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Abstract—Many scientists perform extensive computations
by executing large bags of similar tasks (BoTs) in mixtures
of computational environments, such as grids and clouds.
Although the reliability and cost may vary considerably across
these environments, no tool exists to assist scientists in the
selection of environments that can both fulfill deadlines and fit
budgets. To address this situation, we introduce the ExPERT
BoT scheduling framework. Our framework systematically
selects from a large search space the Pareto-efficient schedul-
ing strategies, that is, the strategies that deliver the best
results for both makespan and cost. ExPERT chooses from
them the best strategy according to a general, user-specified
utility function. Through simulations and experiments in real
production environments, we demonstrate that ExPERT can
substantially reduce both makespan and cost in comparison
to common scheduling strategies. For bioinformatics BoTs
executed in a real mixed grid+cloud environment, we show
how the scheduling strategy selected by ExPERT reduces both
makespan and cost by 30%-70%, in comparison to commonly-
used scheduling strategies.
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I. INTRODUCTION

The emergence of cloud computing creates a new oppor−
tunity for many scientists: using thousands of computational
resources assembled from both grids and clouds to run
their large−scale applications. This opportunity, however,
also adds complexity, as the shared grid systems and the
pay−per−use public clouds differ with regard to performance,
reliability, and cost. How can scientists optimize the trade−
offs between these three factors and thus efficiently use
the mixture of resources available to them? To answer
this question, we introduce ExPERT, a general schedul−
ing framework which finds Pareto−efficient job execution
strategies in environments with mixtures of unreliable and
reliable resources.

Today’s grids and clouds reside in two extremes of the re−
liability and cost spectrum. Grid resources are often regarded
as unreliable. Studies [1]–[3] and empirical data collected
in the Failure Trace Archive [2] give strong evidence of
the low long−term resource availability in traditional and
desktop grids, with yearly resource availability averages of
70% or less. The constrained resource availability in grids
is often a result of the sharing policy employed by each
resource provider—for example, the grid at UW−Madison [4]
employs preemptive fair−share policies [5], which vacate
running tasks of external users when local users submit
tasks. Commercial clouds, in contrast, have service−level

agreements that guarantee resource availability averages of
over 99%. Cost−wise, scientists often perceive grids as being
free of charge, whereas clouds are pay−per−use. Accordingly,
many grid users are now exploring the opportunity to
migrate their scientific applications to commercial clouds for
increased reliability [6]–[8], which could prove prohibitively
expensive [7].

Scientific grid applications are often executed as Bags of
Tasks (BoTs)—large−scale jobs comprised of hundreds to
thousands of asynchronous tasks that must be completed to
produce a single scientific result. Previous studies [9], [10]
have shown that BoTs consistently account for over 90% of
the multi−year workloads of some production grids. Thus,
BoTs have been the de facto standard for executing jobs in
unreliable grid environments over the past decade.

When executing BoTs in a grid environment, scientists
replicate tasks. Replication increases the odds of timely task
completion despite resource unreliability [11]–[15], but also
wastes CPU cycles and energy, and incurs other system−
wide costs [14] such as scheduler overload and delays to
other users. It is difficult to select a replication strategy
that yields the desired balance between the BoT response
time (makespan) and the BoT execution cost. A wrong
strategy can be expensive, increasing both makespan and
cost. Although various heuristics were devised to pick a
“good” replication strategy, our study is the first to focus
on explicitly identifying Pareto−efficient strategies, that is,
strategies that incur only the necessary cost and take no
longer than necessary to execute a given task.

We envision a world in which BoTs are executed on
whatever systems are best suited to the user’s preferences
at that time, be they grids, clouds, dedicated self−owned
machines, or any combination thereof. This vision presents
many optimization opportunities; optimizing the structure
of the reliable+unreliable environment is only one of many
examples. These opportunities can be exploited only when
taking into account the individual preferences of each scien−
tist. One scientist might want to obtain results by completing
a BoT as quickly as possible, regardless of cost. Another
might choose to minimize the cost and complete the BoT
only on grid resources. Yet another scientist might try to
complete work as soon as possible but under strict budget
constraints (e.g., [16]). What all users share is a desire for
efficient scheduling strategies.

Our main research goal is to determine which strategies
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are Pareto-efficient and which of them the user should pick.
The following four questions will guide us in helping the
user choose the best possible strategy. What mixture of
reliable and unreliable resources should be used? How many
times should tasks be replicated on unreliable resources?
What deadline should be set for those replicas? What is
the proper timeout between submitting task instances? Al−
though Pareto−efficient strategies have been investigated be−
fore in different contexts [17]–[20], they are generally con−
sidered too computationally−intensive for online scheduling
scenarios. However, we show here that even low−resolution
searches for Pareto−efficient strategies benefit scheduling
large numbers of tasks online.

Our first contribution is a model for task scheduling
in mixed environments with varying reliability and cost
(Sections II and III). Our second contribution is ExPERT,
a framework for dynamic online selection of a Pareto−
efficient scheduling strategy, which offers a wide spectrum
of efficient strategies for different user makespan−cost trade−
offs, leading to substantial savings in both (Section IV). We
evaluate ExPERT through both simulations and experiments
in real environments (Section V), and show (Section VI)
that ExPERT can save substantial makespan and cost in
comparison to scheduling strategies commonly used for
workload scheduling in grids.

II. THE BASIC SYSTEM MODEL

In this section we introduce the basic system model used
throughout this work. We first build towards the concept of
the Pareto frontier, then present the model for the system
and the environment.

A. Terminology

A task is a small computational unit. A task instance
is submitted to a resource. If the resource successfully
performs the task, it returns a result. For a successful task
instance, the result turnaround time is the time between
submitting an instance and receiving a result. For a failed
instance, this is ∞. A BoT is a set of asynchronous,
independent tasks, forming a single logical computation.
Users submit BoTs to be executed task−by−task. We divide
BoT execution into the throughput phase and the tail phase,
as depicted in Figure 1. The remaining tasks are tasks which
have not yet returned a result. The tail phase start time
(Ttail) occurs when there are fewer remaining tasks than
available unreliable resources. A BoT is completed when
each of its tasks has returned a result. The makespan of
a BoT is the period elapsed from its submission to its
completion. Similarly, the tail phase makespan is the period
elapsed from Ttail until the completion of the BoT.
Replication is the submission of multiple instances of the

same task, possibly overlapping in time. A task is complete
when one of its instances returns a successful result. The
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Figure 1: Remaining tasks over time during the throughput
and tail phases. Input: Experiment 6 (Table V).
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Figure 2: A Pareto frontier. Strategies S1 and S2 form the
Pareto frontier. S1 dominates S3.

reliability of a resource pool is the probability that an
instance submitted to that pool will return a result.
Cost is a user−defined price tag for performing a task,

and may reflect monetary payments (e.g., for a cloud),
environmental damage, or depletion of grid−user credentials.
We ignore the costs of failed instances since it is difficult to
justify charging for unobtained results.

The user’s scheduling system (user scheduler) sends and
replicates the user’s tasks to the available resource pools. A
user strategy is a set of input parameters indicating when,
where, and how the user wants to send and replicate tasks.

The performance metrics are cost per task (the average
cost of all BoT tasks) and makespan. A user’s utility function
is a function of the performance metrics of a strategy that
quantifies the benefit perceived by the user when running
the BoT. The user would like to optimize this function, for
a given BoT and environment, when selecting a strategy. For
example, a user who wants the cheapest strategy can use a
utility function that only considers costs.

A strategy is dominated by another strategy if its per−
formance is worse than or identical to the other for both
metrics (cost and makespan) and strictly worse for at least
one. A strategy that is not dominated by any other strategy
is Pareto-efficient; the user cannot improve this strategy’s
makespan without paying more than its cost. As illustrated
in Figure 2, several Pareto−efficient strategies may co−exist
for a given unreliable+reliable system and workload (BoT).
The Pareto frontier (or “Skyline operator” [21]) is the
locus of all efficient strategies with respect to the searched
strategy space. Any strategy that optimizes the user’s utility
function is Pareto−efficient. Furthermore, for any Pareto−
efficient strategy, there exists a utility function that the
strategy maximizes in the search space.
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B. Model and Assumptions

We outline now the model and the assumptions for this
work, first the environment, then the execution infrastructure.
The assumptions are inspired by real−world user schedulers
such as GridBoT [13], which are designed for CPU−bound
BoTs that are not data bound.

Our model of the environment consists of two task queues.
One queue is serviced by the unreliable pool, and the other
is serviced by the reliable pool.

We characterize the reliable and unreliable pools in terms
of speed, reliability, and effective size. Unreliable machines
operate at various speeds; reliable machines are homoge−
neous. (We assume they are of the same cloud instance type
or belong to a homogeneous self−owned cluster. Thus, they
are far more homogeneous than the unreliable machines.)
Failures in the unreliable pool are abundant and unrelated
across different domains [1]; reliable machines never fail (we
justify the approximation by the large reliability difference
between the unreliable and reliable pools). The reliable and
unreliable pools have different effective sizes (number of
resources that the user can concurrently use). We assume
that effectively there are many more unreliable than reliable
machines (typical effective sizes are hundreds of unreliable
nodes and tens of reliable nodes), and thus we do not
consider using only the reliable resources. Resources are
charged as used, per charging period (one hour on EC2, one
second on grids and self−owned machines).

We make no assumptions on task waiting time or on
the unreliable system’s scheduling policy, other than that
both can be modeled statistically. Since we allow for loose
connectivity between the scheduler and the hosts [15], it
may be impossible to abort tasks, and the exact time of a
task failure may not be known. A task which did not return
its result by its deadline is considered failed. We assume the
user has an overlay middleware that replaces malfunctioning
hosts with new ones from the same pool. Our experiments
show that such middleware can maintain an approximately
constant number of unreliable resources when requesting up
to 200 machines from a larger infrastructure.

III. THE SCHEDULING STRATEGY SPACE

In this section we introduce our model for scheduling
tasks with replication in an environment with mixed reli−
ability, cost, and speed. The model generalizes state−of−the−
art user strategies, e.g., of GridBoT users [13]. We focus
on optimizing the tail phase makespan and cost by control−
ling the tail phase scheduling strategy, for three reasons.
First, in naive BOINC executions [15], the tail phase is
an opportunity for improvement [22], as seen in Figure 1:
the task return rate in the tail phase is low, while many
resources are idle. Second, replication is inefficient during
the throughput phase [23]. Third, setting the decision point
after the throughput phase lets us base the optimization on
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Instance N+1 in Tail
Reliable Queue Reliable Pool

Success

DT Timeout
Failure/First N Tail Instances

Unreliable queue

Figure 3: NTDMr task instance flow during throughput
phase and tail phase. Reliable machines serve only instance
N +1 during the tail phase (throughput phase instances are
not counted). During the throughput phase, T = D, so there
is no replication

the highly−relevant statistical data (e.g., of task turnaround
times) collected during the throughput phase.

During the throughput phase we use a “no replication”
strategy, with a deadline of several times the average task
CPU time on the unreliable resource (denoted by Tur and
estimated according to several random tasks). This dead−
line length is a compromise between the time it takes to
identify dysfunctional machines and the probability of task
completion. A long deadline allows results to be accepted
after a long time, but leads to long turnaround times. For
the tail phase, we can consider strategies with deadlines set
to the measured turnaround times. Deadlines much longer
than Tur are not interesting, because strategies with such
deadlines are inefficient.

When the tail phase starts, all unreliable resources are
occupied by instances of different tasks, and the queues are
empty. From that point on, additional instances are enqueued
by a scheduling process: first to the unreliable pool, then to
the reliable one, as illustrated in Figure 3. This scheduling
process, which we name NTDMr, is controlled by four
user parameters, N , T , D and Mr. Different strategies have
different NTDMr values:
N is the maximal number of instances sent for each task

to the unreliable system since the start of the tail phase. A
last, (N+1)th instance is sent to the reliable system without
a deadline, to ensure task completion. A user without access
to a reliable environment is restricted to N =∞ strategies.
Increasing N improves the chance that the reliable instance
will not be required, but increases the load on the unreliable
pool. It also increases the probability of receiving and paying
for more than one result per task.
D is a deadline for an instance, measured from its sub−

mission to the system. Setting a large value for D improves
the instance’s chances to complete on time, but increases the
time that elapses before the user becomes aware of failures.
Short deadlines enable quick resubmission of failed tasks.
T is a timeout: the minimal waiting time before submit−

ting another instance of the same task. Rather than having
all instances submitted at the same time, each is submitted
after a period T has passed from the previous instance
submission, provided that no result has yet been returned.
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Figure 4: Flow of the ExPERT stages, with user intervention
points. Numbered arrows indicate process steps.

T restricts resource consumption.
Mr is the ratio of the effective sizes of reliable and

unreliable pools. It provides a user−defined upper bound on
the number of concurrently used reliable resources. Small
Mr values create long queues for the reliable pool. A
long reliable queue may indirectly reduce costs by allowing
unreliable instances to return a result and cancel the reliable
instance before it is sent. We demonstrate Mr’s contribution
to the cost reduction of efficient strategies in Section VI.

The user’s main goal is to choose values for N , T , D,
and Mr, such that the resulting makespan and cost optimize
a specific utility function. However, the user does not know
the cost−makespan trade−off, or what parameter values would
lead to a specific makespan or cost. To help the user choose
these values, we introduce in the next section a framework
for the selection of an efficient replication strategy.

IV. THE EXPERT FRAMEWORK

In this section we explain the design and use of the
ExPERT scheduling framework. Our main design goal is
to restrict the NTDMr space to Pareto−efficient strategies,
from among which the user can then make an educated
choice. To achieve this goal, ExPERT defines a schedul−
ing process, which includes building a Pareto frontier of
NTDMr strategies, out of which the best strategy for the
user is chosen.
The ExPERT Scheduling Process: The NTDMr task

instance flow is depicted in Figure 4. The user provides her
parameters and, optionally, a utility function. ExPERT then
statistically characterizes the workload and the unreliable
system on the basis of historical data, analyzes a range of
strategies, generates the Pareto frontier, and presents the user
with makespan−and cost−efficient strategies. After either the
user or ExPERT decides which strategy in the frontier to use,
ExPERT passes the N, T,D,Mr input parameters of the
chosen strategy to the user’s scheduler, which then replicates
tasks and submits them to the two resource queues.

The ExPERT framework is extensible in three ways. First,
in Step 2 it allows for alternative methods of gathering and
analyzing the system properties. Second, in Step 3 it allows
for alternative algorithms for construction of the Pareto
frontier. Third, in Step 4 it allows the user to employ any
utility function which prefers lower makespans and costs:

Table I: User−defined parameters

Item Definition
Tur Mean CPU time of a successful task

instance on an unreliable machine
Tr Task CPU time on a reliable machine
Cur Cents−per−second cost of unreliable machine
Cr Cents−per−second cost of reliable machine

Mmax
r Maximal ratio of reliable machines

to unreliable machines

using the Pareto frontier allows freedom of choice with
regard to the utility function.

Traditionally, BoTs are executed through schedulers such
as GridBoT [13], BOINC or Condor using a pre−set strat−
egy, defined when the BoT is submitted. Though historical
performance data has been used by others for resource
exclusion [11] and for resource allocation adaptation [16],
ExPERT is the first to use it to optimize general makespan
and cost preferences. In addition, once the Pareto frontier
is computed, it supplies the user with an understanding of
the trade−offs available in the system, to be utilized in the
future, possibly with different utility functions.
User Input: The user supplies ExPERT with data about

mean CPU times (denoted Tr, Tur), runtime costs in cents
per second (denoted Cr, Cur), and the reliable resource
pool’s effective size relative to the unreliable one (Table I).
Mmax

r
, the upper bound of Mr, is derived from the unre−

liable pool’s effective size, as well as from the number of
self−owned machines, or from a restriction on the number
of concurrent on−demand cloud instances (e.g., at most
20 concurrent instances for Amazon EC2 first−time users).
Runtime costs might reflect monetary payments, energy
waste, environmental damage, or other costs. For example, a
user might set unreliable costs as zero, representing the grid
as free of charge, or set it to account for power consumption.
ExPERT uses this data to estimate the BoT’s cost and
makespan under different strategies, when it searches the
strategy space.
Statistical Characterization: ExPERT statistically char−

acterizes the workload and the unreliable system using
F (·), the Cumulative Distribution Function (CDF) of result
turnaround time. It also estimates the effective size of the
unreliable pool, denoted as �ur, by running iterations of the
ExPERT estimator (described below) over the throughput
phase until the estimated result rate matches the real result
rate. The estimated �ur and F (·) are used to predict the
makespan and cost of a given strategy and BoT. We describe
here the estimation of F (·). The estimated �ur and F (·) are
later used in step 3 to statistically predict the makespan and
cost of applying a scheduling strategy to the execution of a
given BoT.
F (·) effectively models many environmental, workload,

and user−dependent factors. It is used to predict result
turnaround time during the tail phase, so it is best estimated
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in conditions that resemble those prevailing during this
phase. The throughput phase supplies us with such data, but
it can also be obtained from other sources. If the throughput
phase is too short to collect enough data before the tail phase
starts, public grid traces can be combined with statistical data
about the workload to estimate the CDF.

The CDF is computed as follows:

F (t, t′) = Fs(t)γ(t
′). (1)

Here t denotes instance turnaround time, and t′ denotes
instance sending time. Fs(t) denotes the CDF of successful
task instances (i.e., those which returned results). It can
be directly computed from the turnaround times of results.
γ(t′) denotes the unreliable pool’s reliability at time t′: the
probability that an instance sent at time t′ to the unreliable
pool returns a result at all. γ(t′) is computed for disjoint
sets of consecutively sent instances as the number of results
received by the deadline, divided by the number of instances.

Because F (·) depends on t′ through γ(t′), the CDF might
change over time, necessitating a prediction model. ExPERT
can either compute γ(t′) offline or estimate it online. The
accuracy of the two models is compared in Section VI. In
the offline model, γ(t′) is fully known (it is computed after
all the results have returned). In the online model, γ(t′) is
predicted according to information available at the decision
making time Ttail. Depending on when the instance was
sent, at time Ttail we might have full knowledge, partial
knowledge, or no knowledge whether the instance will have
returned a result by the time its deadline arrives. The time−
line of the instance sending time t′ is divided into three
epochs as follows.

1) Full Knowledge Epoch: the instance was sent at time
t′ such that t′ < Ttail −D. Instances sent during this
first epoch that have not yet returned will not return
anymore, so all the information about these tasks is
known at time Ttail, in which the online reliability is
evaluated. The online reliability model is identical to
offline reliability during this epoch.

2) Partial Knowledge Epoch: Ttail − D ≤ t′ < Ttail.
Instances sent during this second epoch that have not
yet returned may still return. We use Equation 1 to ap−
proximate the probability that an instance sent at time
t′ will eventually finish. That is, we try to compute
γ(t′) on the basis of the observable task success rate
(Fs(t)). According to our model in Equation 1, F (t, t′)
is separable. Hence, instead of computing Fs(t) ac−
cording to data of this second epoch to evaluate Fs2 (t),
we use Fs1(t), that is, the CDF of successful instances
during the first epoch.
Let F̂ (t, t′) denote F (t, t′) as was computed for
instances sent at time t′. With the information known
at time Ttail, the CDF is fully known (F (t, t′) =
F̂ (t, t′)) for small values of t (t ≤ Ttail − t′).
However, for larger values of t, no information exists.

As t′ approaches Ttail, F̂ (Ttail − t′, t′) becomes less
accurate, because it relies on less data.
We substitute the approximations Fs1 (t) and F̂ (t, t′)
in Equation 1 for the time t for which we have the
most data (t = Ttail − t′):

γ(t′) =
F (Ttail − t′, t′)

Fs(Ttail − t′)
≈

F̂ (Ttail − t′, t′)

Fs1(Ttail − t′)
. (2)

Due to the diminishing accuracy of the computation of
F̂ (Ttail − t′, t′), Equation 2 may result in fluctuating,
unreasonable values, which need to be truncated. From
below, we limit by the minimal historical value during
the first epoch. From above we only limit it by 1 be−
cause resource exclusion [11] (that is, the mechanism
of avoiding faulty hosts) might raise the reliability
values above their maximal historical values.

3) Zero Knowledge Epoch: t′ ≥ Ttail, the instances have
not yet been sent at the decision making time, and no
result has yet returned. We use an average of the mean
reliabilities during the Full Knowledge and the Partial
Knowledge Epochs, thus incorporating old accurate
data as well as updated, possibly inaccurate data. Our
experiments indicate that an average of equal weights
produces a good prediction for γ(t′) during this epoch.

Pareto Frontier Generation: ExPERT generates the
Pareto frontier using data from the previous steps in two
moves. First it samples the strategy space and analyzes the
sampled strategies. Then it computes the Pareto frontier of
the sampled strategies, from which the best strategy can be
chosen. The sampling resolution is configurable, limited in
range by the deadline used in the throughput phase. We
found that focusing the resolution in the lower end of the
range is more beneficial, as it accounts for the knee of the
Pareto frontier, which improves with resolution.

The ExPERT Estimator estimates the mean makespan
and cost of each sampled strategy through simulation. The
ExPERT Estimator models �ur unreliable and �Mr�ur�
reliable resources, each resource pool having a separate,
infinite queue. For simplicity we assume the queues are
FCFS: from each queue, tasks are submitted according to
the order in which they entered the queue, unless they are
canceled before they are submitted. If one instance of a
task succeeds after another is enqueued but before it is sent,
the other instance is canceled. If the other instance was
already sent, it is not aborted. For each instance sent to the
unreliable pool, a random number x ∈ [0, 1] is uniformly
drawn. The instance turnaround time t solves the equation
F (t, t′) = x. If t ≥ D, the instance is considered timed−out.

At each time−step the ExPERT Estimator first checks each
running instance for success or timeout. Then, if a task has
not yet returned a result, time T has already passed since
its last instance was sent, and no instance of this task is
currently enqueued, the Estimator enqueues one instance
for this task. Finally, instances are allocated to machines.
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Experiment 11 (Table V).

ExPERT uses the average cost and makespan of several
such estimations as expectation values of the real cost and
makespan.

Once all the sampled strategies are analyzed, ExPERT
produces the Pareto frontier by eliminating dominated strate−
gies from the set of sampled strategies, such that only non−
dominated points remain, as illustrated in Figure 2. Each
point on the Pareto frontier represents a Pareto−efficient
strategy. Under the rational assumption of monotonicity of
the utility function, all strategies that may be the best within
the sampled space for any utility function are included in
the frontier. ExPERT uses a hierarchical approach, which
resembles the s−Pareto frontier [20]: the strategies are first
divided according to their N values, since different N values
account for distinct separate conceptual solutions. Then
ExPERT merges the different frontiers. The user’s utility
function is not explicitly required for frontier generation—
the user may withhold information about his or her utility
function, and only choose a strategy from the Pareto frontier
after it is presented. Furthermore, once created, the same
frontier can be used by different users with different utility
functions.
Decision Making: After ExPERT generates the Pareto

frontier, ExPERT chooses the best strategy for the user ac−
cording to her utility function; otherwise, the user programs
any other algorithm to choose the best strategy for her needs.
We present an example of decision making for a scientific
BoT, with a task turnaround time CDF as given in Figure 5
and user supplied parameters as listed in Table II.

We begin by showcasing the difficulty of selecting an
appropriate scheduling strategy. Using an inefficient strategy
(such as an NTDMr strategy that is not on the Pareto fron−
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Both
Fastest within budget

and 
Min cost * Makespan
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Figure 7: Pareto frontier and examples of best points for var−
ious user utility functions. Input: Experiment 11 (Table V).

tier) might waste a lot of time and money. For our example,
Figure 6 displays only some of the sampled strategies and
the resulting Pareto frontier (the depiction of the explored
strategy space was diluted for clarity.) Here, using the Pareto
frontier can save the user from paying an inefficient cost of
4 cent

task
using N = 0 (no replication), instead of an efficient

cost of under 1 cent

task
(4 times better) when using N = 3.

Furthermore, a user who chooses N = 1 and is willing to
pay 2 cent

task
may obtain a poor makespan of over 25,000s (the

top right−most hexagram symbol in Figure 6). In contrast,
ExPERT recommends a strategy based on using N = 3,
which leads to a makespan around 5,000s (5 times better)
and a cost of under 1 cent

task
(the triangle symbol at the “knee”

of the continuous curve in Figure 6).
We next illustrate how ExPERT assists the user’s decision

process. Figure 7 depicts the Pareto frontier in terms of
cost and makespan. ExPERT marks the frontier for several
strategies, which are best for some simple user preferences
such as ‘minimize tail phase makespan’, ‘minimize cost’,
‘minimize tail−phase−makespan × cost’, and ’work within a
budget’ or ’finish in time’. If the user supplies ExPERT
with a different utility function, ExPERT also finds the
best strategy for it. A user who does not provide a utility
function can choose one of the Pareto−efficient strategies
presented at this stage. The Pareto frontier is discrete (we
draw the connecting line for visual purposes only), so only
the discrete points on it have attached input parameters. For
a higher−density frontier, that is, a frontier that renders the
connecting line in Figure 7, a higher−density sampling of
the search space is required. However, even a low sampling
resolution closely approaches the extreme strategies (the
cheapest and the fastest).

The strategy is now chosen in terms of cost and makespan.
To finalize the process, ExPERT presents the user with
the parameters N , T , D and Mr, which define the chosen
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Table II: Values for user−defined parameters

Item Value
Tur Mean CPU time of successful instances on

unreliable pool (2,066 seconds for Experiment 11)
Tr For real/simulated experiment comparison:

mean CPU time over reliable instances.
Otherwise: Tur .

Cur
1

3600

cent

second
= 10

cent

KWH
· 100W

Cr
34

3600

cent

second
: EC2’s m1.large on−demand rate

Table III: Workloads with T,D strategy parameters and
throughput phase statistics. WL denotes Workload index.
WM is an execution environment from Table IV.

WL �Tasks T[s] D[s] CPU time on WM[s]
Average Min. Max.

WL1 820 2,500 4,000 1,597 1,019 3,558
WL2 820 1,700 4,000 1,597 1,019 3,558
WL3 3276 5,000 8,000 1,911 1,484 6,435
WL4 3276 3,000 5,000 2,232 1,643 4,517
WL5 615 4,000 6,000 878 1,571 4,947
WL6 615 4,000 4,000 729 1,512 3,534
WL7 615 2,500 4,000 987 1,542 3,250

strategy. Those parameters are passed to the user’s scheduler
and are used to run the user’s tasks.

V. THE EXPERIMENTAL SETUP

In this section we present our experimental setup. To eval−
uate ExPERT in a variety of scenarios yet within our budget,
we ran a series of real−world experiments and augmented
the results with simulated experiments. The simulator was
created by re−using a prototype implementation of the
ExPERT Estimator; our simulations can be seen therefore
as emulations of the ExPERT process. We validated the
simulator’s accuracy by comparing simulation results with
results obtained through real−world experiments performed
on different combinations of unreliable and reliable pools,
including grids, self−owned machines, and Amazon EC2. To
validate the simulator, we used various BoTs which perform
genetic linkage analysis, a statistical method used by geneti−
cists to determine the location of disease−related mutations
on the chromosome. The BoTs, which are a characteristic
workload (real full applications) for the superlink−online
system [24], are characterized in Table III. In pure simulation
experiments we used the CDF shown in Figure 5.
Experimental Environments: The real−world experi−

ments were conducted using GridBoT [13], which provides
a unified front−end to multiple grids and clouds. GridBoT
interprets a language for encoding scheduling and replication
strategies on the basis of run−time data, to simultaneously
execute the BoTs in multiple pools. GridBoT relies on
BOINC, so it is based on weak connectivity.

To implement the limit to the CPU time consumed
by a task instance, we used the BOINC parameter
rsc_fpops_bound, which poses a limitation on the num−
ber of flops a host may dedicate to any a task instance. Since

Table IV: Real resource pools used in our experiments

Reliable Properties
Tech 20 self−owned CPUs in the Technion
EC2 20 m1.large Amazon EC2 cloud instances

Unreliable Properties
WM UW−Madison Condor pool. Utilizes preemption.

http://www.cs.wisc.edu/condor/uwcs
OSG Open Science Grid. Does not preempt.

http://www.opensciencegrid.org
OSG+WM Combined pool, half �ur from each
WM+EC2 Combined pool, 20 EC2 + 200 WM
WM+Tech Combined pool, 20 Tech + 200 WM

this parameter only approximates the limit, we manually
verified that task instances never continued beyond D.

The simulation−based experiments used the same discrete
event−based ExPERT Estimator we developed for building
the Pareto frontier. Although we considered using a grid
simulator [25]–[27], ultimately we decided to build our own
simulation environment. Our simulations are specifically
tailored for running ExPERT and have a simple, trace−
based setup. More importantly, as far as we know, no other
simulator has been validated for the scheduling strategies
and environments investigated in this work. For comparison,
we augmented the NTDMr strategies already implemented
in the Estimator with several static strategies described
below.

The user−specified parameters used in our experiments
are summarized in Table II. To estimate Cur we used the
characteristic power difference between an active and idle
state according to AMD’s ACP metric [28]. We multiplied
those power differences for Opteron processors [28] by two,
to allow for cooling system power, reaching a range of 52W−
157W; hence we use 100W here.

The resource pools are detailed in Table IV. Each exper−
iment used one unreliable resource combination (one row)
and at most one reliable resource. Experiments 1−6 used
old resource exclusion data, thus choosing more reliable
machines from the unreliable pools. In experiments 7−13
this data was deleted at the beginning of each experiment,
thus allowing any machine in the unreliable pool to serve
the BoT.
Static Scheduling Strategies: Without a tool such as

ExPERT, users (e.g., GridBoT users) have resorted to static
strategies. A static strategy is pre−set before the BoT starts,
and does not require further computations during the BoT’s
run−time. Unless otherwise stated, during the throughput
phase these strategies are “no replication” (N = ∞, T =
D = 4Tur) and the reliable pool is idle. Although some
of these strategies are NTDMr strategies, they are not
necessarily Pareto−efficient. We compare them to Pareto
efficient strategies found by ExPERT in the next section.
The static strategies are:
AR: All to Reliable: use only reliable machines for the

duration of the BoT. This is a fast strategy when there
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are many fast reliable machines and the reliability of the
unreliable machines is low.
TRR: all Tail Replicated to Reliable: at Ttail, replicate all

remaining tasks to the reliable pool. This is an NTDMr

strategy (N = 0,T = 0,Mr = Mmax
r ).

TR: all Tail to Reliable: at Ttail, enqueue every timed out
tail task to the reliable pool. This is an NTDMr strategy
(N = 0, T = D,Mr = Mmax

r
).

AUR: All to UnReliable, no replication: use the default
throughput phase strategy during the tail phase. This is the
cheapest option for a cheap unreliable system. This is an
NTDMr strategy (N =∞, T = D).
B=7.5: Budget of 7.5$ for a BoT of 150 tasks ( 2

3

cent

task
):

replicate all remaining tasks on the reliable pool once the
estimated cost of the replication is within the remaining
budget. Until then, use the default throughput phase strategy.
CN∞: Combine resources, no replication: deploy tasks

from the unreliable queue on the reliable pool if the unreli−
able pool is fully utilized. This is a common way of using
the cloud, supplementing self−owned machines with cloud
machines when the regular machines are busy.
CN1T0: Combine resources, replicate at tail with N =

1, T = 0: utilize all resources only during the throughput
phase. At Ttail, replicate: for each remaining task, enqueue
a reliable instance.

VI. THE EXPERIMENTAL RESULTS

We begin by evaluating NTDMr Pareto frontiers by
comparing them to the static strategies introduced in Sec−
tion V. We proceed to demonstrate the importance of Mr

as a strategy parameter in Section VI. We then validate the
ExPERT Estimator logic in Section VI and discuss the time
it takes to run ExPERT in Section VI.
ExPERT vs. Static Scheduling Strategies: To evaluate

the benefits of using NTDMr Pareto−efficient strategies, we
compare them with the seven static scheduling strategies.
The comparison is performed for a BoT of 150 tasks, with 50
machines in the unreliable resource pool. The Pareto frontier
is obtained by sampling the strategy space in the range N =
0 . . . 3, Mr = 0.02 . . .Mmax

r , and 0 ≤ T ≤ D ≤ 4Tur.
T,D were evenly sampled within their range at 5 different
values each. Mr was sampled by at most 7 values, listed in
Figure 9.

We first compare the makespan and cost of the static
strategies to the Pareto frontier on a system where Mmax

r
=

0.1, and depict the results in Figure 8a. The Pareto frontier
found by ExPERT dominates all the tested static strate-
gies except AUR; that is, for any utility function, for each
tested static strategy except AUR, ExPERT recommends at
least one NTDMr strategy that improves both metrics. For
example, ExPERT finds several strategies that dominate the
commonly−used CN∞ strategy. One such strategy is:
ExPERT recommended (N = 3, T = Tur, D =

2Tur,Mr = 0.02): send N = 3 instances to the unreliable
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Figure 8: Static strategies compared to Pareto−efficient
NTDMr strategies. Input: Experiment 11.

pool during the tail phase, with timeout set to occur after
twice the average task time (D = 2Tur). Send each
subsequent instance after the average task time (T = Tur)
from the sending of the prior instance had passed. Use only
one (�ur = 50, 50×Mr = 1) reliable machine at a time.

This strategy, which is located in Figure 8a at the “knee”
of the Pareto frontier, yields a makespan of 15,640s for the
cost of 0.78 cent

task
, cutting 72% of CN∞’s cost and 33%

of its makespan. This strategy does not dominate AUR,
by definition the cheapest strategy. Nonetheless, several
strategies found by ExPERT on the Pareto frontier lead to
much better makespan than AUR, with only a small increase
in cost.

The dominance of the NTDMr Pareto frontier demon−
strates the power of Pareto−efficient scheduling over static
strategies. The frontier’s dominance is not a direct conse−
quence of the way it is built, which only guarantees that it
will dominate the NTDMr strategies in the sampled space.
The fact that the NTDMr Pareto frontier dominates
the static strategies implies that NTDMr is a good
scheduling model: the efficient strategies the user looks
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Figure 9: Pareto frontiers obtained for various Mr values.
The topmost efficient point of each Pareto frontier is high−
lighted. Pareto frontiers of high Mr values have a wider
makespan range. Low Mr values yield lower costs.

for can be expressed as points in the sampled NTDMr

space.
Next, we focus on the performance of the strategies in

terms of a specific utility function: minimize tail-phase-
makespan × cost per task. We compare the utility obtained
by the user when the scheduling strategy is ExPERT rec-
ommended or one of the seven static scheduling strategies.
Figure 8b depicts the results of this comparison. ExPERT
recommended is 25% better than the second−best performer,
AUR, 72%−78% better than the third−best performer, and
several orders of magnitude better than the worst performer,
AR. We conclude that ExPERT recommended delivers sig−
nificantly better utility than all the tested static strategies and
outperforms (dominates) all these strategies except AUR.

Each static strategy might be tailored for a special scenario
and a utility function. However, as Figure 8b demonstrates,
using ExPERT to search the strategy space for that special
scenario will provide the user with the best strategy in the
search space, for a small computational cost (see below).
Impact of Mr ExPERT’s Performance: Mr provides a

bound on the number of concurrently used reliable resources
(see Section III). We now demonstrate the benefit of elastic−
ity, justifying the model decision which allows Mr to be a
scheduling strategy parameter rather than a system constant.
We consider Mr = 0.02 . . .0.50, which means that reliable
resources are less than 50% of the resources available to the
user.

First we demonstrate why users need to be able to set Mr

as a parameter of their scheduling strategy. To this end, we
compare the Pareto frontiers created by fixing Mr; we depict
in Figure 9 seven such frontiers. As shown by the figure,
high Mr values allow a wide range of makespan values
overall, but low Mr values can only lead to relatively longer
makespans. For example, the Pareto frontier for Mr = 0.02
starts at a tail makespan of over 5,500s, which is 25% larger
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Figure 10: Reliable pool use by efficient strategies.

than the makespans achievable when Mr ≥ 0.30. We also
observe that, for the same achieved makespan, lower Mr

values lead in general to lower cost. We conclude that to find
Pareto-efficient NTDMr strategies, Mr should not be
fixed in advance, but set in accordance with the desired
makespan.

We investigate next the impact of Mr in the execution of
the BoT on the resources provided by the reliable pool. For
each Pareto−efficient strategy operating in this environment,
we compare three operational metrics: the strategy parameter
Mr, the maximal number of reliable resources used during
the BoT’s run (denoted used Mr), and the maximal size of
the reliable queue built during the run. Figure 10 depicts
the results of this comparison. We find that for most Pareto−
efficient strategies, the number of used resources from the
reliable pool, used Mr, is equal to the number of resources
set through the strategy parameter, Mr. This is because,
during the BoT’s tail phase, tasks sometimes wait in the
queue to the reliable pool, as seen in Figure 10: the maximal
length of the reliable queue is almost never zero; that
is, the queue is almost always used. The right−most point
on the Mr and used Mr curves, for which the values
of Mr and used Mr are different, is the exception. We
explain this by an intrinsic load−balancing property of the
NDTMr systems: when the reliable pool queue is long,
slow unreliable instances return results before the reliable
instance is sent, which leads to the reliable instance being
canceled and its cost being spared.
Simulator Validation: We conducted 13 large−scale ex−

periments to validate the simulator and the ExPERT Esti-
mator. In each experiment, we applied a single strategy to
specific workload and resource pools. Since the simulations
include a random component, we ensured statistical con−
fidence by comparing the performance metrics (tail phase
makespan, cost per task) of each real experiment with mean
values of 10 simulated experiments. We compared real and
simulated performance metrics for both the offline and the
online models (defined in Section IV). The experiments are
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Table V: Experimental results. WL denotes workload according to Table III. N is the NTDMr parameter. �ur is an estimate
for the effective size of the unreliable pool. ur and r denote choice of pools according to Table IV. γ denotes the average
reliability of the unreliable pool. RI denotes the number of task instances sent to the reliable pool. TMS and C denote tail
phase makespan and cost per task. ΔTMS and ΔC denote deviation of simulated values from real ones. The strategy in
Experiment 5 is CN∞: Combine resources, no replication (which is not an NTDMr strategy).

Experiment Parameters Measured in Real Experiment Simulated Experiment Deviation
Offline [%] Online [%]

No. WL N �ur ur r γ RI TMS[s] C
[
cent

task

]
ΔTMS

TMS

ΔC

C

ΔTMS

TMS

ΔC

C

1 WL1 0 202 WM Tech 0.995 50 6,908 1.60 8 3 35 33
2 WL1 2 199 WM Tech 0.983 0 3,704 39 21 −4 8 −4
3 WL6 ∞ 200+20 WM+Tech − 0.981 0 6,005 41 1 −4 4 −4
4 WL3 0 206 WM Tech 0.974 49 10,487 1.10 2 2 −56 −32
5 WL6 ∞ 200+20 WM+EC2 − 0.970 41 6,113 1.48 37 −2 29 −2
6 WL5 ∞ 201 WM − 0.942 0 6,394 0.42 3 −4 −40 −4
7 WL1 0 208 WM Tech 0.864 77 10,130 2.38 3 2 32 26
8 WL2 1 208 WM Tech 0.857 16 4,162 0.88 19 15 −37 −10
9 WL1 0 251 OSG+WM Tech 0.853 108 14,029 3.28 7 0 −1 −4

10 WL7 0 208 WM EC2 0.844 118 11,761 3.67 −14 −35 −7 −28
11 WL1 0 200 OSG Tech 0.827 89 11,656 2.86 8 1 −7 −7
12 WL1 0 200 WM Tech 0.788 107 12,869 3.09 −9 −13 −2 −5
13 WL4 0 204 WM Tech 0.746 100 20,239 1.54 −3 −7 −7 −10

Average of absolute values 0.894 58 9,574 1.78 10 7 20 13

listed by decreasing order of average reliability in Table V.
On average, performance metrics of the offline simula−

tions, which use full knowledge of the unreliable pool’s
reliability γ(t′), deviate from real experimental values by
7% and 10% for cost and tail phase makespan, respectively.
The on−line simulations, which extrapolate γ(t′) during the
tail phase, deviated from real experimental values by twice
as much.

We identify four main causes for these deviations. First,
the simulator provides expectation values of performance
metrics. In contrast, a real experiment is a single, unrepro−
ducible sample. When a large number of tasks are replicated
during the tail phase, the performance metrics tend to be
close to the mean values of the simulated experiments. When
the opposite occurs, for example in Experiment 2, where
only four very long instances were sent after Ttail, the
makespan observed in the real environment is further from
the offline simulation. Second, the simulator assumes Fs(t)
does not depend on t′ and attributes all CDF changes to
γ(t′). However, in real experiments Fs(t) does depend on
t′, due to resource exclusion [11] policies and a varying
task length distribution. Third, ExPERT assumes it is never
informed of failures before the deadline D. In real exper−
iments, some machines do inform about failures and are
replaced. Fourth, in real experiments, the effective size of the
unreliable pool is variable and hard to measure. Hence, Ttail

is detected when there are more free hosts than remaining
tasks. The tasks remaining at this time are denoted tail tasks.
This may be a transient state, before the actual start of the
tail phase. In simulated experiments, the number of machines
is fixed. Ttail is detected when the number of remaining
tasks equals the number of tail tasks in the real experiment.
ExPERT Runtime The computational cost of running our

ExPERT prototype, in the resolution used throughout this

paper, is several minutes to sample the strategy space and
analyze it, on an Intel(R) Core(TM)2 Duo CPU P8400 @
2.26GHz. The space sampling is composed of dozens of
single strategy simulations, each lasting several seconds. We
consider a runtime in the order of minutes, appropriate for
BoTs of hundreds of tasks that are the focus of this work.
ExPERT’s runtime may be further shortened at the expense
of accuracy, by reducing the number of random repetitions
from over 10 to just 1. Similarly, flexibility may be traded
with time by changing the resolution in which the search
space is sampled. Gradually building the Pareto frontier
using evolutionary multi−objective optimization algorithms
can also reduce ExPERT’s runtime.

VII. RELATED WORK

Much research on replication algorithms relied on the as−
sumption that computation is free of charge [11], [14], [29]–
[32] and limited only by its effect on load and makespan,
whereas we explicitly consider execution costs. Dobber, van
der Mei, and Koole [30] have created an on−the−fly criterion
for choosing between immediate replication and dynamic
load balancing. Casanova [14] has shown the impact of
simple replication policies on resource waste and fairness.
Kondo, Chien, and Casanova [11] have combined replication
with resource exclusion. Cirne et al. [31] and Silva et al. [32]
have analyzed immediate replication with no deadline for
perfectly reliable heterogeneous machines. Wingstrom and
Casanova [29] assumed a specific distribution of task failures
and used it to maximize the probability of a whole BoT to
finish, by choosing replication candidates. In contrast, we
optimize cost and time simultaneously.

Bi−objective time−related problems were also analyzed in
task scheduling. Vydyanathan et al. [33] aim to minimize
latency while meeting strict throughput requirements using
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replication, subject to a certain amount of resource waste,
in terms of the number of occupied processors. They [34]
also aim to maximize the throughput while meeting latency
constraints, as do Agrawal et al. [35] for linear task graphs.
Our work optimizes one time related and one monetary
objective for BoTs.

The concept of utility functions as the target of the
optimization process has also received attention. Buyya et
al. [36] researched economic mechanisms for setting grid
computation costs, for several utility functions. One of their
estimation methods is Pareto−efficiency. Ding et al. [37] aim
to minimize the utility function of the energy−delay product
on a multi−CPU machine, by using a helper thread which
collects statistics and determines a deployment strategy. Lee,
Subrata and Zomaya [38] aim to minimize both grid resource
use and makespan for a workflow application, by giving both
an equal weight. Benoit et al. [39] assumed a linear risk
model for machine unavailability on homogeneous remote
machines, and considered overhead and operational costs.
Our work allows for both a general user function and a
general probability distribution of task success. Andrzejak,
Kondo, and Anderson [40] controlled reliable and unreliable
pool sizes in a combined pool to Pareto−optimize cost and
availability for Web services.

Pareto frontier approximations were previously used in
scheduling for the makespan and reliability objectives, but
not for cost, by Dongarra et al. [41], who scheduled task
graphs, and by Saule and Trystram [42], and by Jeannot et
al. [43].

Ramı́rez−Alcaraz et al. [44] evaluate scheduling heuristics
and optimize a combined objective for parallel jobs, because
they assess that computing a Pareto frontier in a GRID
environment is too slow. However, approximating the Pareto
frontier for the cases we demonstrated here using ExPERT
takes only minutes, which we do not consider “too slow”
for a BoT that runs for hours.

Oprescu and Kielmann [16] learn the run−time CDF on−
line from the execution of the same BoT, as we do. However,
they do not deal with reliability, since they use only clouds,
and they utilize a heuristic to minimize makespan for a given
budget. In contrast, our approach provides the client with full
flexibility of choice, without forcing the choice of budget
first, and is valid for grids, too, where reliability is an issue.

Pareto frontiers were also used to concurrently optimizing
the same objective for different users, to achieve socially
efficient scheduling and resource management [45], [46].
Zhao et al. [47] design a market for BoTs, aiming to
efficiently optimize social welfare under agent budget con−
straints. Our work focuses on multiple objectives of the same
user.

VIII. CONCLUSION

We addressed one of the main problems facing scientists
who rely on Bags−of−Tasks (BoTs) in mixtures of compu−

tational environments such as grids and clouds: the lack
of tools for selecting Pareto−efficient scheduling strategies
for general user−defined utility functions. For any user−
provided utility function, ExPERT finds the best strategy in
a large, sampled strategy space. ExPERT can achieve a 72%
cost reduction and a 33% shorter makespan compared with
commonly−used static scheduling strategies. For a utility
function of makespan × cost, ExPERT provided a strategy
which was 25% better than the second−best, and 72−78%
better than the third best strategy. These improvements stem
from ExPERT’s ability to explore a large strategy space
under minimal user guidance, and to automatically adapt
to the varying reliability, cost, and speed of resources.
They also show that the NTDMr strategy space is large
enough to provide considerable flexibility in both makespan
and cost. ExPERT’s predictive accuracy has been verified
through experiments on real grids and a real cloud. The
Pareto frontier created by ExPERT provides users with an
understanding of the cost−makespan trade−offs of executing
their BoTs.
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[21] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline
operator,” in ICDE, 2001, pp. 421–430.

[22] M. Silberstein, “Building online domain−specific comput−
ing service over non−dedicated grid and cloud resources:
Superlink−online experience,” in CCGRID ’11, 2011.

[23] G. D. Ghare and S. T. Leutenegger, “Improving speedup and
response times by replicating parallel programs on a snow,”
in JSSPP ’04.

[24] M. Silberstein, A. Tzemach, N. Dovgolevsky, M. Fishelson,
A. Schuster, and D. Geiger, “On−line system for faster linkage
analysis via parallel execution on thousands of personal
computers,” Amer. J. of Human Genetics, vol. 78(6), 2006.

[25] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a
generic framework for large−scale distributed experiments,” in
10th IEEE International Conference on Computer Modeling
and Simulation, Mar. 2008.

[26] R. Buyya and M. Murshed, “Gridsim: A toolkit for the
modeling and simulation of distributed resource management
and scheduling for grid computing,” Concurrency and Com-
putation: Practice and Experience, vol. 14(13).

[27] A. Iosup, O. Sonmez, and D. Epema, “Dgsim: Comparing
grid resource management architectures through trace−based
simulation,” in Euro-Par ’08.

[28] AMD, “ACP — the truth about power consumption
starts here,” white paper, 2007, http://www.amd.com/us/
Documents/43761C ACP WP EE.pdf.

[29] J. Wingstrom and H. Casanova, “Probabilistic allocation of
tasks on desktop grids,” in IPDPS, 2008.

[30] M. Dobber, R. D. van der Mei, and G. Koole, “Dynamic
load balancing and job replication in a global−scale grid
environment: A comparison,” IEEE Trans. Parallel Distrib.
Syst., vol. 20, no. 2, 2009.

[31] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Góes, and
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