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Abstract—Today, many commercial and private cloud com-
puting providers offer resources for leasing under the infras-
tructure as a service (IaaS) paradigm. Although an abundance
of mechanisms already facilitate the lease and use of single
infrastructure resources, to complete multi-job workloads IaaS
users still need to select adequate provisioning and allocation
policies to instantiate resources and map computational jobs
to them. While such policies have been studied in the past, no
experimental investigation in the context of clouds currently
exists that considers them jointly. In this paper we present
a comprehensive and empirical performance-cost analysis of
provisioning and allocation policies in IaaS clouds. We first
introduce a taxonomy of both types of policies, based on the
type of information used in the decision process, and map to
this taxonomy eight provisioning and four allocation policies.
Then, we analyze the performance and cost of these policies
through experimentation in three clouds, including Amazon
EC2. We show that policies that dynamically provision and/or
allocate resources can achieve better performance and cost.
Finally, we also look at the interplay between provisioning and
allocation, for which we show preliminary results.

Keywords-Scheduling; Cloud computing; Provisioning poli-
cies; Allocation policies; Empirical performance analysis.

I. INTRODUCTION

Recent advances [1], [2] in the high-speed yet low-cost
interconnection of off-the-shelf computational and storage
resources have facilitated the creation of data centers of
unprecedented scale. As a consequence, a fundamental shift
is beginning to occur in the way computational resources are
provisioned and allocated by our society, from traditional
ownership to Infrastructure-as-a-Service (IaaS) clouds—
leasing and releasing virtualized resources. Although hun-
dreds of commercial IaaS providers exist, to transition
to IaaS clouds users still need detailed understanding of
achieved performance and incurred cost. In particular, po-
tential IaaS users need to understand the performance and
cost of resource provisioning and allocation policies, and the
interplay between them. To address this need, we conduct
an empirical analysis of resource provisioning and allocation
policies for IaaS clouds.

The basic operation of an IaaS cloud is to temporarily in-
stantiate on-demand virtual machines (VMs)—of pre-agreed
computing power and memory size, operating system and
provided libraries, and, usually, some measure of Quality
of Service (QoS). Providers host the resources shared by
all users and can take advantage of economies of scale by
leasing their physical infrastructure as virtualized resources

to many different classes of users. Users provision, that is,
acquire and release, resources based on their actual needs,
only when, where, and for how long needed; they can
allocate the provisioned resources according to the specific
requirements of the workloads at hand. This model makes
IaaS clouds a flexible solution that reduces or completely
eliminates the need for acquiring and managing costly
physical resources, but also introduces the need to consider
online the trade-off between performance (more resources)
and cost.

The provisioning and allocation policies can have an
important impact on the traditional performance metrics,
from workload makespan to individual job slowdown [3].
Since instantiating a large number of VMs is simple, over-
provisioning can incur a substantial yet unnecessary cost;
when the allocation policy is inefficient, a dynamic pro-
visioning policy may lease resources that remain largely
unused [4]. The pricing scheme of the IaaS cloud, which
may include hourly charging periods and discounts for first-
time use, may lead to different cost gains than expected from
actual resource consumption.

The performance-cost trade-off has been extensively stud-
ied in the context of grids, mainly from the perspective of
users also acting as providers and looking for economic
gain [5] or for sharing fairness [6]. Moreover, more tra-
ditional resource managers such as Condor support [7],
[8], through versatile job specification languages, complex
criteria for the selection of resources. Several studies [3],
[9], [4] have approached this trade-off in simulation, in
the context of clouds. However, until now no study has
investigated in practice the impact of the provisioning and
allocation policies that users can employ, and of the interplay
between these policies, in the context of clouds. The need
for empirical evaluation stems from recent results [10],
[11], [12] in cloud performance evaluation, which show that
cloud performance is much lower and more variable than
considered in simulation models. In this work we propose a
comprehensive investigation of provisioning and allocation
policies for IaaS clouds. Our main contribution is threefold:

1) We identify eight provisioning and four allocation
policies that can realistically be applied for managing
workloads in IaaS clouds (Section III);

2) We conduct an empirical investigation using three
IaaS clouds, including the services provided by the
commercial IaaS Amazon EC2 (Section IV);
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Figure 1. The cloud ecosystem.

3) We analyze empirically and, only for the otherwise
expensive experiments, in simulation the performance
and cost of resource provisioning and allocation poli-
cies, and the interplay between these two types of
policies (Section V).

II. SYSTEM MODEL

In this section we present the system model used through-
out this work.

A. Workload Model

Although desirable, it is not yet possible to define a
realistic workload for IaaS clouds, due to the scarcity of
public workload traces or common practice reports. The
Grid and Parallel Workload Archives provide in total tens
of workload traces, but it is yet unknown if the users of
these environments will migrate to IaaS clouds [11]. We
have already shown in our characterization of over fifteen
grid workloads [13] two trends: the disappearance of tightly-
coupled parallel jobs in favor of Bags of Tasks (BoTs), and
the decrease of the amount of work (runtime) of each task.

For this work, we consider synthetic, BoT-based work-
loads with runtimes typical for data mining and semi-
interactive processing, that is, several minutes [14], [15].
In our workload model, jobs are CPU-bound and their
runtime is dependent on the speed of the (virtual) processor
where they are executed and the amount of work requested,
specified as an argument to the job. By using different
workload distributions, we want to showcase the behavior
of the policies under specific circumstances.

B. Resource Model

In our system model, resources are provisioned exclu-
sively from IaaS clouds. Although hybrid local-cloud sys-
tems still exist, we anticipate with this work the mo-
ment when buying and maintaining local resources will
be anachronistic. The cloud ecosystem investigated in this
work, which is comprised of the IaaS cloud provider(s) and
user(s), is depicted in Figure 1. We assume that users send
their workloads to a scheduler, which enqueues jobs and

Policy Dynamic Trigger Job Duration Increase Param.

Startup No — — —

OD-S Yes Queue size No 1
OD-G Yes Queue size No n

OD-ExecTime Yes Exec. time Yes 1
OD-ExecAvg Yes Exec. time No 1
OD-ExecKN Yes Exec. time No 1

OD-Wait Yes Wait time No 1

OD-2Q Yes Queue size Partial 1

Table I
OVERVIEW OF PROVISIONING POLICIES.

assigns them to the pool of available resources based on an
allocation policy. A system component manages the pool
of resources via a provisioning policy, that is, a policy that
decides when to lease and to release resources from IaaS
clouds. This component can query the state of the allocation,
such as the queue size or the average waiting time for jobs.

We model the operation of IaaS clouds based on Amazon
EC2, a popular commercial IaaS. We assume that a provi-
sioning request issued to the IaaS cloud will incur delays
that depend on the process used by the IaaS to select, lease-
and-boot, and release (shut down) a VM instance. Last, we
assume that VMs have a cost associated to their operation,
with a cost model that is proportional, possibly non-linearly,
to the runtime of the VM instance, and not counting the time
required to boot or shut down the instance.

III. PROVISIONING AND ALLOCATION POLICIES

We present in this section the provisioning and allocation
policies considered for this work. Although we envision that
future policies will adapt to changing workloads, evolving
resources, and complex Service Level Agreements, we focus
in this work on the simple policies that may be realistically
employed in practice, today. Our rationale was to select
commonly used policies that have already been studied in
the literature.

A. Provisioning Policies

We consider for this work eight provisioning policies; we
summarize their properties in Table I and describe them
next. Overall, we identify two main classes of provisioning
policies, static and dynamic. For the class of dynamic pro-
visioning policies, we investigate three criteria for deciding
when the policies are called (triggers): the current size of
the queue, the accumulated execution time of the queued
jobs, and the total waiting time among queued jobs. Some of
the provisioning policies considered here require information
about the duration of jobs, which is not always provided by
the user; we consider, for these policies, alternatives that
estimate this information from historical records. The last
policy in Table I requires partial information, that is, it only
requires classification information—a job can be either small
or long. We now describe the provisioning policies, in turn:
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1. Startup: is a provisioning policy that leases the max-
imum possible VM instances during the system startup.
While this ensures that no delay will occur due to waiting
for new resources to be leased, this policy is not flexible–
whether jobs arrive or not in the system, VM instances are
still leased and paid; also, this policy cannot cope well with
bursty system overloads.

2. On-Demand, Single VM (OD-S): is a naı̈ve dynamic
provisioning policy that leases a new VM instance for each
job that cannot be assigned to a resource. VMs are shut down
when they are not used for a certain duration, determined as
a parameter; by setting this parameter to 0 seconds, VMs are
released immediately after the job is completed. In general,
this policy can lead to thrashing, that is, frequent leasing
and releasing of VM instances.

3. OD-Geometric (OD-G): is a dynamic policy that
extends OD-S with geometric provisioning, that is, when
new instances are needed this policy provisions n0, n1, n2, ...

machines in successive leases, where n is the increase
parameter. Similarly, this policy releases increasing amounts
of instances. The decision of (re)leasing instances is taken
periodically, when the number of available VMs falls below
a threshold, or the number of tasks in the system queue
exceed a limit; here, we use a period of 20 seconds and
(re)lease again whenever there is at least one queued job/idle
VM instance.

4. OD-ExecTime: is a dynamic provisioning policy that
uses the future execution time of queued jobs, which is
assumed to be known a priori, to decide on leasing or
releasing VM instances. The decision to lease is adaptive
to the cloud, in that the execution time of queued jobs must
exceed the average time needed to provision and boot a
VM instance (as observed for previously leased VMs) by
a specified factor, which is set in this work to 5.

5. OD-ExecAvg: is similar to OD-ExecTime, but the
execution time for each queued job is estimated as the
average execution time of all the jobs that have already
completed. An initial prediction of the average job run-time
must be provided by the user.

6. OD-ExecKN: is similar to OD-ExecAvg, but uses
a predictor based on [16]. For each job in the queue,
OD-ExecKN acquires its k-nearest neighbors based on the
job input parameter size. Then, the estimated execution time
for a job is the average over this set of k neighbors.

7. OD-Wait: is similar to OD-ExecTime, but it considers
the waiting times of queued jobs instead of their future
execution time.

8. OD-2Q: is a provisioning policy that works in conjunc-
tion with the FCFS-2Q allocation policy (Section III-B). To
minimize the trashing of VMs for short running jobs, we
define a bi-queue on-demand provisioning policy that leases
VM instances and assigns them to one of two pools. The two
pools effectively implement two OD-S queues with separate
idle time parameters; here, we use longer idle times for VMs

Policy Uses Queue Job Duration Provisioning-Aware

FCFS Yes No No
FCFS-NW No No No

SJF Yes Yes No

FCFS-2Q Yes (2) Partial Yes

Table II
OVERVIEW OF ALLOCATION POLICIES.

that will run short jobs, so that thrashing is reduced.

B. Allocation Policies

We consider for this work four allocation policies; their
properties are summarized in Table II. Most policies we
investigate use one queue, but we also consider policies
that use two or no queue. Similarly to our approach for
provisioning policies, we consider here allocation policies
that may require (partial) information about the job duration.
The last policy in Table II is provisioning-aware, that is, it
works in conjunction with the OD-2Q provisioning policy.
We now describe the allocation policies, in turn:

1. First-Come, First-Served (FCFS): is a traditional allo-
cation policy that assigns one task per resource in the order
in which the tasks have been submitted to the system.

2. FCFS-NoWait (FCFS-NW): is an extension to FCFS
where jobs are not queued when no available VMs exist.
Instead, this policy assigns jobs to VMs that are already
running other jobs, round robin. This policy eliminates the
wait time, but may introduce bottlenecks in the execution of
jobs.

3. Shortest-Job First (SJF): is a traditional allocation
policy that gives priority to shorter jobs, assuming there
is some information about or estimation of their actual
duration. Although it alleviates the FCFS problem of short
jobs waiting for the allocation of longer jobs with earlier
arrival time, it can lead to starvation for long jobs.

4. FCFS-MultiQueue: is an extension to FCFS where sev-
eral FCFS queues, one for each range of job durations, are
maintained. The simplest case considered here, FCFS-2Q,
has two queues, one for short jobs and another for long
jobs. Although an estimation of the runtime is necessary
for this policy, it is enough to have partial knowledge of
it to classify jobs. This policy can work in conjunction
with a provisioning policy that divides VMs into pools for
short and long running jobs, such as OD-2Q (introduced in
Section III-A).

IV. EXPERIMENTAL SETUP

In this section we discuss our experimental setup, in turn,
the SkyMark empirical performance evaluation tool, the used
testbeds, the workloads, and the employed metrics.

A. The SkyMark Empirical Performance Evaluation Tool

Unless otherwise specified, we have conducted the ex-
periments presented in this work in real environments. To
this end, we have implemented SkyMark, a performance
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System Hardware Spec VIM/Hypervisor Max VMs

DAS4
Delft

8 dual quad-core
24 GB RAM

OpenNebula 3.0 /
KVM
(Full, HVM)

64

FIU 8 Pentium 4
5 GB Memory

OpenNebula 2.2 /
XEN
(Para., No HVM)

7

Amazon EC2
eu-west-1

- - / XEN
(Para., No HVM)

20

Table III
OVERVIEW OF THE EXPERIMENTAL ENVIRONMENTS.

evaluation framework that enables the generation, submis-
sion, and monitoring of complex workloads to IaaS cloud
environments. SkyMark extends C-meter[17], our prior IaaS
performance evaluation framework, with provisioning and
allocation policies, new workloads, and new analytical ca-
pabilities. SkyMark currently supports IaaS clouds that im-
plement Amazon EC2’s interface, including all deployments
using Eucalyptus, but interfaces to other clouds can be easily
plugged-in to the tool. SkyMark also supports the XML-RPC
system interface of OpenNebula.

The experimental process uses SkyMark as follows: The
user provides a workload description file which is used
to generate a real or synthetic workload. The workload is
then submitted to a cloud, using pre-specified provisioning
and allocation policies. Performance statistics are gathered
throughout the execution of the workload and then stored in
a database. Last, the database is used for post-experiment
analysis. SkyMark effectively plays the role of both the user
and the policies depicted in Figure 1.

Since using a real testbed is constrained by actual resource
and budget availability, we have also developed a discrete
event simulator that duplicates Skymark functionality. The
simulator reads a workload description and generates events
for job arrivals, VM lifecycle, and pluggable allocation and
provisioning policies.

B. Experimental Environments

We have performed experiments on three real IaaS clouds
with different resources, middleware, and virtualization sys-
tems. The three used systems are: the Delft cluster of
DAS-41, a six-cluster wide-area distributed system in the
Netherlands; a cluster at Florida International University
(FIU); and the Amazon EC2 commercial IaaS. By running
the experiments in these different scenarios, we want to test
what is the behavior of the studied policies in various real
deployments. The properties of the three IaaS clouds used
in this work are summarized in Table III.

C. Workloads

We have used te following workloads, each hour-long:
1) Uniform: A steady stream of tasks throughout the

experiment; uses a Poisson arrival distribution. The
average system load is around 70%.

1http://www.cs.vu.nl/das4/

2) Increasing: The workload intensity increases over
time, in steps. The average system load is around 50%.

3) Bursty: The workload features short spikes of intense
activity amid long periods of mild or moderate activity.
The average system load is around 15%; the maximum
load is, for a few minutes, 170%.

For the simulated results in section V, we use the Uniform
and Bursty workloads, and add a new one, Periodic, follow-
ing a periodic increasing and decreasing arrival pattern. For
these workloads we also change the job durations. More
details are discussed in the corresponding section.

The jobs that comprise the workloads are synthetic and
have an average execution time of 47 seconds with a
standard deviation of 41.1, as measured on DAS-4 when
jobs were run independently. The reason for selecting short
job durations were discussed in Section II-A.

D. Performance, Cost, and Compound Metrics

We use a variety of performance, cost, and compound
metrics to analyze the impact of provisioning and allocation
policies. For performance metrics, we look at the average
job slowdown (JSD), defined per job as the ratio of the actual
runtime in the cloud and the runtime in a dedicated envi-
ronment. We also look at the workload speedup, measured
against a single node (SU).

We use two cost metrics. The actual cost (Ca) is defined
as the sum of consumed resources, here, CPUtime. The
charged cost (Cc) is the price charged by the provider, here,
using the Amazon EC2 pricing model of charging CPUtime
consumption in increments of one hour.

We define two compound metrics, cost efficiency and
utility. We define cost efficiency (Ceff ) as the ratio of the
charged and actual cost; lower values are better, with a value
of 1 indicating fair pricing, and values below 1 indicating
dumping prices or economies-of-scale. We define utility
(U) as a compound metric that rewards low performance
overheads and low cost: U =

SU
Cc

. The values for utility are
normalized on the Startup provisioning policy.

V. EXPERIMENTAL RESULTS

In this section we perform a set of experiments to explore
the effects of different policies and their interactions on
different systems and under varying conditions. We want
to determine how policies perform, when it is better to use
ones versus others, and which allocation and provisioning
policies work better when used together.

We present here only representative results; for complete
results, we refer to our technical report [18].

A. Provisioning Policies

We first explore the effect of the provisioning policies. To
this end, we use the same allocation policy, FCFS, coupled
in turn with each one of the provisioning policies. We show
the results in Figures 2, 3, 4, and in Table IV.
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Figure 2. Workload speedup (SU) for Provisioning policies. OD-S was
not tested on EC2, because of the significant cost that it would incur.

Figures 2 and 3 present the workload speedup (SU) and
the job slowdown (JSD) respectively. Startup always
achieves the best performance. OD-S has similar perfor-
mance for the uniform workload, but is not as good for
the variable workloads. From the threshold-based policies,
QueueWait usually performs better than the rest, because
it reacts faster to load variation. ExecTime and its variants
have similar performance, with ExecTime usually perform-
ing better, since ExecAvg and ExecKN do not have exact
job runtime information.

The charged cost (Cc) is shown in Figure 4. OD-S
incurs the highest cost, since VMs are started and stopped
reactively to individual job arrivals. The group of threshold-
based policies and especially the Exec family of policies
significantly reduce the cost of workload execution. The
cost reduction becomes bigger for the increasing and bursty
workloads.

We additionally provide the cost efficiency (Ceff ) and
utility (U) metrics for EC2, in Table IV. The dynamic
policies hold on to resources for shorter periods of time
than Startup, especially for bursty workloads. This leads
to a worse cost efficiency value. However, they do achieve
better utility scores, which means that they provide a better
performance-cost trade-off.

B. Allocation Policies for Static Resources

In this experiment we want to study the performance
of different allocation policies and the static provisioning
policy, Startup. Resources are acquired at the beginning
of the experiment, and then jobs are sent to the system.

We use the FCFS, the SJF, and the FCFS-NW allocation
policies in the three testbeds. Figure 5 lists the results for the
job slowdown metric. The experiment shows that SJF gives
a lower slowdown, since shorter jobs are processed first,
which means jobs in wait less time in the queue. Overall,
FCFS performs similarly to SJF for the uniform and in-
creasing workloads, however its performance degrades when
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Figure 3. Job Slowdown (JSD) for Provisioning policies.
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Figure 4. Charged cost (Cc) for Provisioning policies.

under a bursty load. Lastly, the FCFS-NW policy, which
assigns jobs to VMs with round-robin, creates resource
competition, and thus has worse results in all experiments.

C. Effects of job size distribution in on-demand policies

In this section, we investigate the impact of the job size
distribution. To this end, we create an artificial workload
with periodic arrival intervals with different ratios of short
and long jobs. For this case, jobs have runtime averages of
10 seconds for short ones and 1 hour for long ones. We
consider workloads composed of 25%, 50% and 75% short
jobs (SR25%, SR50% and SR75%, respectively).

Figure 6 shows that, compared to OD-S with FCFS and
OD-S with SJF, the new combination of policies achieves a
lower cost for the workload. Also, the slowdown is reduced
for workloads with a high number of short jobs. The reason
for this is that long jobs are no longer kept in the queue
for long time. However, we can see that for workloads
with a low number of short jobs, the new policies result in
higher slowdowns. This is due to the fact that the workload
cannot take advantage of differentiating the two types of
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Charged Cost Cost Efficiency Utility
Workload Uniform Increasing Bursty Uniform Increasing Bursty Uniform Increasing Bursty

Startup 40 40 40 1.9 1.9 1.9 1.0 1.0 1.0
ExecTime 26 (-35%) 15 (-62%) 24 (-40%) 1.6 (-15%) 1.7 (-12%) 4.0 (+111%) 1.4 (+41%) 2.4 (+137%) 1.5 (+51%)
ExecAvg 34 (-15%) 17 (-57%) 26 (-35%) 2.2 (+17%) 1.9 (-1%) 4.3 (+126%) 1.0 (-1%) 2.2 (+116%) 1.4 (+40%)
ExecKN 30 (-25%) 16 (-60%) 25 (-38%) 2.0 (+7%) 1.8 (-5%) 4.1 (+115%) 1.2 (+20%) 2.3 (+133%) 1.5 (+45%)

QueueWait 29 (-28%) 18 (-55%) 38 (-5%) 2.0 (+3%) 2.0 (+4%) 6.2 (+227%) 1.3 (+29%) 2.1 (+113%) 1.0 (+2%)

Table IV
CHARGED COST, COST EFFICIENCY AND UTILITY FOR POLICIES ON EC2. FOR RESULTS ON DAS4 AND FIU, WE REFER TO OUR TECHNICAL

REPORT [18]
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jobs, and additionally partitioning the pool of VMs increases
the possibility of jobs from one group not having enough
resources because the VMs are used by the other jobs, while
other policies have a common pool of resources that can be
used by any job.

D. Policy interactions

We study here the interactions between allocation and
provisioning policies. We use the simulator to test six pairs
of policies that comprise three provisioning, Startup,
OD-S, and OD-G; and two allocation policies, FCFS and
SJF. We use three workloads with one thousand jobs where
half of the jobs have a runtime average of 10 seconds and the
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rest of one hour. Jobs of the first workload, Uniform, have
an interarrival time of 10 seconds. The second one, Periodic,
has four periods of increasing and decreasing arrival times
starting and ending at 60 seconds and peaking at 5 seconds.
The last one, Bursty, alternates five periods of 200 jobs with
high (30 seconds) and low (2 seconds) interarrival times.

Figure 7 shows the results of this experiment. The top
half of the figure shows the cost of running the workloads,
and it can be seen how on-demand provisioning policies
are much more sensitive to variations in comparison to
Startup. This is especially noticeable for the periodic
workload, which has the highest variability; For the uniform
workload, the system is at full utilization most of the time,
minimizing the benefits of dynamic provisioning policies.
The bottom half of the Figure 7 shows the average job
slowdown, and it illustrates how the SJF allocation policy
reduces the overall overhead for jobs by executing the
shorter jobs first, and therefore minimizing the time that jobs
wait in general. Another conclusion is that Startup results
in lower slowdown in comparison to dynamic provisioning
policies, due to the lack of overhead for VM booting and
shutdown. Additionally, the figure illustrates how the OD-G
policy results in slightly higher slowdown. The reason for
this is that the geometric increase of VMs needs some time
to ramp up to reach the required number of VMs to run all
jobs in the queue, while the OD-S policy instantiates one
VM for each waiting job.
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VI. RELATED WORK

Much effort [4], [9], [3] has been recently put in in-
vestigating algorithms and policies for scheduling jobs on
dynamic resources such as clouds. In contrast to our work,
which focuses on a system model where all resources are
provided from IaaS clouds, most of the related work [19],
[20], [21], [22] considers the use of cloud resources only
as an extension to an existing, non-cloud system. Moreover,
ours is the first comprehensive investigation of provisioning
and allocation policies conducted in real IaaS clouds.

Closest to our work, Genaud et al. [4] simulate various
algorithms to provision VMs and assign jobs to them, but
consider different policies than in this work and it is unclear
if their simulation results are realistic. Assuncao et al. [3]
study in simulation three allocation policies and different
provisioning policies for extending the capacity of a local
private infrastructure with public cloud resources. Murphy et
al. [23] discuss an algorithm to provision clusters of VMs
for Condor jobs. Kijsiponse et al. [9] consider the FIFO
allocation policy and study several VM provisioning poli-
cies. In [19], the local site is extended with IaaS resources
based on the decision of provisioning policies that react
to current load. Lu et al. [20] address the problem of idle
instances when executing BLAST workloads by dynamically
scaling in Microsoft’s Azure cloud. Mao et al. [24] present
an algorithm for automatic provisioning to host jobs with
deadlines, taking VM startup time and different instance
types into consideration. However, they concentrate on the
provisioning decisions rather than on job allocation. Candeia
et al. [21] propose a greedy allocation policy to manage
bursts of bags-of-tasks. Ostermann et al. [25] design a
hybrid resource manager that dynamically provisions cloud
resources and adds them to a grid. Deelman et al. [8] and
Wang et al. [26] explore how scientific communities can use
cloud resources, where VM instances are leased based on the
ratio of waiting jobs to total available VMs.

Other approaches consider complex policies, for exam-
ple policies [27], [28], [29], [30] that try to predict the
workload to determine when to provision new VMs. Cost is
another important parameter when provisioning: Henzinger
et al. [31] describe a model where a cloud presents different
schedules and costs. Other related work [32], [33] uses
market approaches to determine when to provision new
resources. Our study complements these approaches with a
more realistic investigation focusing on simpler policies.

Some authors have considered the effects of decoupling
policies: Ranganathan et al. [34] consider job and data
scheduling separately to improve data availability. Kee et
al. [35] describe an approach where resource discovery and
acquisition are integrated. Song et al. [36] perform multi-
level scheduling in order to allocate jobs to VMs and VMs
to Physical resources. Xu et al. [37] implement a two-level
scheduling mechanism to manage resources based on SLAs.

Sotomayor et al. [38] consider the overhead impact of trans-
ferring a VM to the target host when scheduling a job, and
plan such transfers accordingly. [39] discuss the performance
of gang scheduling in a cloud, where VMs are acquired on
demand. They contemplate the processes of scheduling jobs
and handling machines dynamically separately and simulate
the behavior of both types of policies. Zhang et al. [40]
integrate resource consumption of a PaaS application and
provisioning decisions.

VII. CONCLUSION AND FUTURE WORK

To manage their workloads, current and near-future users
of IaaS clouds need a better understanding of the perfor-
mance and cost of provisioning and allocation policies. In
this work we have conducted a comprehensive study of these
two types of policies, and of the interaction between them.

Overall, we have investigated eight provisioning and four
allocation policies, and their interplay. We have developed
SkyMark, a framework for IaaS performance evaluation, and
conducted with it empirical research in three IaaS clouds,
including Amazon EC2. Due to actual resource and budget
availability constraints, we have also duplicated SkyMark
functionality in a discrete event simulator. Based on results
obtained in real and simulated IaaS clouds, we conclude that
none of the tested (combined) policies is consistently better
than the others across all cases. Our five main findings are
summarized below:

1) OD-ExecTime and its two variants (especially
OD-ExecKN), are a good performance-cost trade-off
among the investigated provisioning policies;

2) Geometric on-demand provisioning policies, such as
OD-G, are worse than single-VM on-demand policies;

3) The combined OD-2Q–FCFS-2Q policy, which we
are the first to investigate in the context of clouds, is
a good slowdown-cost trade-off for workloads with a
significant ratio of short to long jobs;

4) Naı̈ve static provisioning policies deliver better per-
formance when there are enough resources, but incur
up to 5 times higher cost;

5) Allocation policies with information about job run-
times achieve significantly better performance than
uninformed allocation policies, when coupled with
dynamic provisioning policies.

In the future, we plan to extend this work to consider new
provisioning and allocation policies that adapt to changing
workload, evolving resources, and complex Service Level
Agreements. We will also investigate more diverse types of
workloads, such as the typical workloads of grids [13].
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