph of GGs can be used to generate complex vegetation [Deussen and Lintermann 1999].
A complex system based on plant growth under weather was used [Weber and Penn 1995] to generate
realistic trees. Genetic algorithms have been used [Sims 1991; Reynolds 2010a] to generate vegetation
procedurally, similarly to texture generation. SpeedTree is an example of commercial software [Re
et al. 2009] to generate vegetation.

4.1.4 Buildings. Procedural generation of buildings aims at generating many different buildings
from a limited set of rules or user-generated content. GG techniques have been used to generate build-
ings. For example, the extended L-systems used by CityEngine [Parish and Müller 2001] starts from
a symbol representing a bounding box for the building, then iteratively transforms the current build-
ing or generates new buildings; the generated buildings belong to the same architectural style. Split
grammars [Wonka et al. 2003] and shape grammars [Müller et al. 2006] have been similarly used to
generate buildings.

Building floor plans can be procedurally generated using PRNG techniques. A simple process based
on floor plans that are extruded upwards can be used [Kelly and McCabe 2007] for real-time building
generation. Similar yet more realistic buildings have been generated [Greuter et al. 2003] by randomly
changing and merging bidimensional polygons, and by extruding the resulting polygons upwards.

4.1.5 Behavior. The behavior of many game objects, such as fireworks or patches of wheat, is de-
termined by both the object characteristics and its surroundings. This behavior can be procedurally
modeled by, for instance, using GG and CS techniques. From the GG techniques, context-sensitive
L-systems, which differ from ordinary L-systems in the ability to represent and manipulate context-
dependent variables as symbols, can be used [Hidalgo et al. 2008] to specify complex object behavior

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:10 • M. Hendrikx et al.

such as the explosion of fireworks without a full physical model. Ordinary L-systems and cellular au-
tomata can be used to generate plants in a soil patch. The game Galactic Arms Race uses genetic
algorithms [Hastings et al. 2009] to adapt the player’s weapons to play style, over time.

4.1.6 Fire, Water, Stone, and Clouds. The procedural generation of a variety of complex elements,
in particular fire, water, stone, and clouds, has received much attention in the past [Ebert et al. 2002;
Dorsey and Rushmeier 2009]. For brevity, we focus here on the procedural generation of clouds. Perlin
noise and other PRNG techniques, and IF and CS techniques can be used [Roden and Parberry 2005]
to generate a realistic looking sky.

4.2 Game Space

4.2.1 Indoor Maps. Procedurally generated dungeons were introduced early in Multi-User Dun-
geons (MUD) games—the open-source MUD Angband had them in 1992 [Doull 2007a]. Inside the
dungeons, mazes were generated using a wide variety of algorithms, mainly based on PRNG and
CS techniques [Pullen 2011]. Sangband, an Angband variety, uses PRNG-based techniques to
generate mazes and rooms. Gonzalez and Greene [2012] introduced a fractal-based algorithm for gen-
erating caves for NPPAngband, another Angband variant. Large caves can be generated using CS tech-
niques such as cellular automata [Johnson et al. 2010a], as was done in NPPAngband [Babcock 2005;
Johnson et al. 2010b]. A much more advanced dungeon generation algorithm, which combines PRNG
and GG techniques and also generates other game content types, has been proposed [Adams 2002].

Because of their lax spatial constraints, MUD space generation techniques may not be useful for gen-
erating realistic indoor spaces. The combination of PRNG and GG techniques for generating building
indoors—through a graph of rooms where the graph is generated using a GG technique, and each room
is generated through PRNG techniques—has been proposed [Martin 2006] instead. Other techniques,
notably general PRNG combined with advanced parameter space search such as genetic algorithms,
have been proposed [Togelius et al. 2010; Frade et al. 2010; Sorenson and Pasquier 2010] for generating
indoor space with constraints.

Many outdoor maps rely on a grid-based structure, for example, a height map–a matrix where each
cell represents the height of the terrain. Many height map generation algorithms based on PRNG, IF,
SA, and CS techniques have been described extensively [Ebert et al. 2002; Smelik et al. 2009]. Digital
elevation models [Smelik et al. 2009] combine the SA technique of grid subdivision with the use of real
data—the terrain is subdivided into regions having each an elevation profile, then digital elevation
models of real-world terrain that match the elevation profile of the region are used to create a new,
realistic height-map.

4.2.2 Outdoor Maps. Different approaches have been suggested to give the designer finer control
of the produced environments. Declarative modeling and procedural sketching [Smelik et al. 2010]
allow the designer to efficiently create assets while staying within an interactive workflow. Terrain
synthesis using procedural brushes allows for local control, up to full automatic terrain generation
[de Carpentier and Bidarra 2009]. Software agents are another technique for creating different types
of terrain while leaving the designer in control [Doran and Parberry 2010].

4.2.3 Bodies of Water and Other Map Features. Map features such as mountains and sea shores
are important to players, and have led to the development of specific procedural generation techniques.
Among these features, we focus in this survey on bodies of water; although mountains may be another
feature of interest, in contrast to water they are usually untraversable map features.

Procedural generation of bodies of water, such as rivers, lakes, and oceans, is often done during or di-
rectly after the generation of the outdoor height-map. The shape of the river or sea is either determined
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:11

by the height-map (for example, water starts in mountains and follows the elevation gradient), or the
water shapes the height-map [Smelik et al. 2009]. The generation of lakes and oceans is usually done
after height-map generation by a flooding algorithm, which “floods” the terrain starting from the low-
est point, or by simply setting the water level to a specific height; all heights below the water threshold
are considered to be under water. SA techniques [Prusinkiewicz and Hammel 1993] and CS techniques
that model true water flow and erosion [Clyde 2004] have also been used.

4.3 Game Systems

4.3.1 Ecosystems. Using CS techniques, an ecosystem can be modeled [Flake 1999] as a producer
and consumer system, in which multiple producers and consumers interact in cooperative and com-
petitive ways. Complex behavior can be modeled to represent the interaction between members of
the same species; when multiple species exist, the inter-species interaction obeys much simpler rules.
Thus, for multiple species CS and PRNG techniques may be combined for more variation. Deussen
et al. [1998] and Hammes [2001] have developed ecosystem simulation algorithms to generate vege-
tation placement maps, which combine an ecosystem with game space information. The algorithm of
Deussen et al. is iterative, with plants competing with each other for resources to mimic evolution
at each pass of the algorithm; the computational complexity of this algorithm makes it unusable for
real time generation of ecosystems [Smelik et al. 2009]. Hammes uses a single-pass algorithm, which
first determines the areas in which plants are to be placed, and then places plants randomly in these
designated areas; this algorithm is usable in real time. An extensive generation process that combines
PRNG (Perlin noise), IF (erosion, smoothing), SA (Voronoi diagrams), and CS techniques has been
shown [Patel 2010] to generate a complete outdoor map, including an advanced ecosystem.

4.3.2 Road Networks. Many methods have been developed to generate road networks procedurally.
L-systems (GG), agent simulations (CS), and tensor fields (CS) have been used [Smelik et al. 2009]
to generate road networks. For example, L-systems have been used [Parish and Müller 2001] to cre-
ate road networks with control parameters such as population density, road patterns, elevation con-
straints, and local constraints such as nearby surface water or (non-)placement near other roads. As an
example of agent simulation, two types of agents—one to explore the terrain and create roads, another
to connect existing roads to each other into a terrain spanning tree—can be used [Lechner et al. 2003].
A method [Sun et al. 2002] that combines GG and SA techniques is based on Voronoi diagrams as locus
for intra-city roads and inter-city highways.

4.3.3 Urban Environments. Kelly and McCabe [2006] give an excellent overview of the different
methods that can be used to generate urban environments. Generating these urban environments
often starts with a dense road network, where available spaces near roads are subdivided into building
lots [Kelly and McCabe 2007]. Vectorization can be used to find the boundaries of these gridded blocks
[Sexton and Watson 2010]. Then, buildings are generated according to predefined rules.

Recently, more attention has been paid to the realism of the city, as most techniques fail to generate
cities with a realistic structure [Smelik et al. 2009]. Weber et al. [2009] describe an evolutionary model
for city growth, which yields realistic results in a reasonable amount of time. Groenewegen et al. [2009]
generates in seconds, on commodity systems, cities that resemble real cities in Western Europe or the
United States.

4.3.4 Entity Behavior. Complex artificial intelligence techniques have been used to make game
entities react to the wide variety of actions a player can perform in a virtual world with a seem-
ing intelligence. An early example of such an approach is Eliza (1962), a conversational robot that
has been analyzed elsewhere [Murray 1997, p.69]; a contemporary, more advanced example is Façade

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:12 • M. Hendrikx et al.

[Mateas and Stern 2005], in which two characters react to what the player does and says. Concerning
group behavior, Reynolds [1987] proposes a model for flock behavior using CS techniques.

4.4 Game Scenarios

4.4.1 Puzzles. While many algorithms for creating specific types of puzzles are known [Alt et al.
2009], most puzzles are still man-made. An approach to generate puzzle instances procedurally can be
based on PRNG techniques, where puzzle instances are randomly generated so that the entire space
of puzzle instances is searched [Iosup 2011]. Another approach is to use genetic programming; for
example, Ashlock [2010], to generate chess and chromatic mazes. One of the main challenges in the
field is to generate interesting puzzles for a large amount of users. While the problem of scaling puzzle
generation is shown to be feasible for simple puzzles [Iosup 2009], determining the complexity for most
puzzles remains challenging [Colton 2002].

4.4.2 Storyboards. Procedural storyboard generation was developed to aid developers in the design
process of the game, rather than dynamically generating the story in real time; Story Canvas is an
example whose description surveys much related work [Skorupski and Mateas 2010]. The storyboard,
in the form of comic strips, would help assess the final gameplay for a given level design [Pizzi et al.
2010]. The player would act as the main agent of the level, with the gameplay actions acting as basic
elements in constructing a solution. Overall, every solution should reach the same set of goals (for
example, the assassination of a computer-controlled actor), yet achieve these goals through various
ways.

4.4.3 Stories. Generating a story based on the player’s actions could require a complex artificial
intelligence engine that can generate a cohesive storyline for various player inputs [Nareyek 2007]. At
the same time the engine also needs to abide to guidelines that exist for creating structured storylines.
For example, one of these guidelines is that the story tension must peak about every ten minutes to
keep the player’s attention.

Procedural storytelling may start from the structural approach to interactive storytelling of Vladimir
Propp [1968]. Propp developed a morphological method of classifying (describing) folk tales through the
use of story functions. The functions represent character actions, such as “departure” and “guidance”; a
limited set of actions turns out to be sufficient to describe the folk tales of many nations [Gervás et al.
2004]. Although Propp’s work is limited to folk tales, a number of authors noted that its structural
analysis is applicable to many popular modern stories [Fairclough and Cunningham 2003]. Coupled
with natural language processing techniques (from the AI field), Propp’s morphology has been used to
generate (game-like) stories using GG techniques.

Riedl et al. [2011] use the artificial intelligence technique of Partial-Order Plans (POP) to represent
a story. They extend the standard POP representation by including author goals: intermediate states
that the story must contain. Other authors also extended POP, for example, Chen et al. [2010] used
formal models of roles to expand the expressiveness of stories. A problem with standard POP solvers
is that, although they can find valid solutions, these are not necessarily interesting. Actions can break
the structure of the story, in which case the planner of Riedl et al. [2011] tries to find a new narrative
trajectory while taking a player model into account to maximize satisfaction. The planner assumes that
humans make the best story lines, and therefore tries to stay as close as possible to a human narrative
trajectory. Riedl and León [2009] also use POP, but take a different approach in which they try to
generate novel stories by transforming existing stories based on analogical reasoning to find points
in the stories where parts can be interchanged. As noted by Li and Riedl [2010], another important
problem with POP-based planners is that, currently, they can only be used for offline generation and
adaption of storylines.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:13

4.4.4 Levels. Level generation is currently one of the most popular types of PCG-G. Although
nearly every genre can benefit from generated levels, 2D platformers and puzzles have especially at-
tracted attention. We have already discussed the generation of puzzles in Section 4.4.1.

Compton and Mateas [2006] and Smith et al. [2009] generate levels for 2D platformers based on the
concept of rhythm: the pattern of hand movements of a player when playing the game. Related, Shaker
et al. [2010] and Jennings-Teats et al. [2010] demonstrate that personalized levels can be generated
online for platform games based on a player model. More general than platforms, Dormans [2010] uses
a grammar to create a mission structure using graphs, which is then translated to a 2D level by using
a shape grammar.

4.5 Game Design

4.5.1 System Design. Few automatic game generation systems focusing on systems design have
been created. The Metagame generator [Pell 1993] can generate symmetric, chess-like games with
various piece strength, ability, and positioning. Another generator [Nelson and Mateas 2007] can gen-
erate games starting from few words and textures as input. The generated games are very simple,
but the generator creates a logically correct game from just a few words, by exploring the thematic
space; the generator infers which subjects and type of game match the words input by the user by
using common-sense knowledge bases. For example, if the supplied words are “shoot” and “pheasant”,
a game could be created where the player has to shoot a duck (a game where the player has to avoid
being shot by a pheasant is equally plausible to be generated). The EGGG generator [Orwant 2000]
takes a different approach by using the rules of a board game as input. The EGGG generator focuses
on abstract game mechanics (rules), which it combines using PRNG techniques. Another generator by
Togelius and Schmidhuber [2008] evolves the game rules of a simple PacMan-like game. The possible
rules are limited. Using evolutionary programming the rules are evolved based on a fitness function
based on how difficult the game is learn, since it is assumed that an interesting game is easy to learn.
The hardness of a game is measured by using controllers which are evolved. Identically, Hom and
Marks [2007] use genetic algorithms to evolve games, however, board games are evolved and the fit-
ness is based on the balance of the games. Another approach that automatically tests the generated
games through a constraint satisfaction technique is Variations Forever [Smith and Mateas 2010].

4.5.2 World Design. One of the rare game generators of this type is created by Hartsook et al.
[2011], which discusses a system that, based on computer- or human-generated story and a player
preference profile, generates Computer Role-Playing Games (CRPGs). In their approach first the user
or computer provides a story presented as a partial-order plan. Next, the game plot adaption algorithm
modifies the story based on a player’s preference model. Following the designer defines a game world
model: a model of which transitions between environment maps are realistic. Finally, based on the
player’s preference profile and the game world model, a genetic algorithm creates a 2D CRPG with the
story generated by the game plot adaption algorithm.

4.6 Derived Content

Creating derived content has largely been a task for players that wanted to record their daily gaming
experiences. While numerous videos and screenshots are manually produced and shared through sites
such as Machinima [Machinima.com 2011], video authoring is difficult and screenshots often lack the
context to convey a story.

Chan et al. [2009] developed a system that creates comics based on key moments in the player’s game
session. The system picks the most significant frames out of a collected set of screenshots and gener-
ates a matching comic layout, accompanied by speech bubbles to indicate sound effects and events.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:14 • M. Hendrikx et al.

Table I. Use of PCG-G Techniques in Games
Games (with year of release) Game Bits Game space Game Systems Game Scenarios
Borderlands (2009) x
Diablo I (2000) x
Diablo II (2008) x x
Dwarf Fortress (2006) x x x
Elder Scrolls IV: Oblivion (2007) x
Elder Scrolls V: Skyrim (2011) x
Elite (1984) x x x
EVE Online (2003) x x x
Facade (2005) x
FreeCiv and Civilization IV (2004) x
Fuel (2009) x
Gears of War 2 (2008) x
Left4Dead (2008) x
.kkrieger (2004) x
Minecraft (2009) x x
Noctis (2002) x
RoboBlitz (2006) x
Realm of the Mad God (2010) x
Rogue (1980) x x
Spelunky (2008) x x x
Spore (2008) x x
Torchlight (2009) x
X-Com: UFO Defense (1994) x

We did not find commercial games that generate procedurally Game Designs or Derived Content.

Similarly, an existing [Nelson and Mateas 2007], automated game generator could be used to create
news-related games.Cheong et al. [2008] describe a system that summarizes game experiences based
on game logs, and creates videos based on these.

5. USE OF PROCEDURAL CONTENT GENERATION IN GAMES

In this section we provide an overview of games that use PCG-G techniques. Our selection of games
is not exhaustive; too many games use PCG-G techniques. Instead, we focus on games that have been
included in the Vintage Games [Loguidice and Barton 2009] (including the Web chapters) selection,
won industry awards, or have been very recently released and became popular. From these, we select
games that cover many game genres, including Strategy (both real-time and turn-based), simulation
(flight), RPG (including roguelike), and FPS.

Elite, a space exploration and trading game, is one of the earliest games to generate a full world—
space, systems, and scenarios—procedurally [Loguidice and Barton 2009, Web Chapter]. Inpired by
Elite, EVE Online, a popular massively multiplayer online game, generates its planets’ visuals [Ten-
TonHammer.com 2009], and its universe and scenarios [Procedural Content Generation Wiki 2009];
EVE Online uses CS techniques to generate its universe and PRNG techniques to place
hand-generated scenarios. Other strategy games such as X-Com: UFO Defense, and FreeCiv and Civ-
ilization IV (the Civs) generate their game space procedurally. For X-Com, the tactical ground oper-
ations take place in randomly generated, urban-like environments. For the Civs, the terrain and the
resources are randomly generated using PRNG and CS techniques, some of which are provided by the
two games’ respective communities [Civilization Fanatics 2005; FreeCiv Community 2005].

Rogue [Loguidice and Barton 2009, Web Chapter] is an open-source, free-to-change game that
spawned popular free-to-use games such as Moria (1983), NetHack (1987), Angband (1990), and
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:15

Unangband, Thomas Biskup’s Ancient Domains of Mystery (ADOM) (1994), and Dwarf Fortress; all
these games are “roguelike”. Rogue also inspired many popular commercial games, including the Dia-
blo series [Loguidice and Barton 2009, Chapter 4], Torchlight, and Realm of the Mad God. Rogue and
its descendants generate the indoor game space—dungeons, caves, etc.—procedurally using PRNG, SA,
and CS techniques [Doull 2007a; 2007b; Pullen 2011]. Similarly to ADOM, which is “the most complex
of the lot” [Loguidice and Barton 2009, Web Chapter], Diablo II extends [IGN Australia 2008] the pro-
cedural generation of dungeons with random adventures (scenarios). Dwarf Fortress and Realm of the
Mad God generate complete worlds, including the outdoor maps and the ecosystem, through a combina-
tion of PRNG, IF, SA, and CS techniques [Patel 2010]. Spelunky [Yu 2008] is a rogue-like platform game
that generates “levels, items, monsters, and so forth” (http://pcg.wikidot.com/pcg-games:spelunky).

Other games use PCG-G techniques. Noctis and Spore generate planets (visuals and characteristics).
Left4Dead generates scenarios by creating enemy encounters dynamically, based on the computer-
analyzed stress level of the players. Elder Scrolls IV: Oblivion and Gears of War 2 are just two of the
many games [SpeedTree.com 2011] that use the SpeedTree middleware [Re et al. 2009] to generate
vegetation. Elder Scrolls V: Skyrim generates scenarios using the radiant story system, which fills in
quest templates based on game conditions (http://www.uesp.net/wiki/Skyrim:Radiant). Façade is an
interactive drama game that reacts on text input by the player. RoboBlitz uses procedural techniques
to store textures.

6. RECOMMENDATIONS FOR FUTURE RESEARCH IN PCG-G

Prompted by the significant progress in the field of PCG-G and by the uptake of research results by
the industry, in this section we make five recommendations for future research.

(1) Generating content at the top of the content pyramid (layers “Game Scenarios”, “Game Design”,
and “Derived Content”). Although many concepts and designs for storytelling systems have been
created [Göbel et al. 2004], they have yet to find their way into successful commercial games; their
main failing may still be the lack of capabilities for producing authentic characters and drama
[Fairclough and Cunningham 2003]. Procedural game design is a starting research field, with early
results such as the formalization of game design [Nelson and Mateas 2007]. For complete game
generation, a generator that focuses on creating news-based games may be academically challeng-
ing (Which news are the most appealing to gameplayers? How to generate games from them?)
and commercially attractive. Creating derived content has traditionally been a task for the game
communities themselves, but authoring and event selection tools should provide fertile research
ground. These automated systems would have to act like movie directors, journalists, or educa-
tors. Generating levels for more game genres, in addition to extensions to the early approaches for
generating content for 2D platformers and puzzle games, is a very promising area for the future.

(2) More detailed generators (especially for the “Game Space” and “Game Systems” layers). As play-
ers are getting more used to realistic games, and as new platforms become increasingly able to
use more detailed content, the demand for more detailed content is increasing. Generating high-
definition content, both realistic and nonrealistic, is already increasing content production costs
faster than the increase in game revenues [Takatsuki 2007]. In the future, research should adapt
the existing generators to the new insights in the modeling and simulation of a variety of game-
related topics: building indoors [Taylor and Parberry 2010], object behavior, river deltas, coastal
regions, mountain crevasses, ecosystem formation and evolution, climate, etc. Research should also
focus on the interaction between generators, for example, water-soil and fauna-urban build-up.

(3) Generating the “missing” game bits (the “Game Bits” layer). More types of game bits may become
the focus of researchers as content generators for other layers become more realistic. Procedurally

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:16 • M. Hendrikx et al.

generating game bits such as animals, vehicles, and humans [van Welbergen et al. 2010] is complex
and requires much future research; the complexity stems from the additional importance the play-
ers put on moving game objects. As an example, human motion synthesis, that is, the procedural
combination of walking sequences, is an active field of research in 2010 [van Basten et al. 2010].

(4) The detail-performance trade-off (generating content at scale). Increasing detail is possible even
today, for example, by using the modeling and simulation results of decades of Earth science re-
search. However, these models are not easily tractable, and supercomputers and computing grids
are necessary today to compute on these models. The study of the detail-performance trade-offs
could lead to new game techniques and tools. The possible innovation could also follow two direc-
tions in computer systems design: scale-in, that is, using multicore computers (especially graphics
cards) for real-time content generation; and scale-out, that is, using multinode computers such as
supercomputers and computing grids for massive content generation. Scale-in research may lead
to technology that will be embedded in every gamer’s environment; scale-out may affect the oper-
ation of massively multiplayer online games and of games that operate entirely as a service. The
scale-out approach also requires novel techniques for content distribution [Mondet et al. 2009].

(5) Evaluation of generated content. Research in techniques for content generation should be com-
plemented by research in (semi-)automatic evaluation of generated content. Although several ap-
proaches have been proposed, much work remains to be done in characterizing the quantity [Smith
and Whitehead 2010], playability [Smith et al. 2010], learnability [Togelius and Schmidhuber
2008], difficulty [Iosup 2011; Smith and Whitehead 2010], freshness [Iosup 2011] and interesting-
ness [Schmidhuber 2002], utility [Li and Riedl 2010], and other elements that may be important
for the experience of users. User-centric design [Norman 2002] is an established field in which
game-specific techniques are starting to be developed by large companies [Kim et al. 2008; Wixon
and Pagulayan 2008], but it is unclear if the proposed techniques can work for the majority of game
development studios that cannot afford large-scale, technology-heavy, real-user studies. Increasing
the detail of generated content may lead to more parameters needed to control the process of pro-
cedural game content generation. In turn, this increases the cost of content production, as more
experimentation and expertise are required to produce the desired results. The study of the trade-
off between detail and content generation controllability [Smelik et al. 2010] (and expressiveness
[Smith and Whitehead 2010]) could lead to the development of new procedural techniques.

7. CONCLUSION

The research field of procedural game content generation is evolving rapidly, driven by the increasing
demand from game development companies. In this work we have presented a comprehensive survey
of Procedural Game Content Generation (PCG-G). First, we have created a taxonomy of game content
with six layers: game bits, game space, game systems, game scenarios, game design, and derived con-
tent. These layers have been ordered by complexity, with each layer using the techniques and methods
from the layer before it. Second, we have created a taxonomy of PCG-G techniques that can be used to
generate content from different layers in our content taxonomy. Third, we have surveyed the state-of-
the-art in PCG-G techniques and the use of these techniques in (real) games. We have found an inverse
relationship between the position of the layer in the content taxonomy and the maturity of the layer’s
procedural generation techniques. We have also found that many real games use PCG-G techniques,
but that usage is often limited to a particular type of game content. Last, we have made five recommen-
dations for future research on PCG-G: generating content from the high-complexity layers, developing
more realistic generators, generating the missing game bits, investigating the realism-performance
trade-off, and investigating the realism-control trade-off.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:17

We intend to continue our work on the survey of PCG-G by focusing more on commercial games. We
would like to conduct a survey or interviews on this topic with commercial game studios.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We thank our reviewers for their useful comments. Thanks to them, we have discovered a new home!
The authors also thank Rafael Bidarra, Tim Tutenel, and Ruben Smelik, for their help in improving
this article.

REFERENCES

ADAMS, D. 2002. Automatic generation of dungeons for computer games. B.Sc. thesis, University of Sheffield, UK.
www.dcs.shef.ac.uk/intranet/teaching/projects/archive/ug2002/pdf/u9da.pdf.

ALEXANDER, C. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford, UK.
ALT, H., BODLAENDER, H. L., VAN KREVELD, M. J., ROTE, G., AND TEL, G. 2009. Wooden geometric puzzles: Design and hardness

proofs. Theory Comput. Syst. 44, 2, 160–174.
ASHLOCK, D. 2010. Automatic generation of game elements via evolution. In Proceedings of the IEEE Symposium on Computa-

tional Intelligence and Games (CIG). 289–296.
AURENHAMMER, F. 1991. Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405.
BABCOCK, J. 2005. Cellular automata method for generating random cave-like levels. roguebasin.roguelikedevelopment.org/

index.php?title=Cellular Automata Method for Generating Random Cave-Like Levels.
BARRON, T. 1999. Multiplayer Game Programming. Prima Publishing.
BARTLE, R. 2003. Designing Virtual Worlds. New Riders Games.
BRATHWAITE, B. AND SCHREIBER, I. 2008. Challenges for Game Designers. Charles River Media, Inc. Rockland, MA.
CHAN, C., THAWONMAS, R., AND CHEN, K. 2009. Automatic storytelling in comics: A case study on world of warcraft. In Proceedings

of the International Conference on Human Factors in Computing Systems. ACM, 3589–3594.
CHEN, G., ESCH, G., WONKA, P., MÜLLER, P., AND ZHANG, E. 2008. Interactive procedural street modeling. In Proceedings of the

SIGGRAPH Annual Conference on Computer Graphics and Interactive Techniques. ACM, 103.
CHEN, S., SMITH, A. M., JHALA, A., WARDRIP-FRUIN, N., AND MATEAS, M. 2010. Rolemodel: Towards a formal model of dramatic

roles for story generation. In Proceedings of the Intelligent Narrative Technologies III Workshop. ACM, 17:1–17:8.
CHEONG, Y., JHALA, A., BAE, B., AND YOUNG, R. 2008. Automatically generating summary visualizations from game logs. In

Proceedings of the International Conference on Artificial Intelligence and Interactive Digital Entertainment.
CHOPARD, B. AND DROZ, M. 1998. Cellular Automata Modeling of Physical Systems. Cambridge University Press.
CIVILIZATION FANATICS. 2005. [map script] full of resources. Community discussion. forums.civfanatics.com/showthread.php?s=

7ef168705a794e2c328217a5de2e8589&t=151629.
CLYDE, D. 2004. Adding realistic rivers to random terrain. GameDev technical article. http://www.dcs.shef.ac.uk/intranet/

teaching/projects/archive/ug2002/pdf/u9da.pdf.
COLTON, S. 2002. Automated puzzle generation. In Proceedings of the Symposium on AI and Creativity in the Arts and Science

(AISB’02).
COMPLEXITY-GAMING. COM. 2008. Incredible wow stats. ComplexityGaming.com community post. www.complexitygaming.com/

forums/showthread.php?p=25334.
COMPTON, K. AND MATEAS, M. 2006. Procedural level design for platform games. In Proceedings of the International Conference

on Artificial Intelligence and Interactive Digital Entertainment.
DAVIDSSON, P. 2001. Multi agent based simulation: Beyond social simulation. In Multi-Agent-Based Simulation, S. Moss and P.

Davidsson, Eds., Lecture Notes in Computer Science, vol. 1979, Springer, 141–155.
DE BERG, M., CHEONG, O., VAN KREVELD, M., AND OVERMARS, M. 2008. Computational Geometry: Algorithms and Applications 3rd

Ed. Springer.
DE CARPENTIER, G. J. P. AND BIDARRA, R. 2009. Interactive gpu-based procedural heightfield brushes. In Proceedings of the

International Conference on Foundations of Digital Games (FDG’09). ACM, 55–62.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:18 • M. Hendrikx et al.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MECH, R., P HARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic modeling and rendering
of plant ecosystems. In Proceedings of the SIGGRAPH Annual Conference on Computer Graphics and Interactive Techniques.
ACM, 275–286.

DEUSSEN, O. AND LINTERMANN, B. 1999. Interactive modeling of plants. IEEE Comp. Graph. Appl. 19, 56–65.
DORAN, J. AND PARBERRY, I. 2010. Controlled procedural terrain generation using software agents. IEEE Trans. Comput. Intell.

AI Games 2, 2, 111–119.
DORMANS, J. 2010. Adventures in level design: Generating missions and spaces for action adventure games. In Proceedings of the

Workshop on Procedural Content Generation in Games. ACM, 1–8.
DORSEY, J. AND RUSHMEIER, H. 2009. Advanced material appearance modeling. ACM SIGGRAPH Courses (SIGGRAPH’09). ACM,

New York, 1–134.
DOULL, A. 2007a. Unangband dungeon generation, parts 1–9. roguelikedeveloper.blogspot.com/2007/11/unangband-dungeon-

generation-part-one.html.
DOULL, A. 2007b. Wilderness generation using voronoi diagrams - part i. roguelikedeveloper.blogspot.com/2007/07/wilderness-

generation-using-voronoi.html.
EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY, S. 2002. Texturing and Modeling: A Procedural Approach

3rd Ed. Morgan Kaufmann Publishers Inc., San Francisco, CA.
EDELSTEIN-KESHET, L. 2005. Mathematical Models in Biology. Classics in Applied Mathematics Series, vol. 46, SIAM.
EDWARDS, B. 1989. Drawing on the Right Side of the Brain. The Putnam Publishing Group, New York.
EDWARDS, M. 2011. Algorithmic composition: Computational thinking in music. Comm. ACM 54, 58–67.
ELAS, T. 2010. The cost of creating and maintaining an MMORPG. Tham’s Blog. www.thamelas.com/2010/02/12/the-cost-of-

creating-and-maintaining-an-mmorpg/.
ESA. 2010. Essential facts about the computer and video game industry: Sales, demographics, and usage data. Ann. rep., series

2003–2009. http://www.theesa.com.
FAIRCLOUGH, C. AND CUNNINGHAM, P. 2003. A multiplayer case based story engine. In Proceedings of the 4th International Con-

ference on Intelligent Games and Simulation (GAME-ON). 41–46.
FARBRAUSCH PROD. 2006. Website of .kkrieger producer, .theprodukkt. http://www.theprodukkt.com/.
FARNELL, A. 2007. An introduction to procedural audio and its application in computer games. In Proceedings of the Audio Mostly

Conference.
FIELDS, T. 2010. Distributed Game Development: Harnessing Global Talent to Create Winning Games. Focal Press.
FLAKE, G. 1999. The Computational Beauty of Nature. MIT Press.
FRADE, M., DE VEGA, F. F., AND COTTA, C. 2010. Evolution of artificial terrains for video games based on accessibility. In Proceedings

of the International Conference on Applications of Evolutionary Computation (EvoApplicatons’10). Lecture Notes in Computer
Science, vol. 6024, Springer, 90–99.

FREECIV COMMUNITY. 2005. Map comparison. Community discussion. www.samiam.org/freeciv/.
GARFIELD, R. 2000. Metagames. Horsemen of the Apocalypse: Essays on Roleplaying. Reproduced as Lost in the Shuffle:Games

Within Games. http://www.wizards.com/Magic/magazine/Article.aspx?x=mtg/daily/feature/96.
GERVÁS, P., DÍAZ-AGUDO, B., PEINADO, F., AND HERVÁS, R. 2004. Story plot generation based on CBR. Appl. Innov. Intell. Syst. 12,

33–46.
GÖBEL, S., SPIERLING, U., HOFFMANN, A., IURGEL, I., SCHNEIDER, O., DECHAU, J., AND FEIX, A., Eds. 2004. In Proceedings of the 2nd

International Conference on Technologies for Interactive Digital Storytelling and Entertainment.
GOLDBERG, D. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional.
GONZALEZ, D. AND GREENE, J. 2012. NPPAngband release NPP050. https://github.com/nppangband/.
GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G. 2003. Real-Time procedural generation of ‘pseudo infinite’ cities. In Proceed-

ings of the International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia.
87–95.

GROENEWEGEN, S., SMELIK, R., DE KRAKER, K., AND BIDARRA, R. 2009. Procedural city layout generation based on urban land use
models. In Proceedings of the 30th Annual Conference of the European Association for Computer Graphics (Eurographics’09).
45–48.

HAMMES, J. 2001. Modeling of ecosystems as a data source for real-time terrain rendering. In Proceedings of the 1st International
Symposium on Digital Earth Moving (DEM’01). Lecture Notes in Computer Science, vol. 2181, Springer, 98.

HARTSOOK, K., ZOOK, A., DAS, S., AND RIEDL, M. 2011. Toward supporting stories with procedurally generated game worlds. In
Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG’11). 297–304.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:19

HASTINGS, E., GUHA, R., AND STANLEY, K. 2009. Automatic content generation in the galactic arms race video game. IEEE Trans.
Comput. Intell. AI Games 1, 4, 245–263.

HAYKIN, S. 1994. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Upper Saddle River, NJ.
HIDALGO, J., CAMAHORT, E., ABAD, F., AND VICENT, M. 2008. Procedural graphics model and behavior generation. In Proceedings

of the International Conference on Computational Science (ICCS’08). Lecture Notes in Computer Science, vol. 5102, Springer,
106–115.

HILLBERRY, J. D. 1999. Drawing Realistic Textures in Pencil. North Light Books, Cincinnati, OH.
HOM, V. AND MARKS, J. 2007. Automatic design of balanced board games. In Proceedings of the International Conference on

Artificial Intelligence and Interactive Digital Entertainment. 25–30.
IGN AUSTRALIA. 2008. The ten commandments of diablo iii. Tech. rep. uk.pc.ign.com/articles/888/888189p1.html.
IOSUP, A. 2009. Poggi: Puzzle-Based online games on grid infrastructures. In Proceedings of the European Conference on Parallel

Processing (Euro-Par). Lecture Notes in Computer Science, vol. 5704, Springer, 390–403.
IOSUP, A. 2011. POGGI: Generating puzzle instances for online games on grid infrastructures. Concur. Comput.: Pract. Exper.

23, 2, 158–171.
IOSUP, A., L ASCATEU, A., AND TAPUS, N. 2010. CAMEO: Enabling social networks for massively multiplayer online games through

continuous analytics and cloud computing. In Proceedings of the ACM/IEEE Symposium on Network and Systems Support for
Games (NetGames’10). 1–6.

IRISH, D. 2005. The Game Producer’s Handbook. Course Technology PTR.
JENNINGS-TEATS, M., SMITH, G., AND WARDRIP-FRUIN, N. 2010. Polymorph: Dynamic difficulty adjustment through level generation.

In Proceedings of the Workshop on Procedural Content Generation in Games (PCGames ‘10). ACM, 11:1–11:4.
JOHNSON, L., YANNAKAKIS, G. N., AND TOGELIUS, J. 2010a. Cellular automata for real-time generation of infinite cave levels. In

Proceedings of the Workshop on Procedural Content Generation in Games (PCGames’10). ACM, 10:1–10:4.
JOHNSON, L., YANNAKAKIS, G. N., AND TOGELIUS, J. 2010b. Cellular automata for real-time generation of infinite cave levels. In

Proceedings of the Workshop on Procedural Content Generation in Games (PCGames’10). ACM, 1–8.
JOHNSON, S. 2006. The long zoom. www.nytimes.com/2006/10/08/magazine/08games.html
KELLY, G. AND MCCABE, H. 2006. A survey of procedural techniques for city generation. ITB J. 14, 87–130.
KELLY, G. AND MCCABE, H. 2007. Citygen: An interactive system for procedural city generation. In Proceedings of the 5th Inter-

national Conference on Game Design and Technology. 8–16.
KIM, J. H., GUNN, D. V., SCHUH, E., PHILLIPS, B., PAGULAYAN, R. J., AND WIXON, D. R. 2008. Tracking real-time user experience

(TRUE): A comprehensive instrumentation solution for complex systems. In Proceedings of the SCGCHI Conference on Human
Factors in Computing Systems.

KRUEGER, B. D., BRAND, O., AND BURTON, D. 2005. Reinventing your company without reinventing the wheel. In Proceedings of
the Game Developers Conference.

KUSHNER, D. 2003. Masters of Doom: How Two Guys Created an Empire and Transformed Pop Culture. Random House, New
York.

LARIVE, M. AND GAILDRAT, V. 2006. Wall grammar for building generation. In Proceedings of the International Conference on
Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. ACM, 437.

LECHNER, T., WATSON, B., AND WILENSKY, U. 2003. Procedural city modeling. In Proceedings of the 1st Midwestern Graphics
Conference.

LECKY-THOMPSON, G. W. 2001. Infinite game universe: Mathematical techniques. In Advances in Computer Graphics and Game
Development, Charles River Media.

LEFEBVRE, S. AND NEYRET, F. 2003. Pattern based procedural textures. In Proceedings of the Symposium on Interactive 3D Graph-
ics. 203–212.

LI, B. AND RIEDL, M. 2010. An offline planning approach to game plotline adaptation. In Proceedings of the 6th AI and Interactive
Digital Entertainment Conference.

LOGUIDICE, B. AND BARTON, M. 2009. Vintage Games: An Insider Look at the History of Grand Theft Auto, Super Mario, and the
Most Influential Games of All Time. Elsevier Focal Press.

LOOMIS, A. 1951. Successful Drawing. The Viking Press, New York.
MACHINIMA.COM. 2011. Machinima.
MANOCHA, D., CALAMIA, P., LIN, M. C., MANOCHA, D., SAVIOJA, L., AND TSINGOS, N. 2009. Interactive sound rendering. ACM

SIGGRAPH Courses (SIGGRAPH’09). ACM, New York, 1–338.
MARTIN, J. 2006. Procedural house generation: A method for dynamically generating floor plans. In Proceedings of the Symposium

on Interactive 3D Graphics and Games. 1–2.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:20 • M. Hendrikx et al.

MATEAS, M. AND STERN, A. 2005. Procedural authorship: A case-study of the interactive drama facade. In Proceedings of the
Conference on Digital Arts and Culture: Digital Experience: Design, Aesthetics, Practice (DAC’05). 1–8.

MONDET, S., CHENG, W., MORIN, G., GRIGORAS, R., BOUDON, F., AND OOI, W. T. 2009. Compact and progressive plant models for
streaming in networked virtual environments. ACM Trans. Multimedia Comput. Comm. Appl. 5, 3, 21:1–21:22.

MOSS, W., YEH, H., HONG, J.-M., L IN, M. C., AND MANOCHA, D. 2010. Sounding liquids: Automatic sound synthesis from fluid
simulation. ACM Trans. Graph. 29, 21:1–21:13.

MULLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND VAN GOOL, L. 2006. Procedural modeling of buildings. In ACM SIGGRAPH’06
Papers, ACM, 623.

MURRAY, J. H. 1997. Hamlet on the Holodeck: The Future of Narrative in Cyberspace. The Free Press, New York.
NAREYEK, A. 2007. Game ai is dead. Long live game ai! IEEE Intell. Syst. 22, 9–11.
NELSON, M. J. AND MATEAS, M. 2007. Towards automated game design. In Proceedings of the Congress of the Italian Association

for Artificial Intelligence on AI∗IA. Springer, 626–637.
NITSCHE, M. 2009. Video Game Spaces: Image, Play, and Structure in 3D Worlds. MIT Press.
NORMAN, D. A. 2002. The Design of Everyday Things. Basic Books.
ORWANT, J. 2000. Eggg: Automated programming for game generation. IBM Syst. J. 39, 782–794.
PARISH, Y. AND MULLER, P. 2001. Procedural modeling of cities. In Proceedings of the SIGGRAPH Annual Conference on Computer

Graphics and Interactive Techniques. ACM, 301–308.
PATEL, A. 2010. Polygonal map generation. www-cs-students.stanford.edu/∼amitp/game-programming/polygon-map-generation/.
PELL, B. 1993. METAGAME in symmetric chess-like games. Tech. rep. UCAM-CL-TR-277, University of Cambridge, Computer

Laboratory.
PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput. Graph. 19, 287–296.
PERLIN, K. 1990. Making noise. http://www.noisemachine.com/talk1/.
PI, X., SONG, J., ZENG, L., AND LI, S. 2006. Procedural terrain detail based on patch-lod algorithm. In Edutainment, Z. Pan, R.

Aylett, H. Diener, X. Jin, S. Göbel, and L. Li, Eds. Lecture Notes in Computer Science, Springer, 913–920.
PIZZI, D., LUGRIN, J., WHITTAKER, A., AND CAVAZZA, M. 2010. Automatic generation of game level solutions as storyboards. IEEE

Trans. Comput. Intell. AI Games 2, 3, 149–161.
PROCEDURAL CONTENT GENERATION WIKI. 2009. Eve online. Tech. rep. http://pcg.wikidot.com/pcg-games.
PROPP, V. 1968. Morphology of the Folktale. University of Texas Press.
PRUSINKIEWICZ, P. AND HAMMEL, M. 1993. Fractal model of mountains with rivers. In Proceeding of the Canadian Conference on

Graphics Interface. 174–180.
PULLEN, W. 2011. Think labyrinth: Maze classification, creation algorithms, and solving algorithms page.

www.astrolog.org/labyrnth/algrithm.htm.
RE, A., ABAD, F., CAMAHORT, E., AND JUAN, M. C. 2009. Tools for procedural generation of plants in virtual scenes. In Proceedings

of the International Conference on Computational Science (ICCS). Springer, 801–810.
REYNOLDS, C. 1987. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21, 4, 25–

34.
REYNOLDS, C. 2010a. Using interactive evolution to discover camouflage patterns. In Proceedings of the SIGGRAPH (Posters).

ACM.
REYNOLDS, D. 2010b. The cost to make a quality MMORPG. www.whatmmorpg.com/cost-to-make-a-quality-mmorpg.php.
RIEDL, M. AND LEON, C. 2009. Generating story analogues. In Proceedings of the International Conference on Artificial Intelligence

and Interactive Digital Entertainment.
RIEDL, M., THUE, D., AND BULITKO, V. 2011. Game AI as Storytelling. vol. 125, Springer.
RODEN, T. AND PARBERRY, I. 2005. Clouds and stars: efficient real-time procedural sky rendering using 3d hardware. In Pro-

ceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (ACE’05). ACM,
434–437.

ROSSIGNOL, J. 2008. This Gaming Life: Travels in Three Cities. University of Michigan Press.
RUSSELL, S., NORVIG, P., CANNY, J., MALIK, J., AND EDWARDS, D. 1995. Artificial Intelligence: A Modern Approach. Prentice Hall

Englewood Cliffs, NJ.
SCHMIDHUBER, J. 2002. Exploring the predictable. In Advances in Evolutionary Computing, A. Ghosh and S. Tsuitsui, Eds.,

Springer, 579–612.
SEXTON, C. AND WATSON, B. 2010. Vectorization of gridded urban land use data. In Proceedings of the Workshop on Procedural

Content Generation in Games (PCGames’10). ACM, 5:1–5:8.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

Procedural Content Generation for Games: A Survey • 1:21

SHAKER, N., YANNAKAKIS, G., AND TOGELIUS, J. 2010. Towards automatic personalized content generation for platform
games. In Proceedings of the International Conference on Artificial Intelligence and Interactive Digital Entertainment. 63–
68.

SIMS, K. 1991. Artificial evolution for computer graphics. In Proceedings of the 18th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’91). ACM, 319–328.

SKORUPSKI, J. AND MATEAS, M. 2010. Novice-friendly authoring of plan-based interactive storyboards. In Proceedings of the
International Conference on Artificial Intelligence and Interactive Digital Entertainment (Poster).

SMELIK, R., DE KRAKER, K., TUTENEL, T., BIDARRA, R., AND GROENEWEGEN, S. 2009. A survey of procedural methods for ter-
rain modelling. In Proceedings of the CASA Workshop on 3D Advanced Media In Gaming and Simulation (3AMIGAS). 25–
34.

SMELIK, R., TUTENEL, T., DE KRAKER, K. J., AND BIDARRA, R. 2010. Integrating procedural generation and manual editing
of virtual worlds. In Proceedings of the Workshop on Procedural Content Generation in Games (PCGames’10). ACM, 2:1–
2:8.

SMITH, A. M. AND MATEAS, M. 2010. Variations Forever: Flexibly generating rulesets from a sculptable design space
of minigames. In Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG). IEEE, 111–
118.

SMITH, G., TREANOR, M., WHITEHEAD, J., AND MATEAS, M. 2009. Rhythm-based level generation for 2d platformers. In Proceedings
of the International Conference on Foundations of Digital Games. ACM, 175–182.

SMITH, G. AND WHITEHEAD, J. 2010. Analyzing the expressive range of a level generator. In Proceedings of the Workshop on
Procedural Content Generation in Games (PCGames’10). ACM, 4:1–4:7.

SMITH, G., WHITEHEAD, J., AND MATEAS, M. 2010. Tanagra: A mixed-initiative level design tool. In Proceedings of the International
Conference on the Foundations of Digital Games (FDG’10). ACM, 209–216.

SMITH, ADAM M. 2009. Cfml: The context-free music language. http://eis-blog.ucsc.edu/2009/11/cfml-the-context-free-music-
language/.

SORENSON, N. AND PASQUIER, P. 2010. Towards a generic framework for automated video game level creation. In Proceedings of
the International Conference on Applications of Evolutionary Computation (EvoApplicatons’10). Lecture Notes in Computer
Science, vol. 6024, Springer, 131–140.

SPEEDTREE.COM. 2011. Speedtree list of games.
STROGATZ, S. H. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.

Perseus Books Publishing, LLC.
SUN, J., YU, X., BACIU, G., AND GREEN, M. 2002. Template-Based generation of road networks for virtual city modeling. In

Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST’02). ACM, 33–40.
TAKATSUKI, Y. 2007. Cost headache for game developers. news.bbc.co.uk/2/hi/business/7151961.stm.
TAYLOR, J. AND PARBERRY, I. 2010. Computerized clutter: How to make a virtual room look lived-in. Tech. rep. LARC-2010-01,

University of North Texas.
TENTONHAMMER.COM. 2009. Incarna Incarnate: An EVE Online Q&A with Torfi Frans Olafsson. www.tentonhammer.com/

node/75367.
TOGELIUS, J. AND SCHMIDHUBER, J. 2008. An experiment in automatic game design. In Proceedings of the IEEE Symposium on

Computational Intelligence and Games (CIG). IEEE, 111–118.
TOGELIUS, J., YANNAKAKIS, G. N., STANLEY, K. O., AND BROWNE, C. 2010. Search-based procedural content generation. In Pro-

ceedings of the International Conference on Applications of Evolutionary Computation (EvoApplicatons’10). Lecture Notes in
Computer Science, vol. 6024. Springer, 141–150.

VAN BASTEN, B. J. H., PEETERS, P. W. A. M., AND EGGES, A. 2010. The step space: example-based footprint-driven motion synthesis.
J. Vis. Comput. Anim. 21, 3-4, 433–441.

VAN VERTH, J. M. AND B ISHOP, L. M. 2008. Essential Mathematics for Games and Interactive Applications: A Programmer’s Guide
2nd Ed. Elsevier Morgan Kaufmann Publishers.

VAN WELBERGEN, H., VAN BASTEN, B. J. H., EGGES, A., RUTTKAY, Z., AND OVERMARS, M. H. 2010. Real time animation of virtual
humans: A trade-off between naturalness and control. Comput. Graph. Forum 29, 8, 2530–2554.

VIDEO GAME SALES WIKI. 2009. Video game costs. vgsales.wikia.com/wiki/Video game costs.
WEBER, B., MULLER, P., WONKA, P., AND GROSS, M. 2009. Interactive geometric simulation of 4D cities. Comput. Graph. Forum.

28, 481–492.
WEBER, J. AND PENN, J. 1995. Creation and rendering of realistic trees. In Proceedings of the SIGGRAPH Annual Conference on

Computer Graphics and Interactive Techniques. ACM, 119–128.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

1:22 • M. Hendrikx et al.

WHITEHEAD, J. 2010. Toward proccedural decorative ornamentation in games. In Proceedings of the Workshop on Procedural
Content Generation in Games (PCGames’10). ACM, 9:1–9:4.

WIXON, D. R. AND PAGULAYAN, R. J. 2008. That’s entertainmnt - Halo 3: The theory and practice of a research-design partnership.
Interactions 15, 1, 52–55.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W. 2003. Instant architecture. ACM Trans. Graph. 22, 669–677.
YU, D. 2008. Spelunky. Game and Source code. http://www.derekyu.com/games/.

Received February 2011; revised December 2011; accepted December 2011

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 1, Article 1, Publication date: February 2013.

