
Exploring Portfolio Scheduling for Long-term Execution of
Scientific Workloads in IaaS Clouds

Kefeng Deng, Junqiang Song, Kaijun Ren
School of Computer

National University of Defense Technology
Changsha, China

{dengkefeng,junqiang,renkaijun}@nudt.edu.cn

Alexandru Iosup
Parallel and Distributed Systems Group

Delft University of Technology
Delft, The Netherlands
A.Iosup@tudelft.nl

ABSTRACT
Long-term execution of scientific applications often leads to
dynamic workloads and varying application requirements.
When the execution uses resources provisioned from IaaS
clouds, and thus consumption-related payment, efficient
and online scheduling algorithms must be found. Portfolio
scheduling, which selects dynamically a suitable policy from
a broad portfolio, may provide a solution to this problem.
However, selecting online the right policy from possibly
tens of alternatives remains challenging. In this work,
we introduce an abstract model to explore this selection
problem. Based on the model, we present a comprehensive
portfolio scheduler that includes tens of provisioning and
allocation policies. We propose an algorithm that can
enlarge the chance of selecting the best policy in limited
time, possibly online. Through trace-based simulation, we
evaluate various aspects of our portfolio scheduler, and find
performance improvements from 7% to 100% in comparison
with the best constituent policies and high improvement for
bursty workloads.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Algorithms, Economics, Management, Performance

Keywords
Portfolio Scheduling, Resource Provisioning, IaaS Cloud,
Scientific Workloads

1. INTRODUCTION
The past few years have seen a growing number of

scientific computing communities evaluating IaaS clouds for
running scientific workloads. For example, several users
have tried virtual clusters built with resources leased from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC13 November 17-21 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503244

commercial clouds such as Amazon EC2 [11, 17]. Other
communities have converted their local clusters into public
or private clouds [16, 42]. Taking advantages of IaaS cloud
resources could hold great promise for scientific computing,
especially for highly variable workloads and for parallel jobs
which otherwise would have to wait in production queues for
long periods of time. To achieve this promise, both scientists
and cloud operators still need efficient scheduling algorithms
for resource provisioning and job allocation. Although many
scheduling algorithms already exist and many have been
adapted for IaaS clouds, several studies have shown that
none of these algorithms is able to perform well across a wide
variety of scientific workload characteristics. To alleviate the
problem of selecting a scheduling algorithm, in this work
we explore the concept of portfolio scheduling, that is, of
selecting a suitable policy from a portfolio, with time limits
for the selection process.

Scheduling demanding scientific workloads in the cloud is
nontrivial. Genaud et al. [10, 27] study bin-packing strate-
gies for scheduling independent, sequential grid workloads in
IaaS clouds. Marshall et al. [25] and Wang et al. [43] present
resource provisioning policies for parallel jobs in order to bal-
ance monetary cost and job wait time. Other efforts focused
on cost-efficient execution of applications such as Bags-of-
Tasks (BoTs) [2,28] and scientific workflows [21,22]. To gain
deep insight into the performance of scheduling policies, our
previous work [41] studies the interplay between provisioning
and allocation policies through real experiments. Matching
previous studies [13, 14, 35], the results show that no one
policy performs the best in all possible situations.

Instead of striving to find better individual scheduling
policies, our previous research [8] adapted portfolio schedul-
ing [12] to scientific workloads running in IaaS clouds. The
basic idea of portfolio scheduling is to construct a portfolio
of scheduling policies, and to select from it the most suitable
policy for the current workload and system conditions.
The portfolio scheduler evaluates the relative performance
of constituent policies though an online, discrete-event
simulator. Our previous results have shown that portfolio
scheduling can be a viable solution for various workload
patterns that include small parallel jobs.

Significantly extending our previous work, in this article
we explore a variety of methods not only to reduce the
overhead of portfolio scheduling but also to improve the
quality of portfolio selection. In comparison with our
previous work on portfolio scheduling, we adapt it here for
a more demanding and general application model, that is,
the long-term execution of small- and medium-scale parallel

Figure 1: Abstract model for portfolio scheduling, a
simplified version of Rice’s algorithm selection problem
model [29] and the one reproduced by Smith-Miles [34].

workloads observed in real parallel production environments.
We address a major limitation to our previous work, which
appears in practice when trying to include tens of scheduling
policies in the portfolio—evaluating each of them may take
too long. Moreover, we explore a variety of parameters
that can potentially affect the performance of portfolio
scheduling, such as the type of utility function used to select
the policy, the time elapsed between selections, or the use of
complementary techniques such as job runtime predictions.
The main contribution of this work is threefold:

1. We study the use of an abstract algorithm selection
model for portfolio scheduling (Section 2). Based on
the abstract model, we introduce a portfolio scheduling
framework that includes various performance-affecting
configuration parameters (Section 3).

2. We propose an algorithm that is able to enlarge the
possibility of selecting the best policy from dozens of
scheduling policies in the policy portfolio, even when
a time constraint is set for policy selection (Section 4).

3. We explore experimentally the concept of portfolio
scheduling (Section 6). Through trace-based simu-
lation, we show evidence that our time-constrained
portfolio scheduler is able to select a suitable policy
with a time budget as small as 200 milliseconds, for a
data center that can lease up to 256 concurrent VMs.
We also assess the performance impact of various
configuration parameters for small- and medium-scale
parallel workloads.

2. SCHEDULING MODEL
Portfolio scheduling shares the same abstract model as

the general algorithm selection problem [29, 34]. In this
abstract model, which is depicted in Figure 1, there are
three components that interact in a pre-defined selection
process. As shown by the figure, the three components
are: the problem space P, which is the set of problem
instances needed to be solved; the algorithm space A, which
is the set of algorithms used to solve the problem; and the
performance space Y, which is the set of performance metrics
expected to be optimized.
The process of portfolio scheduling follows a traditional

way with four steps: creation, selection, application, and
reflection. The creation step constructs that three compo-
nents in the model. For the problem space P, our work
focuses on online scheduling, where the current workload is

the only problem instance to be considered. The algorithm
space A contains the portfolio of policies used for scheduling.
The creation of the portfolio includes a trade-off between
the capability to schedule different workload patterns and
application types, and the time required to evaluate each
policy. In this article, we only consider heuristic-based
policies for which the maximum computation complexity is
O(n logn). Their details will be discussed in Section 3.1.

For the performance space Y, we consider in this work
various objective functions that can be required by user and
operator, expressed as traditional and/or compound metrics.
Job slowdown, defined as the ratio between job response
time and its runtime, is a widely used performance metric
to represent user experience. To eliminate the influence of
extremely short jobs on the metric, we use in this work
the bounded job slowdown metric [9], which sets a lower
bound on the job runtime—following prior work [9], in this
work we set 10 seconds as the bound and use the average
bounded slowdown BSD as a performance target. We also
measure the total runtime of all the jobs (RJ) and the total
runtime of all rented VM instances (RV). Following the cost
model of Amazon EC2, VMs are charged by the hour, which
means that in our model the runtimes of VM instances are
rounded up to the next hour; thus, RV also denotes the
charged cost. The utilization of the scheduler is defined as
the ratio between RJ and RV , and indicates the efficiency
of the policies. Resource utilization is an important metric
for both data center administrators and users. For system
operators, keeping resource utilization high through efficient
policies makes them competitive in the market. For users,
high utilization means cost efficiency when using the virtual
resources.

Although a lower slowdown is to be desired, it may
be the result of (much) higher cost. To balance these
considerations, we use an extension of a utility function
defined in prior work [2,8, 41]:

U = κ ·
(
RJ

RV

)α

·
(

1

BSD

)β

For this metric, κ is a scaling factor for the total utility,
which we set to 100 as in our prior work [8]. The metric
parameters α and β are used to express different utility
functions: α is used to emphasize the efficiency of resource
usage and β is used to stress the urgency of the jobs. By
setting different α and β values, our utility function is able
to cover the effect of the two main performance requirements
in job scheduling field. By setting α = 0, the utility
function is useful for minimizing job slowdown. By setting
β = 0, the utility function is useful for minimizing the
cost or maximizing the utilization of the resources. In this
article, we set α = β = 1 to balance the efficiency and user
experience.

The selection step is similar for portfolio scheduling and
for the algorithm selection problem. The goal of this step
is to find a mapping function S such that the selected
scheduling policy a ∈ A is able to optimize the given
performance metric y ∈ Y for the current workload x ∈ P .
Our previous work [8] focused on this problem and solved it
by using online simulation as the selection mapping function
S(·). Nonetheless, online simulation is a time-consuming
function, especially when there are hundreds of jobs in
the workload and tens of policies in the portfolio. As a
consequence, a major goal of this article is to find methods to

Figure 2: The framework of our portfolio scheduler, a
concrete realization of the abstract scheduling model.

reduce the overhead of portfolio simulation while preserving
the quality of the selection.
In the application step, the policy that can maximize the

utility function in the performance space Y is selected and
applied to make real scheduling decisions. The performance
of the scheduling policy is collected and stored in the
database for reflection. By analyzing the performance of
the past selected policies, the reflection step could be useful
for improving the quality of selection for future workloads.
We further parameterize the model introduced in this

section with an interval between selection decisions and with
a time constraint for selecting policies.

3. PORTFOLIO SCHEDULER
Our portfolio scheduler is a concrete realization of the

abstract scheduling model discussed in previous section.
We design a framework for portfolio scheduling, depicted
in Figure 2. The component “Policy Portfolio” implements
the algorithm space A, which provides dozens of alternative
policies for the online simulator. The“online simulator”uses
the provided scheduling policy to run in simulation the jobs
currently in the “Job Queue”, based on the resource profile
of current system; the result of the simulation is a utility
score for each evaluated policy. Possibly aided by historical
performance data, the “policy selector” chooses the most
suitable policy according to the selected reflection criterion.
In the remainder of this section, we present the components
“Policy Portfolio”, the “Runtime Predictor”, and the “Online
Simulator”, in turn.

3.1 The Policy Portfolio
Similarly to our previous work [8, 41], we break the

scheduling policies into three parts: the provisioning poli-
cies, the job selecting policies and the VM selecting policies.
To run the queued jobs, the scheduling policy first provisions
a suitable number of VMs from the cloud through the
resource provisioning policy, then uses the job selecting
policy to order the queued jobs; for each selected job, it
selects the required number of appropriate VMs from the
cloud according to the VM selecting policy. We populate the
portfolio with policies chosen from research work on resource
provisioning and scheduling of parallel jobs.
Five provisioning policies are used in our portfolio sched-

uler. They consider the job wait time (qi for job i), the
job runtime (ti for job i), and the job parallelism (ni, the
number of processors requested by job i):

1. (The baseline policy) On-Demand All (ODA): This
is a simple, commonly used policy [8, 10, 25, 27, 41]. It
leases the required number of VMs for all the queued
jobs whenever there are available VMs. This policy
is naive: although it may lead to low job slowdown, it
also incurs unnecessarily high cost as resources charged
for an entire hour may be released after just a few
minutes of use.

2. On-Demand Balance (ODB): Because scientific work-
loads may include many short jobs that finish before
the hourly charging of resources, it is not necessary to
rent new instances for every job. Therefore, the ODB
policy tries to keep equal (balanced) the total number
of required processors and the number of processors
that have already rented. This policy is very similar
to the resource management policy presented by the
DawningCloud [43].

3. On-Demand ExecTime (ODE): The ODE policy is an
extension for parallel jobs of the ODE policy we have
used in our previous work [8, 41]. It calculates the
number of required VMs by rounding the total runtime
of all the queued jobs into hours:

∑
ni · ti/3600. The

intuition is to pack the jobs as tightly as possible in
order to minimize the cost.

4. On-Demand Maximum (ODM): This policy leases the
maximum number of VMs requested by jobs currently
in the queue: max (n1, n2, . . .). ODM ensures that
at least one queued job can be started. The policy
is helpful when most of the queued jobs are short,
because they can run on already rented VMs instead
of leasing new VMs (the ODA policy).

5. On-Demand XFactor (ODX): The ODX policy is
directly taken from our previous work [8, 41]. It rents
the required number of VMs for every job once its

bounded slowdown qi+max(ri,10)
max(ri,10)

exceeds a threshold

of 2. This policy can lead to a good trade-off between
user experience and resource utilization.

The job selection first orders the job queue based on
priority functions, then chooses the first job of the queue
for scheduling until insufficient resources remain available.
Many job selection policies have been proposed in the
literature for various types of jobs. Tan et al. [39] propose
several policies that compute job priority (pi) based on three
factors: job wait time, job run time, and job parallelism.
Since their proposed policies cover a wide range of policies
used in the literature and can avoid job starvation, they are
chosen as the candidate job selection policies in our policy
portfolio:

1. (The baseline policy) First-Come-First-Serve (FCF-
S): FCFS uses the priority : pi = qi, to order the
waiting jobs. This policy is the most commonly used
policy for parallel job scheduling and is taken as the
baseline policy for job selection.

2. Largest-Slowdown-First (LXF): LXF orders the job
queue by the slowdown of the jobs: pi = (qi+ti)/ti. In
comparison with FCFS, this policy also considers job
run time. The intuition is that short jobs suffer more
from long wait time than long jobs.

3. WFP3: Unlike LXF, which may delay large-scale jobs
for a long time, WFP3 takes job parallelism into
consideration and prioritizes the job queue by function:
pi = (qi/ti)

3 · ni. In addition to preferring large jobs,
WFP3 puts more weight on job slowdown since the
first factor is cubed.

4. UNICEF: In comparison with WFP3, UNICEF goes to
the other extreme, by preferring small-scale jobs with
short run time. This policy sorts the job queue based
on the priority: pi = qi/ (log2(ni) · ti). It tries to offer
quick response time for small jobs.

Although we lease one type of VMs for all the jobs, there
is still a need to choose a proper set of VMs for each
selected job. The reason is that idle VMs may have different
remaining time until they get charged for the next hour.
Based on different consideration of the remaining time, we
use for VM selection three policies that are originally used
to solve the online bin-packing problem [6,10]:

1. (The baseline policy) First Fit (FF): FF is the
simplest VM selection policy in our study. FF chooses
idle VMs without distinction. The advantage of this
policy is speed, especially in comparison to policies
that sort the VMs.

2. Best Fit (BF): For each selected job, BF chooses the
VMs such that the remaining time of the selected
VMs after running the job is minimal across available
VMs. This policy aims at reducing the charged cost
by improving the utilization of the VMs.

3. Worst Fit (WF): Conversely, WF selects the VMs that
will have the maximum remaining time after running
the job. The goal of this policy is to balance the usage
of each VM. By leaving as much idle time as possible,
a large job arriving in the future may be more easily
allocated to existing VMs.

Overall, we get a total of 60 scheduling policies in our
policy portfolio. Given m jobs and n VMs, the maximum
computation complexity of VM provisioning is O(m) and
the maximum computation complexity for job allocation is
O(m logm) · O(n logn). Thus, the maximum computation
complexity of the scheduling policies is O(mn logmn).

3.2 The Runtime Predictor
Job runtime is an indispensable information in our port-

folio scheduler, not only because it is used in some of
the resource provisioning and job selection policies, but
also for the simulation of policies by the online simulator
(see Section 3.3). Though users are required to provide
estimated runtime for their jobs in many computer systems,
their estimates are known to be highly inaccurate [40,
44]. Therefore, Tsafrir et al. [40] suggest replacing user
estimates with system-generated predictions for parallel job
scheduling. In particular, they use the average runtime of
the two most recently submitted and completed jobs from
the same user as the predicted runtime for the new job.
In our portfolio scheduler, we use the algorithm suggested

by Tsafrir et al. [40] to adjust user estimates. The algorithm
is an instance of the widely used k-nearest neighbor (k-nn)
algorithm [33]. Experimental results have shown k=2 is the
optimal operation window for the evaluated workloads with

an accuracy around 50% [36, 40]. A thorough study of job
runtime prediction is beyond the scope of this work; we
refer to [26] for more sophisticated algorithms. Nevertheless,
the experimental results in Section 6.3 show that even for
such an inaccurate predictor, our portfolio scheduler can still
perform well.

3.3 The Online Simulator
The online simulator represents the selection mapping

between the scheduling policy and the performance target
in the abstract scheduling model introduced in Section 2.
We implement the simulator as a function of the queued
workload (the queued jobs), the cloud profile (the informa-
tion of running and idle VMs in the current system), and
the scheduling policy. The simulator uses the scheduling
policy for resource provisioning and allocation until all the
jobs in the workload are finished. After that, it outputs the
utility score of the scheduling policy and the simulation cost.
This process continues until all the scheduling policies are
evaluated or a time condition interrupts the process.

As mentioned previously, online simulation is an expensive
mapping function. For tens of scheduling policies in a
single portfolio, the time taken to evaluate all of them could
be prohibitive—when the number of queued jobs and of
candidate VMs is in the order of hundreds to thousands,
the portfolio scheduler cannot take sub-second decisions.
To solve this problem, we introduce a time constraint and
present a time-constrained portfolio simulation algorithm to
limit the execution of the online simulator in the following
section.

4. TIME-CONSTRAINED SIMULATION
To make sure the scheduling decisions are made in time,

we set a constraint ∆ to limit the time spent for any single
simulation of the entire portfolio. To maximize the chance
of selecting the best policy for the current workload, we
categorize the scheduling policies into three sets: Smart,
Stale and Poor. The policies in the Smart set have
obtained top utility-function scores in the previous portfolio
simulation. The policies in the Pool set have performed
the worst in the former simulation. The Stale set contains
policies from the Smart set and the Poor set that have not
been simulated in the previous simulation.

We design an algorithm for portfolio scheduling with time
constraints that uses the three sets of policies Smart, Stale,
and Poor. Algorithm 1 summarizes the pseudo-code of the
algorithm, which includes three phases. The first phase
allocates time quotas for the three sets. As shown by
Algorithm 1 line 1-2, ∆ is first partitioned proportionally
to the number of policies in Smart, Stale and Poor. When
the algorithm is first invoked, all the policies are put into
Smart set. Hence, both Stale and Poor are empty, and
Smart gets the entire ∆ time for simulation.

The second phase simulates the sets of policies under the
limitation of their time quotas (Algorithm 1 line 3-19). The
policies in Smart, Stale, and Poor are simulated, in this
order. The procedure simulate receives as input the queue
of batch jobs (Queue), the resource state of current cloud
(Profile), and the scheduling policy (Pi); simulate returns
the utility score of the scheduling policy (si) along with the
simulation time (ci). For Smart and Stale, the policies are
simulated sequentially until their quotas run out. For Poor,
the algorithm randomly selects a policy, each time. All the

Algorithm 1 Time-Constrained Portfolio Simulation

Input: Queue, the set of batch jobs; Profile, the state of
current system; Smart, the set of smart policies; Stale,
the set of stale policies; Poor, the set of poor policies;
λ, the selection ratio

Output: The best policy for current workload

1: Q← ∅, N = ∥Smart∥+ ∥Stale∥+ ∥Poor∥;
2: δ1 = ∥Smart∥

N
·∆, δ2 = ∥Stale∥

N
·∆, δ3 = ∆− (δ1 + δ2);

3: for Pi ∈ Smart, i = 1, 2, · · · , ∥Smart∥ && δ1 > 0 do
4: si, ci = simulate(Queue, Profile, Pi);
5: Smart← Smart− {Pi}, Q← Q ∪ {Pi};
6: δ1 = δ1 − ci;
7: end for
8: for Pi ∈ Stale, i = 1, 2, · · · , ∥Stale∥ && δ2 > 0 do
9: si, ci = simulate(Queue, Profile, Pi);
10: Stale← Stale− {Pi}, Q← Q ∪ {Pi};
11: δ2 = δ2 − ci;
12: end for
13: δ3 = δ3 + δ2 + δ1;
14: while δ3 > 0 do
15: i = Random.nextInt(∥Poor∥);
16: si, ci = simulate(Queue, Profile, Pi);
17: Poor ← Poor − {Pi}, Q← Q ∪ {Pi};
18: δ3 = δ3 − ci;
19: end while
20: Stale← Stale ∪ Smart, Smart← ∅;
21: Selector.sort(Q);
22: Smart← {Pi ∈ Q|i = 1, 2, · · · , λ∥Q∥};
23: Poor ← Poor ∪ {Q− Smart};
24: return Smart.first();

simulated policies are moved out from their original sets and
put into a temporary set Q.
The final phase is to rearrange the policies and return the

best policy for scheduling the current workload (Algorithm 1
line 20-24). Firstly, the remaining policies in Smart are
put into the end of Stale such that the policies in Stale
are simulated in accordance to their staleness. After that,
the algorithm calls Selector procedure, which sorts the
simulated policies based on their utility score and puts the
top λ∥Q∥ policies into Smart. The remaining (1 − λ)∥Q∥
policies, which had exhibited lower performance in the online
simulator, are added into the Poor set. The score of the
simulated policies is also stored in the database for reflection,
which we will explore in the future work. Since the first
policy in Smart has the highest performance, it is selected
as the best policy and returned to portfolio scheduler for
real scheduling.
Our algorithm has an stabilization property: the num-

ber of policies in each set will approximately stabilize at
∥Smart∥ = λK, ∥Stale∥ = λ(N − K), and ∥Poor∥ =
(1 − λ)N . We now provide an informal proof. Assume
that an average of K policies can be simulated in the
given time constraint ∆. Thus, for a single policy, it takes
µ = ∆

K
time to be simulated. After the first invocation of

Algorithm 1, there will be λK, (1−λ)K and (N−K) policies
in Smart, Poor and Stale respectively. In the second
invocation, Quota = λK

N
∆ time is allocated to Smart, and

Quota
µ

policies will be simulated. This means λK(1 − K
N
)

policies will be removed from Smart and put into Stale.
Suppose at a particular time, Stale contains x policies.

Sep 1996 Mar 1997 Aug 1997
0

20

40

60

80

100

#

o
f

S
u
b
m
i
t
t
e
d

J
o
b
s

(a) KTH-SP2

Apr 1998 Apr 1999 Apr 2000
0

20

40

60

80

100

#

o
f

S
u
b
m
i
t
t
e
d

J
o
b
s

(b) SDSC-SP2

Jan 2003 Jul 2003 Jan 2004
0

20

40

60

80

100

#

o
f

S
u
b
m
i
t
t
e
d

J
o
b
s

(c) DAS2-fs0

Aug 2004 Dec 2004 May 2005
0

20

40

60

80

100

#

o
f

S
u
b
m
i
t
t
e
d

J
o
b
s

(d) LPC-EGEE

Figure 3: The number of submitted jobs during ten-minute
intervals in four small-to-medium parallel computer systems.
All traces show distinct workload patterns. The vertical axis
is limited to 100 for better visibility.

Table 1: The characteristics of the workload traces,
including the total number of jobs, the number of jobs that
require no more than 64 processors (count and percentage).

Trace#. Name
Time
[mo.]

Jobs
CPUs

Load
[%]− ≤ 64 %

T1. KTH SP2 11 28,480 28,158 98.9 100 70.4
T2. SDSC SP2 24 53,911 53,548 99.3 128 83.5
T3. DAS2 fs0 12 215,638 206,925 96.0 144 14.9
T4. LPC-EGEE 9 214,322 214,322 100 140 20.8

Then, Quota = ∆
N
x time is allocated to Stale by which

K
N
x policies will be simulated and removed. Among the

simulated policies, the well-performing policies will be put
into Smart and the poorly performing policies will be placed
into Poor. This process will continue until K

N
x is equivalent

to λK(1− K
N
), or x = λ(N −K).

As a consequence of the stabilization property, for sub-
sequent invocations the effect of Algorithm 1 is to verify
the goodness of the previously well-performed policies in
Smart, then simulate the oldest policies in Stale, and
then attempt to possibly select a good policy in Poor, by
chance. Importantly yet counter-intuitively, a policy in Poor
can still deliver excellent performance in the future—it is
sufficient that the workload changes in a way that plays to
the strengths of this policy. In the scheduler, we set λ = 0.6,
which means the top 60% of the simulated policies will be
put into Smart and the other 40% will be put into Poor.
The setting is kept constant throughout the experiments and
we will explore its impact in our future work.

5. EXPERIMENTAL SETUP
In this study, we use trace-based simulation to assess

our portfolio scheduler and the proposed algorithm for
time-constrained portfolio scheduling. We now present the
simulator and the workload traces used for our experiments.

5.1 Simulator
To simulate the long-term execution of scientific workloads

in the cloud, we extended our discrete event simulator
DGSim [15] with entities such as a cloud-like resource
manager and VM instances. The cloud-like resource man-
ager implements Amazon EC2-style APIs for leasing and
releasing VM instances, and implements the cost model of
on-demand instances leased by Amazon EC2. The simulator
used in this section should not be confused with the online
simulator running as part of the portfolio scheduler. For the
online simulator, it is tailored to be light-weight and can be
easily integrated in other simulators such as CloudSim [4].
We simulate a cloud computing system where VM in-

stances can be leased on-demand but the number of concur-
rently leased VMs is limited. This resource model is similar
to the resource provisioning model enforced by our real-
world DAS-4 system, which provides OpenNebula-based and
Eucalyptus-based cloud interfaces to its users. Moreover, as
declared by Amazon EC2, for the long-term usage of the
cloud, reserved VM instances are much cheaper than their
on-demand counterparts. In real virtualized environments,
there is a delay for instance acquisition and booting, which is
90 to 120 seconds for Amazon EC2 instances and 4 minutes
for our DAS-4 instances based on previous studies [13,23,41].
In all the experiments, we set the delay to 120 seconds

and the maximum number of VMs that can be rented
to 256. We further consider the functioning of a virtual
cluster comprised of homogeneous VM instances. This
model is consistent with the system configuration that the
workload traces used in this work are produced. During
the simulation, the jobs run exclusively on their VMs and
cannot be preempted or migrated.

5.2 Workload Traces
We use in our simulations four traces from the Paral-

lel Workloads Archive (PWA) [1]: KTH-SP2, SDSC-SP2,
DAS2-fs0, and LPC-EGEE. We cleaned these traces by
removing jobs with 0 runtime or processors, or with more
than the maximum number of processors in the systems the
traces were collected. We only use from these traces the
jobs requesting up to 64 processors. Table 1 summarizes the
characteristics of the cleaned traces—we use from each trace
over 95% of the original jobs.
Figure 3 shows the arrival patterns of the submitted jobs

for the four traces. KTH-SP2 exhibits stable arrivals, with
few bursty moments; the SDSC-SP2 trace is similar. In
contrast, the workloads of DAS2-fs0 and LPC-EGEE exhibit
many bursty moments. For DAS2-fs0, the number of jobs
during normal work hours is very small; for LPC-EGEE,
the number of jobs during normal work hours is much larger
than that in DAS2-fs0.

6. EXPERIMENTAL RESULTS
In this section, we study experimentally the use of

portfolio scheduling for long-term execution of scientific
workloads on IaaS cloud resources. We show the effects of
workload patterns and of various parameter settings on the
performance of our portfolio scheduler.

6.1 Effect of Portfolio Scheduling
To show the effectiveness of our portfolio scheduler, we

compare the performance of the portfolio scheduler with that
of its constituent scheduling policies, taken independently.

In this experiment, we use accurate runtime for the online
simulator; we investigate the impact of inaccurate runtime
prediction in Section 6.3. For clarity of depiction, we cluster
the 60 scheduling policies by their provisioning policy and
only plot in Figure 4 the best policy in each cluster. For
example, in the cluster of provisioning policy ODA, there
are 12 allocation policies (4 job selection policies times 3 VM
selection policies); the scheduling policy with the highest
utility is selected to represent the cluster and denoted as
ODA-∗. For all the 60 scheduling policies, we find that
job selection policies such as UNICEF and LXF that favor
short jobs have the best performance in all the clusters.
Interestingly, instead of BestFit, FirstFit dominates the
performance for VM selection.

Figure 4 compares the performance of our portfolio sched-
uler with that of the best constituent scheduling policies for
our traces. As expected, our portfolio scheduler performs
better than all individual scheduling policies, under all
workload traces. In particular, it outperforms the best
constituent policy under KTH-SP2, SDSC-SP2, DAS-fs0,
and LPC-EGEE by 8%, 11%, 45%, and 30% respective-
ly. Considering the characteristics of the traces, we can
conclude that portfolio scheduling is effective especially for
the burstier workloads, where the trace characteristics may
change for each and in-between bursts. For the individual
performance metrics, ODB and ODE have the largest job
slowdown but relatively low charged cost. The reason is
that the first two policies don’t consider the wait time of
the jobs but try to pack the jobs as tightly as possible.
On the contrary, ODA, ODM, and ODX lease VMs either
on-demand or with limited wait time, and have low job
slowdown but relatively high charged cost.

To analyze the use of different policies by the portfolio
scheduler, we plot the ratio of policy invocation in Figure 5.
As shown by Figure 5(a), most of the scheduling policies
have been invoked during the execution of the traces. For
the invoked policies, the ratio is relatively even for KTH-
SP2, SDSC-SP2 and DAS2-fs0. However, for LPC-EGEE
several scheduling policies dominate the invocation process.
We further coarsen the figure by merging the VM selection
policies and job selection policies, in Figures 5(b) and 5(c),
respectively. In Figure 5(c), ODB and ODX are the
dominant provisioning policies for KTH-SP2 and SDSC-
SP2—a result of the many long jobs, which can tolerate
longer wait times. Since the majority of the jobs from DAS-
fs0 and LPC-EGEE are very short, ODB and ODE become
the dominant policies for these traces—it would be otherwise
costly if VMs are rented on-demand or after a very short
wait time—; however, ODX is also invoked frequently for
the long jobs appearing in both DAS2-fs0 and LPC-EGEE.

6.2 Effect of Utility Function
We now investigate the effect of the utility function

parameters α and β on system performance and cost. First,
we keep the task-urgency factor β = 1 and change the cost-
efficiency factor α from 1 to 4. We also look at the extreme
setting β = 0—ignoring the job slowdown. As depicted by
Figure 6(b), we find that by emphasizing the cost-efficiency,
the charged cost of all the traces decreases only slightly.
Moreover, Figure 6(a) shows that the job slowdown of DAS2-
fs0 and LPC-EGEE increases gradually. For β = 0, the
job slowdown soars, yet the reduction of the charged cost is
marginal.

(a) Job slowdown. (b) Charged cost. (c) Utility function.

Figure 4: Performance of portfolio scheduling for accurate runtime. For KTH-SP2 and DAS2-fs0, the best allocation
policy is UNICEF+FirstFit. For SDSC-SP2, the best allocation policy for ODA is UNICEF+BestFit; for others, it is
UNICEF+FirstFit. For LPC-EGEE, the best allocation policy for ODM is LXF+WorstFit; for others, it is LXF+FirstFit.

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE
0

.2

.4

.6

.8

1

R
a
t
i
o

o
f

I
n
v
o
c
a
t
i
o
n
s

(a) 60 scheduling policies.

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE
0

.2

.4

.6

.8

1
R
a
t
i
o

o
f

I
n
v
o
c
a
t
i
o
n
s

ODB−FCFS

ODB−LXF

ODB−UNICEF

ODB−WFP3

ODX−WFP3

ODX−UNICEF

ODX−LXF

ODX−FCFS

ODB−FCFS

ODB−LXF

ODB−UNICEF

ODB−WFP3

ODX−WFP3

ODX−UNICEF

ODX−LXF

ODX−FCFS

ODB−FCFS

ODB−LXF

ODB−UNICEF

ODB−WFP3

ODE−WFP3

ODE−UNICEF

ODE−LXF

ODE−FCFS

ODB−FCFS

ODB−LXF

ODB−UNICEF

ODB−WFP3

ODX−WFP3

ODX−LXF

(b) 5 provisioning × 4 job selection.

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE
0

.2

.4

.6

.8

1

R
a
t
i
o

o
f

I
n
v
o
c
a
t
i
o
n
s

ODB

ODX

ODB

ODX

ODB

ODE

ODX

ODB

ODX

(c) 5 provisioning policies.

Figure 5: The ratio of invocations of the scheduling policies. The order of the policies can be calculated by iterating the
combination {ODA, ODB, ODE, ODM, ODX} × {FCFS, LXF, UNICEF, WFP3} × {BestFit, FirstFit, WorstFit}. We first
show the result of all the 60 scheduling policies, then cluster the policies gradually for coarser granularity.

(a) Job slowdown. (b) Charged cost. (c) Utility function.

Figure 7: Performance of portfolio scheduling for predicted runtime. For SDSC-SP2 and DAS2-fs0, the best allocation policy
is UNICEF+FirstFit. For KTH-SP2, the best allocation policy for ODA and ODM is UNICEF+BestFit. For LPC-EGEE,
the best allocation policy for ODA and ODE is LXF+FirstFit; for others, it is LXF+WorstFit.

(a) Job slowdown. (b) Charged cost. (c) Utility function.

Figure 8: Performance of portfolio scheduling for user estimated runtime. For SDSC-SP2 and DAS2-fs0, the best allocation
policy is UNICEF+FirstFit. For KTH-SP2, the best allocation policy for ODA is UNICEF+BestFit; for others, it is
UNICEF+FirstFit. For LPC-EGEE, the best allocation policy for ODM and ODX is LXF+WorstFit; for others, it is
LXF+FirstFit.

2 4 6 8 10 12 14 16
0.95

1

1.05

1.1

Portfolio Selection Period

N
o
r
m
a
l
i
z
e
d

S
l
o
w
d
o
w
n

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(a) Job slowdown.

2 4 6 8 10 12 14 16
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Portfolio Selection Period

N
o
r
m
a
l
i
z
e
d

C
o
s
t

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(b) Charged cost.

2 4 6 8 10 12 14 16
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Portfolio Selection Period

N
o
r
m
a
l
i
z
e
d

U
t
i
l
i
t
y

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(c) Utility function.

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

Portfolio Selection Period
N
o
r
m
a
l
i
z
e
d

#

o
f

I
n
v
o
c
a
t
i
o
n
s

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(d) Portfolio invocation.

Figure 9: The impact of portfolio selection period on performance. The selection period is a whole-number multiple of the
scheduling period. The vertical axis does not start at 0.

(a) Job slowdown. (b) Charged cost.

(c) Job slowdown. (d) Charged cost.

Figure 6: The effect of the utility function. Top row: the
cost-efficiency factor α varies. Bottom row: task-urgency
factor β varies.

The second set of experiments varies the task-urgency
factor, in the same way as cost-efficiency factor. From
Figure 6(c), we see the job slowdown of DAS2-fs0 and
LPC-EGEE declines considerably while the task-urgency
factor increases. By ignoring the cost-efficiency (α =
0), a minimum job slowdown is obtained for the two
traces. However, as shown by Figure 6(d), DAS2-fs0
pays disproportionately for the reduction—about 40% more
monetary cost in comparison with other cases. From both

figures, we observe that the task-urgency has negligible
impact on the performance of KTH-SP2 and SDSC-SP2.

Based on the results, we suggest that instead of putting
effort to find sophisticated algorithms to reduce the cost,
it is more worthwhile to find methods to improve the
performance metrics that users are interested in, such as
job slowdown and wait time. Such an observation is
consistent with that of previous work [10]–the reason is the
rather limited potential for cost improvement for long-term
workloads in production systems.

6.3 Impact of Prediction Inaccuracy
In the portfolio scheduler, some policies such as ODE and

LXF need job runtime for calculation. Moreover, the online
simulator also requires job runtime for simulation. In this
subsection, we investigate the impact of inaccurate runtime
prediction on the performance of portfolio scheduling. We
use the runtime predicted by the method of Section 3.2 and
that provided by the users for the evaluation. The results
are shown in Figure 7 and Figure 8.

In comparison with Figure 4, inaccurate runtime predic-
tion has an adverse effect on job slowdown of ODX especially
while the runtime is provided by the users. Since user
estimation is orders of magnitude larger than the actual
runtime, VMs are overprovisioned by ODE. As a result,
its job slowdown decreases significantly in Figure 8(a).
Moreover, the charged cost of ODE increases while the large
runtime is provided. The increment is significant in the
DAS2-fs0 trace. Since jobs in ODX need to wait for a
longer time, the corresponding cost is reduced considerably
for DAS2-fs0 and LPC-EGEE while user estimated runtime
is used.

20 40 60 80 100 200 300 400 500 600
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time Constraint (millisecond)

N
o
r
m
a
l
i
z
e
d

S
l
o
w
d
o
w
n

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(a) Job slowdown.

20 40 60 80 100 200 300 400 500 600
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time Constraint (millisecond)

N
o
r
m
a
l
i
z
e
d

C
o
s
t

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(b) Charged cost.

20 40 60 80 100 200 300 400 500 600
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time Constraint (millisecond)

N
o
r
m
a
l
i
z
e
d

U
t
i
l
i
t
y

KTH−SP2 SDSC−SP2 DAS2−fs0 LPC−EGEE

(c) Utility function.

Figure 10: The performance of portfolio scheduling under
different time constraints. All the results are normalized
by the result under the constraint of 20 milliseconds. The
vertical axis does not start at 0.

It is interesting to see that our portfolio scheduler is
not sensitive to the inaccurate runtime estimation. As
shown by Figure 4, 7 and 8, only the job slowdown
is slightly increased. In comparison with other policies,
portfolio scheduling outperforms the best policies in KTH-
SP2, SDSC-SP2, DAS-fs0, and LPC-EGEE by 6.87%,
15.6%, 77.32%, and 31.0% while using predicted runtime.
While using user estimated runtime, the improvements are
7.72%, 18.04%, 101.07%, and 30.74% respectively. The
performance improvement is not because scheduling policies
can benefit from inaccurate runtime prediction, but policies
using job runtime are adversely affected by inaccuracy. For
example, the best policy for DAS2-fs0 is ODX-∗ while actual
runtime is used. However, while inaccurate runtime is used,
ODA-∗ becomes the best policy, leading to a relatively better
performance of portfolio scheduling.

6.4 Impact of Portfolio Selection Period
The portfolio selection period is the interval between

two consecutive selection processes. In the experiments
conducted so far in Section 6, we have run the selection
process every 20 seconds. In this section, we increase the
selection period to measure its impact on the performance
of our portfolio scheduler. Specifically, we run our portfolio
scheduler under the four traces and set the selection period
as a multiple of 2 to 16 times the 20-second period. We
normalize the results with the results obtained for the
scheduling period set to 20 seconds. We also plot the number
of portfolio scheduling invocations during the execution of
the whole traces, similarly normalized. Figure 9 depicts the
results.

From Figure 9(a), we find that the portfolio selection
period has an insignificant impact on job slowdown (less
than 10% value change). The impact of the selection period
on the charged cost is also negligible for KTH-SP2 and
SDSC-SP2. However, for DAS2-fs0, the charged cost is
greatly impacted by the selection period. When the selection
period is set to 8 times the 20-second period, the charged
cost increases by nearly 50%. For LPC-EGEE, the impact
is moderate—the charged cost raises by up to about 15%.

The utility results, depicted in Figure 9(c), have an
opposite trend in comparison with the charged cost. The
number of invocations for portfolio selection decreases near-
exponentially with the selection period. Combined with the
performance data, we suggest a selection period of 8 for the
stable KTH-SP2 and SDSC-SP2 traces. For LPC-EGEE, a
selection period of 2 is suitable, since it reduces the number
of portfolio selection by half but with a very small impact on
the utility. However, for DAS2-fs0, to address the burstiness
the scheduler needs to invoke the portfolio selection process
at every scheduling period.

6.5 Impact of Simulation Time Constraint
Although the theoretical maximum computation complex-

ity for the constituent scheduling policies is O(mn logmn),
where m is the number of queued jobs and n is the number
of idle VMs, during the experiments we have observed that
almost all the policies run without much overhead. In our
experiments, often the values of m and n do not exceed 100.
Therefore, to assess the performance impact of limiting the
simulation time, we manually add a 10 milliseconds overhead
for each of the scheduling policies. Figure 10 shows the
performance results, normalized with the results obtained
for a time constraint of 20 milliseconds.

As Figure 10(a) depicts, the job slowdown of the four
traces shows different sensitivity to the time constraint. For
KTH-SP2 and LPC-EGEE, the job slowdown has a marginal
change (under 5%). For DAS2-fs0, the job slowdown
declines slightly at the beginning and then increases to
about 16% until the time constraint reaches about 300
milliseconds; afterwards, the slowdown stabilizes. SDSC-
SP2 shows a trend opposite to DAS2-fs0’s: the job slowdown
decreases by up to about 15% for SDSC-SP2, until the time
constraint reaches 80 milliseconds.

As shown by Figure 10(b), the charged cost exhibits a
similar trend for all the traces, but with different amplitude.
The charged cost of KTH-SP2 and SDSC-SP2 changes
negligibly, by only about 5%. The charged cost of DAS2-fs0
and LPC-EGEE declines quickly until the time constraint
reaches 100 milliseconds, and only slowly afterwards. The

charged cost is reduced by 20% and 40%, respectively.
The utility obtained for each trace exhibits similar trends

when the simulation time constraint increases. The utility of
all the traces increases until the time constraint reaches 200
milliseconds, then changes only slightly afterwards. Because
a policy requires 10 milliseconds for simulation, the total
number of simulated policies is 20. Therefore, for our
portfolio scheduler, simulating a third of the total amount of
policies (60) is sufficient. The reason can be found if we look
back at Figure 5(b). As we pick 60% of the simulated policies
as Smart policies, the number of policies in the Smart set
would be 12. This covers almost all the dominant policies
in Figure 5(b), which indicates the effectiveness of our time-
constrained simulation algorithm.

7. RELATED WORK
In this section, we provide a review on research work

related to three areas: computational portfolio design and
portfolio-based algorithm selection, parallel job scheduling,
and scientific workload scheduling in the cloud.
In 1976, Rice introduced the algorithm selection problem:

with so many available algorithms, which one should be
selected to solve the specific problem instance in order
to optimize some performance objective [29]. Meanwhile,
Rice presented an abstract model that can be used to
explore the problem [29, 34]. However, the most widely-
adopted solution to the problem follows a ”winner-take-
all” approach which selects the algorithm that has the best
average performance for all performance instances [45]. In
1997, Huberman [12] introduced an economics approach
based on portfolio theory [24] to the problem and proposed
a general procedure for computational portfolio design. The
idea is that by combining many algorithms into portfolios,
a whole range of problem instances can be addressed. Our
previous work [8] adapted the seminar idea and proposed
a portfolio scheduler for scheduling scientific workloads
in the data center; in parallel with our work but for a
different setting, Shai et al. have looked at a type of
portfolio scheduling without auto-tuning [30]. The focus
of previous work is to answer the question how to use
portfolio scheduling and if it works. In this article, we apply
Rice’s abstract model to portfolio scheduling and present a
scheduler framework based the model for a more general and
demanding application model. We explore the functionality
of our scheduler and focus on the question: given dozens of
policies, how to reduce the overhead of portfolio scheduling.
A large body of research work has been done on job

scheduling in parallel computer systems. First-Come-First-
Serve (FCFS) [18] is the earliest and simplest scheduling
policy widely used in production batch systems. To reduce
the fragmentation caused by head-of-line blocking in FCFS
scheduling [3], EASY-Backfilling was introduced [20]. After
that, many variants were designed to improve EASY-
Backfilling [5, 19, 32, 37, 38, 44]. Among them, the adaptive
scheduling policies are most relevant to our work [5, 19, 38]:
they use different policies in different periods of time for
scheduling; they also use online simulation to select the best
policy for the next scheduling period. However, they are
fundamentally different from our work. Firstly, they choose
the policy that performs best for the previous workload,
while our work chooses the best policy based on current
workload. Secondly, instead of presenting a specifical
scheduler, we proposed an abstract model and a framework

for portfolio scheduling, which can be easily adapted to other
scheduling areas. Last but not least, the major focus of
our work is to explore portfolio scheduling itself and to find
methods to reduce the overhead of scheduling in case the
number of constituent policies are enormous.

The construction of our policy portfolio relies on previous
studies related to utility-based job scheduling and scientific
workload scheduling in the cloud. Similarly to our previous
work [41], we divide the scheduling policy into three parts:
resource provisioning, job selection, and VM selection.
For the first part, we surveyed recent study on resource
provisioning and allocation in the cloud, and selected the
policies that both perform well and are suitable for parallel
job scheduling for the construction of policy portfolio [8,
10, 25, 27, 41, 43]. The selected policies are also limited to
identical type of on-demand VMs, and we refer to our prior
work [31] for policies using multiple instance types. For
job selection policies, we selected four utility functions from
Tang’s work [39] which covers most of the priority functions
used in the literature. We don’t consider backfilling in
our current scheduling policies. We leave it for the future
work and refer to [7] for its preliminary result on scheduling
parallel jobs in the cloud. For VM selection policies, we
selected three heuristics for the problem of bin packing [6].
We have briefly described the policies in Section 3.1 and
more details can be found in the original work.

8. CONCLUSION AND FUTURE WORK
The elasticity of cloud computing and data center com-

puting has shown great potential for scientific computing.
In this article, we investigated the long-term execution of
parallel scientific workloads on IaaS cloud resources. Instead
of finding more sophisticated scheduling algorithms, we have
proposed the use of portfolio scheduling, which combines
many existing policies into a portfolio and selects online an
appropriate policy to match specific workload and system
conditions. We have first introduced an abstract model
for the exploration of portfolio scheduling. Based on this
model, we have designed a portfolio scheduling framework
that includes several performance-affecting configuration
parameters. Our framework combines over 60 policies—
resource provisioning, job allocation, and VM allocation—
into a single comprehensive portfolio. We have designed
a versatile utility function and implemented an online
simulator to select the right policy for the given workload.
To address the critical issue of selecting an appropriate
policy in time, we have proposed an algorithm for time-
constrained policy selection, which aims at increasing the
chance of selecting the best policy even under time limits
that prevent the exhaustive evaluation of policies.

We have evaluated the performance of our portfolio
scheduler through simulations, using four long-term real-
world traces collected from parallel production environ-
ments. We have explored the impact on performance
of different portfolio configurations, of inaccurate runtime
prediction, and of different time constraints on policy
selection. We found that (1) by exploiting the collective
strengths of the constituent policies, our portfolio scheduler
outperforms its best constituent policy; (2) although the
charged cost for the traces used in our experiment is hardly
reduced, as the system utilization is relatively high, it is
still worthwhile to improve user-impacting performance such
as the job slowdown; (3) while policies using job runtime

are badly affected by inaccurate information, our portfolio
scheduler is much less sensitive; (4) for bursty workloads, the
portfolio scheduler must make frequent decisions to achieve
good performance; for stable workloads, long intervals
between decisions suffice; (5) by clustering the policies into
different categories, our simulation algorithm can reach good
performance despite simulating only a few of the policies.
For the future, we want to find out whether and to what

extend the reflection can help improve the quality of the
selected policies. Secondly, we plan to develop an algorithm
that can dynamically trigger the portfolio simulation process
only when the workload pattern changes, thus reducing the
number of invocations while preserving the performance.
Thirdly, we intend to implement a real-world prototype of
the scheduler and conduct realistic experiments to study
performance of portfolio scheduling in practice. Finally,
we are adapting portfolio scheduling for the execution of
scientific workflows and expect that more application types
can benefit from this new scheduling solution.

Acknowledgment
The authors would like to thank all the reviewers for
their comments and positive feedbacks on our paper. This
work is partially funded by the Dutch national research
program COMMIT; and supported by the STW/NWO Veni
grant 11881, the National Natural Science Foundation of
China (Grant No. 60903042 and 61272483), and the R&D
Special Fund for Public Welfare Industry (Meteorology)
GYHY201306003.

9. REFERENCES
[1] Parallel workloads archive.

http://www.cs.huji.ac.il/labs/parallel/workload/.
2013-02-17.

[2] O. Agmon Ben-Yehuda, A. Schuster, A. Sharov,
M. Silberstein, and A. Iosup. Expert: Pareto-efficient
task replication on grids and a cloud. In IPDPS, pages
167–178, 2012.

[3] A. AuYoung, A. Vahdat, and A. C. Snoeren.
Evaluating the impact of inaccurate information in
utility-based scheduling. In SC, 2009.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
F. D. Rose, and R. Buyya. Cloudsim: a toolkit for
modeling and simulation of cloud computing
environments and evaluation of resource provisioning
algorithms. Softw., Pract. Exper., 41(1):23–50, 2011.

[5] S.-H. Chiang and S. Vasupongayya. Design and
potential performance of goal-oriented job scheduling
policies for parallel computer workloads. IEEE Trans.
Parallel Distrib. Syst., 19(12):1642–1656, 2008.

[6] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson.
Approximation algorithms for bin packing: a survey.
In Approximation algorithms for NP-hard problems,
pages 46–93. PWS Publishing Co., Boston, MA, USA,
1997.

[7] M. D. de Assunção, A. di Costanzo, and R. Buyya.
Evaluating the cost-benefit of using cloud computing
to extend the capacity of clusters. In HPDC, pages
141–150, 2009.

[8] K. Deng, R. Verboon, K. Ren, and A. Iosup. A
periodic portfolio scheduler for scientific computing in
the data center. In JSSPP, 2013.

[9] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn.
Parallel job scheduling - a status report. In JSSPP,
pages 1–16, 2004.

[10] S. Genaud and J. Gossa. Cost-wait trade-offs in
client-side resource provisioning with elastic clouds. In
IEEE CLOUD, pages 1–8, 2011.

[11] T. J. Hacker and K. Mahadik. Flexible resource
allocation for reliable virtual cluster computing
systems. In SC, page 48, 2011.

[12] B. A. Huberman, R. M. Lukose, and T. Hogg. An
economics approach to hard computational problems.
Science, 275(5296):51–54, 1997.

[13] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. H. J. Epema. Performance
analysis of cloud computing services for many-tasks
scientific computing. IEEE Trans. Parallel Distrib.
Syst., 22(6):931–945, 2011.

[14] A. Iosup, O. O. Sonmez, S. Anoep, and D. H. J.
Epema. The performance of bags-of-tasks in
large-scale distributed systems. In HPDC, pages
97–108, 2008.

[15] A. Iosup, O. O. Sonmez, and D. H. J. Epema. Dgsim:
Comparing grid resource management architectures
through trace-based simulation. In Euro-Par, pages
13–25, 2008.

[16] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and
M. Tsugawa. Science clouds: Early experiences in
cloud computing for scientific applications. Cloud
computing and applications, 2008:16, 2008.

[17] K. Keahey and T. Freeman. Contextualization:
Providing one-click virtual clusters. In eScience, pages
301–308, 2008.

[18] P. Krueger, T.-H. Lai, and V. A. Dixit-Radiya. Job
scheduling is more important than processor
allocation for hypercube computers. IEEE Trans.
Parallel Distrib. Syst., 5(5):488–497, 1994.

[19] B. Lawson and E. Smirni. Self-adaptive scheduler
parameterization via online simulation. In IPDPS,
2005.

[20] D. A. Lifka. The anl/ibm sp scheduling system. In
JSSPP, pages 295–303, 1995.

[21] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski.
Cost- and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. In SC,
page 22, 2012.

[22] M. Mao and M. Humphrey. Auto-scaling to minimize
cost and meet application deadlines in cloud
workflows. In SC, page 49, 2011.

[23] M. Mao and M. Humphrey. A performance study on
the vm startup time in the cloud. In IEEE CLOUD,
pages 423–430, 2012.

[24] H. Markowitz. Portfolio selection*. The journal of
finance, 7(1):77–91, 1952.

[25] P. Marshall, H. M. Tufo, and K. Keahey. Provisioning
policies for elastic computing environments. In IPDPS
Workshops, pages 1085–1094, 2012.

[26] A. M. Matsunaga and J. A. B. Fortes. On the use of
machine learning to predict the time and resources
consumed by applications. In CCGRID, pages
495–504, 2010.

[27] E. Michon, J. Gossa, and S. Genaud. Free elasticity

and free cpu power for scientific workloads on iaas
clouds. In ICPADS, pages 85–92, 2012.

[28] A.-M. Oprescu, T. Kielmann, and H. Leahu.
Stochastic tail-phase optimization for bag-of-tasks
execution in clouds. In UCC, pages 204–208, 2012.

[29] J. R. Rice. The algorithm selection problem. Advances
in Computers, 15:65–118, 1976.

[30] O. Shai, E. Shmueli, and D. G. Feitelson. Heuristics
for resource matching in intel’s compute farm. In
JSSPP, 2013.

[31] S. Shen, K. Deng, A. Iosup, and D. H. J. Epema.
Scheduling jobs in the cloud using on-demand and
reserved instances. In Euro-Par, pages 242–254, 2013.

[32] E. Shmueli and D. G. Feitelson. Backfilling with
lookahead to optimize the packing of parallel jobs. J.
Parallel Distrib. Comput., 65(9):1090–1107, 2005.

[33] W. Smith. Prediction services for distributed
computing. In IPDPS, pages 1–10, 2007.

[34] K. Smith-Miles. Cross-disciplinary perspectives on
meta-learning for algorithm selection. ACM Comput.
Surv., 41(1), 2008.

[35] O. O. Sonmez, N. Yigitbasi, S. Abrishami, A. Iosup,
and D. H. J. Epema. Performance analysis of dynamic
workflow scheduling in multicluster grids. In HPDC,
pages 49–60, 2010.

[36] O. O. Sonmez, N. Yigitbasi, A. Iosup, and D. H. J.
Epema. Trace-based evaluation of job runtime and
queue wait time predictions in grids. In HPDC, pages
111–120, 2009.

[37] S. Srinivasan, R. Kettimuthu, V. Subramani, and
P. Sadayappan. Selective reservation strategies for
backfill job scheduling. In JSSPP, pages 55–71, 2002.

[38] D. Talby and D. G. Feitelson. Improving and
stabilizing parallel computer performance using
adaptive backfilling. In IPDPS, 2005.

[39] W. Tang, Z. Lan, N. Desai, and D. Buettner.
Fault-aware, utility-based job scheduling on blue,
gene/p systems. In CLUSTER, pages 1–10, 2009.

[40] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling
using system-generated predictions rather than user
runtime estimates. IEEE Trans. Parallel Distrib.
Syst., 18(6):789–803, 2007.

[41] D. Villegas, A. Antoniou, S. M. Sadjadi, and A. Iosup.
An analysis of provisioning and allocation policies for
infrastructure-as-a-service clouds. In CCGRID, pages
612–619, 2012.

[42] G. von Laszewski, J. Diaz, F. Wang, and G. Fox.
Comparison of multiple cloud frameworks. In IEEE
CLOUD, pages 734–741, 2012.

[43] L. Wang, J. Zhan, W. Shi, and Y. Liang. In cloud, can
scientific communities benefit from the economies of
scale? IEEE Trans. Parallel Distrib. Syst.,
23(2):296–303, 2012.

[44] A. M. Weil and D. G. Feitelson. Utilization,
predictability, workloads, and user runtime estimates
in scheduling the ibm sp2 with backfilling. IEEE
Trans. Parallel Distrib. Syst., 12(6):529–543, 2001.

[45] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Satzilla: Portfolio-based algorithm selection for sat. J.
Artif. Intell. Res. (JAIR), 32:565–606, 2008.

