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Abstract—Flashcrowds—sudden surges of user arrivals—do
occur in BitTorrent, and they can lead to severe service de-
privation. However, very little is known about their occurrence
patterns and their characteristics in real-world deployments,
and many basic questions about BitTorrent flashcrowds, such
as How often do they occur? and How long do they last?,
remain unanswered. In this paper, we address these questions
by studying three datasets that cover millions of swarms from
two of the largest BitTorrent trackers. We first propose a
model for BitTorrent flashcrowds and a procedure for identi-
fying, analyzing, and modeling BitTorrent flashcrowds. Then we
evaluate quantitatively the impact of flashcrowds on BitTorrent
users, and we develop an algorithm that identifies BitTorrent
flashcrowds. Finally, we study statistically the properties of
BitTorrent flashcrowds identified from our datasets, such as their
arrival time, duration, and magnitude, and we investigate the
relationship between flashcrowds and swarm growth, and the
arrival rate of flashcrowds in BitTorrent trackers. In particular,
we find that BitTorrent flashcrowds only occur in very small
fractions (0.3-2%) of the swarms but that they can affect over
ten million users.

I. INTRODUCTION

The term “Flash Crowd” was introduced by Larry
Niven [16] in 1973 as the title of his science-fiction novel
about the social consequences of an instantaneous teleportation
device. One of these consequences was that newsworthy events
would cause tens of thousands of people to teleport to the
scenes of those events, causing public disorder. Decades later,
the term flashcrowd was used to describe the phenomenon
of the services of a website being severely degraded, or
even interrupted, due to an unexpected surge of visitors after
the website is mentioned by popular news websites—thus,
this phenomenon has also been called the “Slashdot effect”
[25]. Flashcrowds can also hit peer-to-peer systems, and in
this paper we will investigate flashcrowds as they appear in
BitTorrent, which has been one of the most popular P2P file-
sharing applications for a decade [2].
Flashcrowds can lead to decreased responsiveness and in-

creased backlogs for many types of traditional systems, which
in turn leads to user dissatisfaction. The cost of flashcrowds is
difficult to estimate for the whole IT industry, but sample infor-
mation is available: Amazon reports [14] that even small (100
ms) delays for web page generation will cause a significant
(1%) drop in sales, and Google reports [14] that an additional
half a second in the average search response time causes a
traffic drop of up to 20%. A variety of techniques, such as
DNS load balancing [8] and geo-replication services [21], have
been proposed to alleviate the problem of flashcrowds in web
servers. However, there is an important difference between

flashcrowds in web servers and BitTorrent in that the service
capacity of a BitTorrent swarm (the group of peers in the
process of downloading the same file) grows as the number
of peers increases, while web servers have fixed capacities.
Flashcrowds seem to have become more prevalent in Bit-

Torrent in recent years because of the wide adoption of
such automated download techniques as RSS feeds. However,
only few algorithms have been proposed [6] to address Bit-
Torrent flashcrowds, and in fact, not much is known about
their patterns of occurrence and their characteristics in real-
world deployments. So, many basic questions about BitTorrent
flashcrowds remain unanswered, such as How often do they
occur?, How long do they last?, and Are BitTorrent peers join-
ing flashcrowds worse off than peers joining regular swarms?
Because tens of millions of peers are active daily in Bit-
Torrent communities, and because several measurement [11]
and analytical [20] studies have shown that BitTorrent can
achieve efficient large-scale content distribution, flashcrowds
have largely been ignored as a potential problem for BitTorrent
users. However, our findings show that flashcrowds can affect
the download performance of up to 21-45% of BitTorrent
users. In addition, although several studies [9], [18] have
observed limitations of BitTorrent in handling flashcrowds,
they did not have access to the large datasets needed to analyze
and model BitTorrent flashcrowds.
In this paper we conduct the first comprehensive study of

BitTorrent flashcrowds. We propose a model of flashcrowds
that characterizes their properties, such as their duration and
their magnitude, and we develop a flashcrowd identification
algorithm that is able to identify BitTorrent flashcrowds from
the evolution of swarm sizes. We study three datasets [26]
collected in 2009 and 2010 from OpenBitTorrent and Pub-
licBitTorrent, which are two of the largest public BitTorrent
trackers nowadays, and which provide us with two million
swarms in total. Finally, we perform an analysis and statistical
modeling of the BitTorrent flashcrowds identified from our
datasets, revealing for their properties the best-fitting proba-
bility distributions, and the parameters of the best fits.
Our findings can be readily used to generate synthetic

yet realistic workloads for simulation studies and for real-
system tuning. Furthermore, the results of this paper can
be used to improve the BitTorrent protocol and to build
effective flashcrowd mitigation mechanisms. In particular, we
are currently trying to apply our models and our flashcrowd-
identification algorithm to improve our BitTorrent-based sys-
tem Tribler [19]. The main contributions of this paper are:
1) We propose a model for BitTorrent flashcrowds (Sec-
tion III).
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Dataset Tracker Period Sanitized
swarms

Training dataset FileList.org etc. 2005 - 2006 40
OBT’09 OpenBitTorrent Dec 15 - 31, 2009 1,524,743
OBT’10 OpenBitTorrent Mar 15 - 31, 2010 193,598
PBT’09 PublicBitTorrent Dec 15 - 31, 2009 311,333

TABLE I: Dataset overview.

2) We show that flashcrowds have a negative impact on
millions of BitTorrent peers (Section IV).

3) We develop a flashcrowd identification algorithm (Sec-
tion V).

4) We study statistically the flashcrowds in two of the
largest public BitTorrent trackers (Section VI).

II. BITTORRENT AND DATASETS
In this section, we first introduce briefly BitTorrent. Then,

we introduce the datasets used in this work, and the methods
that we use to sanitize the datasets.

A. BitTorrent
In BitTorrent, files are divided into small pieces, and BitTor-

rent peers download these file pieces from each other instead
of complete files. Peers downloading the same file connect
to each other and form a swarm. Swarms are managed by
trackers, the centralized components in BitTorrent. Trackers
do not host any file, but provide peer discovery services in
swarms. When a peer joins a swarm, it first asks from a tracker
for a list of random peers already in that swarm, and then
exchanges file pieces with those random peers. A tracker can
serve large numbers of swarms at the same time, but it can
also become overloaded under intensive peer requests.
There are two types of peers in BitTorrent: seeders, who

own complete files and give away file pieces for free, and
leechers, who do not have complete files. To ensure the
pieces of a file are equally distributed in a swarm, BitTorrent
employs the rarest first piece selection policy, which makes
peers always download the pieces that have the least replicas
among neighboring peers. To deter free riders and maintain
reciprocity, BitTorrent employs the tit-for-tat peer selection
policy, which makes peers always upload to those who recently
provided the highest download speed. BitTorrent also uses the
optimistic unchoking mechanism, by which peers periodically
upload to randomly selected peers. This mechanism provides
newly joined peers opportunities to obtain their first pieces,
and it also allows peers to find better piece-exchange partners.

B. Datasets
In this work we use four BitTorrent datasets: one small

dataset manually selected from the P2P Trace Archive [29],
and three much larger datasets collected as parts of BTWorld,
a BitTorrent measurement that monitors hundreds of trackers
and millions of swarms [26]. The small dataset is used
to develop and test our flashcrowd identification algorithm
(Section V), and the large datasets are used to study BitTorrent
flashcrowds. Table I gives an overview of these datasets, which
we now describe in turn.

The manually selected dataset (the “Training dataset” in
Table I) comprises traces of 40 swarms that are manually
selected from the P2P Trace Archive. This training dataset
contains detailed peer-level information such as peer arrivals
and departures, and swarm-level information. This allows us to
experiment with various flashcrowd identification algorithms
that are based on different pieces of information.
The three large datasets are collected within BTWorld by

scraping two of the world’s largest public trackers for half
month, with a sampling interval of one hour. Each sample
contains information of the numbers of seeders and leechers
in each of the swarms served by those trackers. Two of
these datasets were collected from OpenBitTorrent (OBT)
three months apart, and the other one was collected from
PublicBitTorrent (PBT) during a period that matches the
collection period of one of the OBT datasets. During the
matched period, the overlap of swarms between the OBT and
PBT datasets was below 50%.
One reason for using these large datasets is to reduce

the potential analysis biases of a single tracker or a single
measurement period. Another reason is the difficulty of vali-
dating BitTorrent models using synthetic data or (only) small
datasets—the complexity and heterogeneity of BitTorrent in-
crease [30] the risk of biased models and over-fitting. Since
OpenBitTorrent and PublicBitTorrent are nowadays two of the
most populated public trackers, we assume that the results
derived from the datasets of these trackers are representative
for public BitTorrent trackers.

C. Data Sanitation
The OBT and PBT datasets have been collected by au-

tomated tools, and they can be polluted by measurement
artifacts, tracker failures [18], and compromised trackers [26].
We employ four criteria to sanitize the raw data:
1) The sampling interval of a swarm is one hour. Defective
swarms have longer sampling intervals due to tracker or
measurement failures.

2) The swarm size is valid. Our study [26] of the global Bit-
Torrent network reports that the largest working swarm
does not exceed 373,000 peers; spam trackers may report
much larger swarm sizes. Spam swarms are larger or
have only zero peer during our measurement periods.

3) The initial swarm size is valid. This criterion ensures
that swarms are measured at or very soon after their
creation, so that we do not miss the flashcrowds that
occur right after swarm creation. Halfway swarms are
swarms that do not meet this or the next criterion. We
consider conservatively a valid initial swarm size to be
at most 20, which is 20% of the size of the smallest
swarm among the largest 2,000 PirateBay swarms we
have examined [10]. We have tried various values for
this threshold, and found that 20 is around the “knee”
of the threshold-selection size curve (see our technical
report [28]).

4) The swarm size at the end of measurement is smaller
than the half of the swarm peak size. This criterion
ensures that we capture the complete growth of swarms.
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From our OBT and PBT datasets, about two million swarms
are not defective, spam, or halfway; these swarms have been
sanitized. The number of swarms that do not pass our sanitiz-
ing criteria is detailed later in Table II. We find a huge number
of defective swarms, and a significant overlap between small
and short swarms. From hereon, we use the term “datasets”
to denote the set of the sanitized swarms.

III. A METHOD FOR STUDYING BITTORRENT
FLASHCROWDS

In this section, we first propose a model for BitTorrent
flashcrowds, and then we introduce a three-step procedure for
studying these flashcrowds.

A. Model of BitTorrent Flashcrowds
We loosely define a BitTorrent flashcrowd as a (significant)

increase in the number of peers in a swarm (the swarm size).
The flashcrowd starts at the beginning of the increase and
finishes at the end of the increase. Similar definitions are also
used [3], [7] in modeling web server workloads. As illustrated
in Figure 1, our flashcrowd model consists of four components:
the arrival time, which is the time between the creation of
a swarm and the start of a flashcrowd; the duration, which
is the time between the start and the end of the increase;
the plateau period, which is the time period with limited
churn immediately after a flashcrowd ends; and the magnitude,
which indicates the significance of a flashcrowd in terms of
the increase. It is the purpose of a flashcrowd identification
algorithm to find flashcrowds with their arrival times and
durations; below we present how then their magnitudes are
computed and how their plateau periods are determined.
For the definition of the magnitude of a flashcrowd we will

use the following quantities:
• nb: the swarm size at the beginning of a flashcrowd
(initial swarm size).

• ∆n: the increase in the swarm size during a flashcrowd.
• ∆t: the duration of a flashcrowd in minutes.
• c: the seeder capacity, which is the number of peers a
well-provisioned seeder (such as the injector of the file)
can serve in a swarm. This is a constant value, and
it is used as a lower-bound on the swarm size when
calculating the magnitude of a flashcrowd.

The magnitude of a flashcrowd is now calculated as:

M =
∆n

∆t
×

∆n

max(nb, c)
, (1)

where the first factor characterizes the growth rate of the
swarm size in a flashcrowd, and the second factor characterizes
the increase in the swarm size during the flashcrowd relative
to the swarm size at its start. The system capacity at the start
of the flashcrowd is characterized by the swarm size at that
time, or by the capacity c of a (well-provisioned) seeder if the
swarm size at that time is smaller than c. Using the seeder
capacity c prevents the magnitude as defined in Eq. (1) from
becoming over-reactive to small increases in the swarm size
when the swarm is small. The seeder capacity c in Eq. (1) plays
a similar role as the minimum job duration in the definition
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Fig. 1: Model of BitTorrent flashcrowds.

of bounded slowdown of jobs as the ratio of the job residence
time and the job duration in computing systems [31]. We
discuss the selection of the value of c in Section V. Using
only the first factor (the swarm growth rate) in Eq. (1) can
cause the algorithm to mistakenly identify flashcrowds with
very high growth rates but very small swarm size increases.
Finally, as the reverse of flashcrowds, we could define drops,
that is, (relatively significant) decreases in the swarm size, in
a similar way, with resulting magnitudes computed by Eq. (1)
that are negative.
We define the plateau period of a flashcrowd in terms of

the fluctuation of the swarm size relative to the swarm size at
the end of a flashcrowd. More precisely, the plateau period is
the maximal period after a flashcrowd ends during which the
swarm size does not deviate by more than a certain threshold
from the swarm size at the end of the flashcrowd. We discuss
the selection of this threshold in Section V.
A BitTorrent swarm can have multiple flashcrowds. We

distinguish two types of flashcrowds in a swarm: the major
flashcrowd and the minor flashcrowds. The major flashcrowd
is the flashcrowd with the largest magnitude, and the mi-
nor flashcrowds are all the other flashcrowds with lower
magnitudes. Swarms do not necessarily always reach their
peak swarm sizes at the end of their major flashcrowds. We
investigate the relationship between the major flashcrowds and
swarm growth in Section VI.

B. Metrics for Flashcrowds
We will now define the metrics we use for quantifying

properties of flashcrowds (in addition to those presented in
Section III-A), which will be used in Section VI:

• The seed lag of a flashcrowd is defined as the time
elapsed from the start of the flashcrowd until the moment
when the first peer completes its download and becomes
a seeder. Intuitively, the seed lag is roughly equal to the
download time of the first (group of) peer(s) that join the
flashcrowd.

• The peak lag of a swarm is the time elapsed from the
end of its major flashcrowd until the moment when the
swarm reaches its peak size.

• The Average Download Slowdown (ADS) of a swarm
during a certain period is the ratio of the current average
download bandwidth of BitTorrent peers in general and
the maximum per-peer download bandwidth observed for
the swarm during that period.
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• The Pre-Flashcrowd Contribution (PFC) of a flashcrowd
is defined as the ratio of the swarm size at its start and
the peak swarm size.

• The flashcrowd contribution of a flashcrowd is defined
as the ratio of the increase in the swarm size during the
flashcrowd and the peak swarm size.

C. Three-Step Procedure
In this paper, we use the following three-step procedure to

study BitTorrent flashcrowds:
1) Identification: Visually identifying a flashcrowd from

a graph of the evolution of the size of a single swarm is
simple, but it is impractical to apply this visual approach to
large datasets. Thus, we develop an algorithm that identifies
BitTorrent flashcrowds, and also quantifies their properties
(Section V).
2) Analysis: We characterize each of the properties of the

identified flashcrowds with basic descriptive statistics, and we
compare each of the properties of these flashcrowds across our
three datasets (Section VI).
3) Statistical Modeling: To find the best probability models

for flashcrowd properties, we conduct parameter fitting with a
set of well-known, widely used probability distributions that
can easily be implemented in simulation models, namely the
Exponential, the Weibull, the Pareto, the Log-normal, and
the Gamma distributions (Section VI). The parameter fitting
is performed using maximum likelihood estimation (MLE),
which determines for a distribution the parameters that lead to
the best fit with the empirical data.
The fitting results are tested against two goodness of

fit (GOF) tests, the Kolmogorov-Smirnov (KS) test and the
Anderson-Darling (AD) test. Using both of these tests provides
less biased results, since the KS test is more sensitive to the
center of distributions than the AD test, and the AD test is
more sensitive to the tail of distributions than the KS test.
We use 0.05 as the significance level for the p-value, below
which the null hypothesis that the fitted distribution represents
the empirical data is rejected. The p-value used in this study
is the average of 1000 p-values, each of which is calculated
by randomly selecting 30 samples from the empirical data
and applying the GOF tests. This is a standard method for
computing p-values for large datasets in distributed systems
studies [13], [17].
We consider a probability distribution as a good fit for the

studied properties only if that distribution passes both the KS
and AD tests for all of our three datasets. The best fit of a
property is the distribution that has the smallest D-Statistic,
which is the greatest discrepancy between the empirical and
the fitting distributions.

D. Synthetically Generating Flashcrowds
The results of this paper can be used to generate synthetic

(major) flashcrowds, for instance, for simulating flashcrowd
mitigation algorithms, or more generally, for simulating varia-
tions of the BitTorrent protocol. To do so, random samples
should be taken from the distributions of the swarm size
at the start of their major flashcrowd, of the duration of

Dataset Defective Spam Halfway Small Short Small &
Short

OBT’09 1,788,920 24,312 649,745 1,517,842 43,684 43,661
OBT’10 4,220,819 28,674 432,939 186,760 31,451 31,232
PBT’09 272,792 4,013 117,631 308,344 6,336 6,333

TABLE II: Categories of swarms in our datasets.

Dataset #Swarms Total #peers Increase #peers
All Magnitude>1 All Magnitude>1

OBT’09 1,524,743 4,451 (0.3%) 21,124,765 4,591,676 (22%)
OBT’10 193,598 4,238 (2.0%) 10,465,509 4,731,159 (45%)
PBT’09 311,333 1,821 (0.5%) 5,971,234 1,249,214 (21%)

TABLE III: Numbers of users that may be affected by major
flashcrowds of magnitude higher than 1.

the major flashcrowd, and of the magnitude of the major
flashcrowd. As we will present in Section VI-A5, these
three random variables have a very low correlation, and so
independent samples can be taken from their distributions.
From the duration and the magnitude of the flashcrowd, and
the initial swarm size, the increase in the swarm size during
the flashcrowd can easily be obtained.

IV. IMPACT OF BITTORRENT FLASHCROWDS
For traditional systems where the system service capacity is

fixed such as web servers, the effect of flashcrowds on users
is clearly negative [3], [7]. However, the negative effect of
flashcrowds may not become immediately apparent for sys-
tems such as BitTorrent since users provide additional service
capacity while being present in the system. Intuitively, a long
flashcrowd can lead to a beneficial accumulation of service
capacity. In this section we assess the impact of flashcrowds
on BitTorrent users by answering two main questions. We find
that flashcrowds have a significantly negative impact on many
contemporary BitTorrent users.

A. How Many Users Are Affected?
We restrict our study to the swarms that have attained at

least some level of popularity. We select such swarms from
our sanitized datasets using the following criteria, with the
results summarized in Table II:
1) The swarm size is significant. We conservatively con-
sider a significant swarm size to be at least 150, which
is 50% larger than the size of the smallest swarm
among the largest 2,000 PirateBay swarms we have
examined [10]. Small swarms are swarms that do not
meet this criterion.

2) The swarm lifespan is long. This criterion eliminates
swarms whose activity is short-lived. Short swarms are
swarms that do not meet this criterion. We conservatively
consider a long swarm lifespan to be at least 24 hours,
which is much lower than the 30-300 hours reported for
BitTorrent swarm lifespans [9].

Applying these two criteria to the sanitized datasets leads to
a selection of 6,830 swarms from the OBT’09 dataset, 5,901
swarms from the OBT’10 dataset, and 2,847 swarms from the
PBT’09 dataset.
We then identify the major flashcrowds in the selected

swarms and calculate their magnitude using our flashcrowd
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Fig. 2: Magnitude of major flashcrowds in the selected swarms.

identification algorithm (Section V). Figure 2 shows the
distribution of the magnitude of major flashcrowds in our
selected swarms. We apply a threshold of the magnitude,
which we set to 1, to the selected swarms to remove those
major flashcrowds that we consider to be insignificant. As an
example, a flashcrowd doubles the swarm size with a peer
arrival rate of 1 peer/minute has a magnitude of 1. From
hereon, we use the term “major flashcrowds” to denote the
major flashcrowds in our selected swarms of magnitude higher
than 1.
The fractions of the selected swarms whose major

flashcrowds have magnitude higher than 1 are very low (0.3-
2.0%) for our datasets. We use the ratio of the sum of the
increase in swarm size during the major flashcrowds to the sum
of the peak sizes of all swarms in our datasets to quantify how
many BitTorrent users may be affected by these flashcrowds
in Table III. Finding: The major flashcrowds may affect
significant fractions of peers (21-45% for our datasets),
although they only occur in very small fractions of the
swarms (0.3-2%).

B. How Are Users Affected?
To answer the question of how BitTorrent users are af-

fected, we first study the results of previous measurement
and simulation-based work and then we conduct our own
evaluation of the impact of flashcrowds on BitTorrent peers.
While the high scalability and efficiency of BitTorrent

have been shown in previous studies [11], [20], several mea-
surement studies have uncovered limitations of BitTorrent in
handling flashcrowds in practice. Pouwelse et al. [18] observed
that very few peers finish downloading a popular movie
(1.87GB) during a five-day flashcrowd, while it should have
taken less than one day to download the same movie at the
average download speed of BitTorrent users at that time. Guo
et al. [9] have also observed that the increase of the number
of seeders lags behind the increase of the number of leechers
during flashcrowds, and that peers joining during flashcrowds
suffer lower download rates and longer downloading times
than peers joining later.
Several simulation-based studies provide additional in-

sight into BitTorrent’s limitations in handling flashcrowds.
Bharambe et al. [6] find that “pre-seeded” peers (that is, peers
that have received most, but not all, file blocks) could take a
long time to finish downloading during flashcrowds, because
specific file blocks are difficult to find. Urvoy-Keller et al. [24]
show that, during flashcrowds, the distribution of file blocks is
heavily skewed, which causes a low utilization of the upload
capacity of peers. Kaune et al. [12] demonstrate that peers
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Fig. 3: Swarms with short (top) and long (bottom) increase
period of the number of seeders.

joining a flashcrowd can be treated “unfairly” as they upload
more bytes than peers joining later.
For our own evaluation, we quantify the impact of

flashcrowds on the download performance of individual peers
using the over 10,000 swarms with major flashcrowds of mag-
nitude above 1 selected in Section IV-A. We have computed
the seed lags for those swarms. A seed lag equal to zero
indicates that the first seeder appears within the first hour after
the flashcrowd starts. Finding: Around 65% of the swarms
in which major flashcrowds occur exhibit a non-zero seed
lag. For them, the average seed lag is about 19 hours, and
it takes on average about 30 hours after the seed lag period
for the number of seeders to peak. As an example, Figure 3
depicts the behavior of two similarly sized swarms: a swarm
for which the number of seeders peaks soon after the seed lag
period (top) and a swarm in which the number of seeders rises
much more slowly (bottom). The peers in the top graph joining
early have difficulties in finding the necessary file blocks and
cannot finish their download until the end of the flashcrowd.
Intuitively, the situation depicted in the bottom plot in Figure 3
is desirable, because the swarm produces seeders quicker so
that the flashcrowd becomes less pronounced.
We have examined the correlations between the seed lag and

torrent size visually through scatter plots and by computing
the Pearson correlation coefficient, and we didn’t observe sig-
nificant correlations between these two quantities. A possible
explanation is that the seed lag is decided not only by the
torrent size, but also by other factors like uplink utilization
and the capacity of the initial seeder.
To analyze the average download slowdown (ADS), we

first obtain from a torrent search engine (www.torrentz.eu) the
file size of all the swarms that exhibit a non-zero seed lag,
and we find the average of these file sizes to be 1.2 GB.
Using the average file size and seed lag, we compute the
average download rate to be around 147 kbps. According to
recent measurement studies [15], [29], the average download
rate of BitTorrent users is around 1,000 kbps. Finding: The
ADS of swarms in which major flashcrowds occur is
almost 7—a nearly seven-fold decrease in the performance
of peers during flashcrowds versus their non-flashcrowd
counterparts.

V. IDENTIFYING BITTORRENT FLASHCROWDS

In this section, we first present our magnitude-based
flashcrowd identification algorithm. Then, we compare this
algorithm with two alternative identification algorithms.
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Fig. 4: Magnitude of the flashcrowd of a selected swarm (top)
computed by the magnitude-based algorithm with anti-jitter on
(middle) and off (bottom).

A. Magnitude-Based Flashcrowd Identification Algorithm
The magnitude-based algorithm for identifying flashcrowds

can identify BitTorrent flashcrowds using the information of
the evolution of the swarm size. The output of this algorithm
consists of the arrival times, the durations, and the magnitudes
of the identified flashcrowds. It runs as follows:
1) Compute the swarm size per time step, e.g., per hour.
2) Label every pair of consecutive time steps as increasing,
decreasing, or no-change, respectively, depending on the
swarm sizes in these time steps.

3) Combine all consecutive time steps that contain only in-
crease, only no-change, or only decrease into segments;
these segments are tentatively defined as flashcrowds,
stagnancies, and drops, respectively.

4) Identify jitter segments, which are small and non-
flashcrowd segments, and merge them with neighboring
segments.

5) Calculate the magnitudes of flashcrowd and drop seg-
ments using Eq. (1).

Step 4 in this algorithm is crucial for correctly identifying
flashcrowds, since without it, a jitter segment might cause the
algorithm to mistakenly split a large flashcrowd into multiple
smaller ones, as shown in Figure 4. We use thresholds for the
magnitude and the duration in order to determine if a segment
is a jitter segment that should be merged with its neighboring
segments. A segment is a jitter segment if its magnitude and
duration are below these thresholds.
To find the best combinations of the thresholds for determin-

ing jitter segments, we first manually select 300 swarms from
our datasets as the test dataset. Then, we experimented with
0.02, 0.05, and 0.10 for the magnitude threshold, and 1, 2, and
3 hours for the duration threshold on the test dataset. These
numbers are based upon our observations and experiments on
many traces, and we observe slight and insignificant differ-
ences among different combinations of these values. In the
end, we select 0.05 and 2 hours as the thresholds for magnitude
and duration respectively, as a middle point between being too
sensitive and too insensitive to jitter segments. Noticeably,
the duration threshold should be adjusted accordingly when
applied to datasets with different sampling intervals.
As mentioned in Section III-A, we use the system capacity

c as the lower bound on the swarm size when calculating
flashcrowd magnitude, and a threshold of the fluctuation of
swarm size to determine the plateau periods of flashcrowds.
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Fig. 5: Magnitude of the flashcrowd of a selected swarm (top)
computed by the magnitude-based algorithm with (middle) and
without (bottom) the service capacity in Eq. (1).

Here we use the same test dataset to experiment with various
values for the system capacity c and the plateau period
threshold. We manually examine the results of running this
algorithm with these values on the test dataset. We choose
the values that lead to the best identification results based on
visual inspection. In the end, we select 50 as the value for the
system capacity c, and we also believe that it is a reasonable
estimation for the capacity of a well provisioned seeder
nowadays. Figure 5 gives an example of running this algorithm
without having the service capacity c in Eq. (1): the small
increase at the beginning of a swarm is identified mistakenly as
the flashcrowd of the highest magnitude. We set the threshold
for determining the plateau periods of flashcrowds to 5%, and
this value also conforms with our observation of the plateau
period of the flashcrowd reported in [18].
In the rest of this paper, we focus only on the major

flashcrowds of magnitude above 1 in our selected swarms. We
do not present in this paper the results for minor flashcrowds,
which have much lower magnitude than major flashcrowds.
We refer readers to our technical report [28] for the analysis
of minor flashcrowds.

B. Alternative Flashcrowd Identification Algorithms
Before having the magnitude-based algorithm, we exper-

imented with two alternative flashcrowd identification algo-
rithms. In this section, we explain briefly why these alterna-
tives do not meet our needs in this work and compare them
with our magnitude-based algorithm.
The swarm-size-based algorithm identifies the time periods,

during which the ratio of the average swarm size to the
swarm size at that moment is above certain threshold T , as
flashcrowds, and it indicates a/no flashcrowd by 1/0. This
algorithm has three major problems: first, the calculation of
the average swarm size depends on the measurement periods,
which leads to different results of running this algorithm on the
same swarm but with different measurement periods. Second,
this algorithm may miss the initial part of a flashcrowd which
only has a small swarm size, and may also identify non-
flashcrowd (such as decreasing) periods with large swarm size
as flashcrowds. Third, it is difficult to choose a meaningful
value for the threshold T .
Similarly to the swarm-size-based algorithm, the arrival-

rate-based algorithm identifies flashcrowd periods based on
peer arrival rate instead of swarm size, and indicates a/no
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Fig. 6: Comparison of identification results of the magnitude-
based (mag-based), the swarm-size-based (size-based), and the
arrival-rate-based (arrv-based) algorithms.

flashcrowd by 1/0. Since the peer arrival rates in BitTorrent
swarms are usually high at the beginning of swarms, this
algorithm can capture the initial part of a flashcrowd. However,
this algorithm may still identify non-flashcrowd periods as
flashcrowds due to the improperly selected threshold T .
Figure 6 gives an example of running the magnitude-

based algorithm and two alternatives (T = 1.5) on the trace
of a single swarm: the magnitude-based algorithm correctly
identifies the flashcrowd and do not treat any non-flashcrowd
period as flashcrowd; the swarm-size-based algorithm fails to
capture the beginning of the flashcrowd and mistakenly treats
some parts in the decrease phase as flashcrowd; and the arrival-
rate-based algorithm captures the initial parts of the flashcrowd
but becomes over-reactive in the post-flashcrowd phase.

VI. ANALYZING AND MODELING BITTORRENT
FLASHCROWDS

In this section, we present our flashcrowd analysis and
modeling results. We first study the basic properties of the
major flashcrowds. Then, we investigate their relationship with
swarm growth, and their arrival rates at tracker level.

A. The Major Flashcrowds
In this section, we study, in turn, the arrival time, the

duration, the plateau period, and the magnitude of the major
flashcrowds. We summarize the statistics and the best fitting
distributions for these properties in Tables IV and V, respec-
tively. We refer readers to our technical report [28] for the
p-values and parameters found for all the distributions.
1) Arrival time: Finding: Most major flashcrowds start

soon after swarm creation. As shown in Figure 7 (left), the
arrival time is 0 for around 70% of the major flashcrowds,
and is longer than 24 hours for less than 20% of the major
flashcrowds. We notice that the major flashcrowds in the
OBT’10 dataset have, on average (Table IV), much shorter
arrival time than the major flashcrowds in the other datasets.
The arrival time of flashcrowds is largely determined by how

soon BitTorrent users are notified about new torrents, in other

Property Dataset Min 1st Q Median Mean 3rd Q Max

Arrival time
OBT’09 0 0 0 18.66 3 379

(hours)
OBT’10 0 0 0 5.04 2 303
PBT’09 0 0 0 10.63 1 330

Duration
OBT’09 1 6 11 13.18 18 138

(hours)
OBT’10 1 6 10 12.16 17 78
PBT’09 1 5 10 11.97 17 101

Plateau
OBT’09 0 0 0 0.55 0 42

(hours)
OBT’10 0 0 0 0.49 0 22
PBT’09 0 0 0 1.67 1 50

Magnitude
OBT’09 1.00 1.90 4.40 559.26 14.91 237,167
OBT’10 1.00 1.99 5.16 248.50 27.93 139,359
PBT’09 1.00 2.27 5.67 186.01 14.05 109,230

Initial OBT’09 1 1 4 13.05 12 399
swarm size OBT’10 1 1 3 12.59 12 426
(peers) PBT’09 1 1 1 9.55 8 434

TABLE IV: Statistics of the properties of major flashcrowds.

Property Distribution Dataset D-Statistic Parameters

Arrival time LogNormal
OBT’09 0.06 µ = 3.00, σ = 1.70

(hours)
OBT’10 0.05 µ = 2.08, σ = 1.23
PBT’09 0.15 µ = 2.16, σ = 1.71

Duration LogNormal
OBT’09 0.04 µ = 2.44, σ = 0.68

(hours)
OBT’10 0.04 µ = 2.38, σ = 0.67
PBT’09 0.04 µ = 2.30, σ = 0.77

Plateau Gamma
OBT’09 0.22 κ = 1.61, λ = 1.79

(hours)
OBT’10 0.20 κ = 1.83, λ = 1.54
PBT’09 0.15 κ = 1.20, λ = 4.59

Magnitude LogNormal
OBT’09 0.16 µ = 2.09, σ = 2.10
OBT’10 0.14 µ = 2.40, σ = 2.23
PBT’09 0.09 µ = 1.91, σ = 1.47

Initial
Gamma

OBT’09 0.18 κ = 0.57, λ = 22.94
swarm size OBT’10 0.19 κ = 0.55, λ = 23.04
(peers) PBT’09 0.26 κ = 0.52, λ = 18.32

TABLE V: Parameters and the D-Statistic of the best fit-
ting probability distributions for the properties of major
flashcrowds.
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Fig. 7: Left: CDF of the arrival time of major flashcrowds.
Right: CDF of the PFC of swarms whose major flashcrowds
have non-zero arrival time.

words, how torrents are published. Nowadays, most (popular)
torrents are published via websites, such as Ubuntu.com; via
BitTorrent communities, such as ThePirateBay; and via RSS
feeds. We believe that the presence of the large numbers
of “rapidly arriving” major flashcrowds is due to the wide
adoption of RSS feeds by BitTorrent clients and websites. We
expect that the trend of using RSS feeds in BitTorrent will
continue. Thus, the average arrival time of major flashcrowds
may become even shorter in future.
For swarms whose major flashcrowds have non-zero arrival

time (late flashcrowds), we show their pre-flashcrowd contri-
bution (PFC). In Figure 7 (right), we find that he PFC is below
0.1 for nearly 90% of swarms with late flashcrowds, and is
higher than 0.3 for only very few (1%). This means that even
for the swarms whose major flashcrowds do not start within
one hour after swarm creation, most pre-flashcrowd phases do
not contribute significantly to swarm size.
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Fig. 8: Left: CDF of the duration of major flashcrowds. Right:
CDF of the length of plateau periods of major flashcrowds.

Modeling results: The Weibull, the LogNormal, and the
Gamma distributions provide good fits for the arrival time of
major flashcrowds. The LogNormal distribution provides the
best fit, for its parameters summarized in Table V.
2) Duration: Finding: Most major flashcrowds end in

one day. As shown in Figure 8 (left), the distribution of the
major flashcrowd duration for all of our datasets are very
similar. Nearly 50% of the major flashcrowds end within 12
hours. In contrast, only about 10% of the major flashcrowds
last longer than 24 hours. The average duration of major
flashcrowds (Table IV) is around 12 hours.
As we have argued earlier, using RSS feeds in BitTorrent

can shorten the arrival time of major flashcrowds. However, we
believe that this technological change in BitTorrent has much
less influence on the duration of major flashcrowds. Although
RSS can facilitate users to start downloading new torrents
much sooner than the manual approach when BitTorrent clients
are running, the time when BitTorrent clients are started is still
determined mostly by the daily pattern of user activity [18],
[22], [26]. Using RSS in BitTorrent would significantly shorten
the flashcrowd duration only when the majority of BitTorrent
users will keep their clients or BitTorrent-enabled devices [1]
running all the time, which is unlikely to happen soon.
Modeling results: All distributions except the Pareto distri-

bution provide good fits for the duration of major flashcrowds.
The LogNormal distribution provides the best fit, for its
parameters summarized in Table V.
3) Plateau periods: Finding: Most major flashcrowds do

not have plateau periods. As shown in Figure 8 (right), 70-
80% of the major flashcrowds do not have plateau periods,
which means that most swarms start shrinking immediately
after their major flashcrowds end. The average length of the
plateau periods of major flashcrowds (Table IV) is very short
(0.49-1.67 hours). This finding also means that the flashcrowd
reported in [18], which has a plateau period of almost 3 days,
is not common in BitTorrent.
Similarly to the seed lag (section IV-B), our correlation

analysis didn’t reveal significant correlations between the
plateau period and torrent size. This can be explained by that
the plateau period is not determined only by torrent size, but
also other factors like seeder capacity.
Modeling results: The Gamma distribution provides the

best fit for the length of plateau periods of major flashcrowds,
for its parameters summarized in Table V. The D-Statistic of
this fitting distributions is large (around 0.20), because the
distribution of the length of plateau periods is heavily skewed
by the large amount of values equal to zero.
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Fig. 9: Left: CDF of the magnitude of major flashcrowds.
Right: CDF of the swarm size at the beginning of major
flashcrowds.

4) Magnitude: As shown in Figure 9 (left), the magnitude is
between 1 and 10 for nearly 70% of the major flashcrowds, and
is higher than 1,000 for about 5% of the major flashcrowds.
We notice that within the upper 70-90% of the distribution, the
major flashcrowds in the OBT’10 dataset have considerably
higher magnitude than the major flashcrowds in the other two
datasets. We find that the major flashcrowds of magnitude in
this range have very similar distributions of both the swarm
size at the beginning of major flashcrowds and duration, but
the increase in the swarm size in such major flashcrowds in
the OBT’10 dataset are much larger than those in the other
two datasets, which leads to their higher magnitude.
In addition to the duration and the magnitude of ma-

jor flashcrowds, the swarm size at the beginning of major
flashcrowds is also needed to generate synthetic flashcrowds.
As shown in Figure 9 (right), the swarm size at the beginning
of over 90% of the major flashcrowds is below 25. The average
swarm size at the beginning of major flashcrowds (Table IV)
is between 9-13, which indicates again that the pre-flashcrowd
phases have little contribution to swarm size.
Modeling results: The LogNormal distribution provides

the best fit for the magnitude of major flashcrowds, and the
Gamma distribution provides the best fit for the swarm size
at the beginning of major flashcrowds, for their parameters
summarized in Table V. Similarly to the plateau periods,
the distribution of the swarm size at the beginning of major
flashcrowds is heavily skewed by small values, causing the
large D-Statistic of its fitting distribution.
5) Correlations among flashcrowd properties: We have

computed the pair-wise correlations between the magnitude,
the duration, and the initial swarm size of major flashcrowds,
which can be used for generating synthetic flashcrowds. How-
ever, we find that there is little correlation between these
properties, indicated by the near-zero values for their pair-wise
Pearson correlation coefficient.

B. Major Flashcrowds and Swarm Growth
In this section, we answer the question What is the rela-

tionship between major flashcrowds and swarm growth?
Finding: Many swarms continue to grow after their

major flashcrowds end. We first examine the peak lag of
the swarms in which the major flashcrowds occur. Previous
studies [5], [9], [11], [18] indicate that most swarms stop
growing very soon after their (major) flashcrowds end, thus
having very short peak lag. However, as shown in Figure 10
(left), less than 60% of the swarms in which the major
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Fig. 10: Left: CDF of the peak lag of swarms in which major
flashcrowds occur. Right: CDF of the flashcrowd contribution
of major flashcrowds.
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Fig. 11: Left: CDF of the hourly arrival rates of major
flashcrowds. Right: CDF of the increase in swarm size of
major flashcrowds.

flashcrowds occur have zero-length peak lag, and the peak
lag is longer than 12 hours for nearly 40% of such swarms.
The average length of the non-zero peak lag is between 24-
30 hours for our datasets. We refer readers to our technical
report [28] for detailed statistics of the swarm peak lag.
We now examine the flashcrowd contribution of the major

flashcrowds. As shown in Figure 10 (right), the flashcrowd
contribution is very high (> 0.75) for around 80-90% of the
major flashcrowds, and is below 0.5 for only less than 10%
of the major flashcrowds. Finding: most major flashcrowds
contribute the majority of peers in the swarms. We find
that for major flashcrowds of low flashcrowd contribution, they
are usually followed by multiple minor flashcrowds, which
together consist of many peers.
The reason for the existence of long peak lag and low

flashcrowd contribution is that a torrent can be published
(or mentioned) by not only one, but several websites at
different time. A torrent usually receives most attention (major
flashcrowd) when it is published at the very first place, and
some extra attention is drawn (minor flashcrowds) when that
torrent is mentioned later by some other websites.

C. Arrival Rates of Major Flashcrowds
We have studied so far the flashcrowds appearing in in-

dividual swarms. However, a BitTorrent tracker may manage
millions of individual swarms. In this section, we examine the
arrival rates of major flashcrowds at tracker level, and their
impact on trackers. To this end, we first calculate the arrival
time of major flashcrowds at tracker level, which is equal to
the swarm creation time plus the arrival time of the major
flashcrowd. Then, we compute their hourly arrival rates.
The distributions of the arrival rates of major flashcrowds in

the OBT’09 and OBT’10 datasets, as shown in Figure 11, are
very similar. The average arrival rate of major flashcrowds in

Property Dataset Min 1st Q Median Mean 3rd Q Max
Arrival rate OBT’09 0 7 11 11.27 15 44
(flashcrowds OBT’10 0 8 12 13.41 18 50
/hour) PBT’09 0 2 3 4.73 5 61
Increase OBT’09 63 255 393 1,034 773 29,390
in swarm OBT’10 56 255 430 1,118 955 81,790
size PBT’09 73 277 363 686 544 34,040

TABLE VI: Statistics of the arrival rates and the increase in
swarm size of major flashcrowds.

Property Datasets Distribution D-Statistic Parameters
Arrival rate OBT’09 Weibull 0.06 κ = 12.99, λ = 2.00
(flashcrowds OBT’10 Weibull 0.06 κ = 15.64, λ = 1.74
/hour) PBT’09 LogNormal 0.09 µ = 1.24, σ = 0.82

TABLE VII: Parameters and the D-Statistic of the best fit-
ting probability distributions for the arrival rates of major
flashcrowds.
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Fig. 12: CDF of the hourly arrival rates of major flashcrowds
of different magnitude.

these two datasets is around 12 per hour (Table VI). The major
flashcrowds in the PBT’09 dataset have much lower average
arrival rate (only 4.73 per hour). This is due to the much
smaller size and lower popularity of PublicBitTorrent, com-
pared to OpenBitTorrent. Modeling results: The Weibull and
LogNormal distributions provide the best fits for the arrival
rates of major flashcrowds in the OBT datasets and PBT’09
datasets, for their parameters summarized in Table VII.
To understand if the arrival rate is correlated with the

magnitude of major flashcrowds, we examine the arrival rates
of major flashcrowds of different magnitude. We first divide
the major flashcrowds into four groups (Q1-4) by the lower
quartile, median, and upper quartile values of the magnitude
distributions. Then, we compute the arrival rates of the major
flashcrowds in each group. As shown in Figure 12, the distri-
butions of the arrival rates of major flashcrowds in different
groups are similar, except that the major flashcrowds in group
Q4 have slightly lower arrival rates than those in other groups.
We define the impact of flashcrowds on trackers as the

number of requests sent to trackers during flashcrowd periods.
Since our datasets do not include such information, we use
the increase in swarm size during flashcrowds to estimate this
impact; specifically, we use the the increase in swarm size
during major flashcrowds (Table VI) and the arrival rate of
the major flashcrowds. Finding: the major flashcrowds in
OpenBitTorrent brought on average 11,000-15,000 peers
per hour, and the major flashcrowds in PublicBitTorrent
brought on average around 3,250 peers per hour.

VII. RELATED WORK
Related to our study, much research has focused so far on

the theoretical modeling of BitTorrent flashcrowds [9], [23],
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[27], on the empirical study of BitTorrent swarms [5], [11],
[18], and on the performance of non-BitTorrent systems under
flashcrowds [3], [7]. Our work complements this large body
of related work in three main ways. First, ours is the first
large-scale empirical study of BitTorrent flashcrowds. Second,
we have investigated algorithms for flashcrowd detection and
the impact of flashcrowds on the users of BitTorrent. Third,
we have developed a new statistical model for BitTorrent
flashcrowds.
Several theoretical models of BitTorrent flashcrowds have

been proposed: an age-dependent branching process used to
describe the exponential growth of service capacity during
flashcrowds [27], a influential model of BitTorrent flashcrowds
based on an exponentially decreasing peer-arrival process [9],
and an urn-and-ball-based model for system dynamics under
flashcrowds [23]. The presence of flashcrowds in BitTorrent
swarms has been reported by several measurement studies,
from reports based on the study of individual swarms [11], [18]
to the analysis of the swarms of two BitTorrent trackers [5].
The effect of flashcrowds on the users of non-BitTorrent sys-

tems, such as web servers, has been found to be negative [3],
[7]. Baryshnikov [4] studied a simple predictive model for the
occurrence of flashcrowds in the workloads of web servers.

VIII. CONCLUSION
The importance of BitTorrent flashcrowds and their impact

on BitTorrent users have received little attention in the past
decade, and very little is known about their characteristics.
In this paper, we conducted the first comprehensive study
of BitTorrent flashcrowds. We studied two million swarms in
two of the world’s largest BitTorrent trackers. We developed
a flashcrowd identification algorithm to identify flashcrowds
from our datasets. We found that BitTorrent flashcrowds have
a significant negative impact on BitTorrent users. We analyzed
and modeled statistically the properties of major flashcrowds
in our selected swarms, including arrival time, magnitude, and
duration. We also investigated the arrival rates of flashcrowds
in the swarms managed by the same tracker. The highlights
of our findings are:
1) Flashcrowds are important: flashcrowds appear in small
fractions (0.3-2%) of swarms but can affect a significant
fraction of peers (21-45%).

2) Flashcrowds arrive rapidly: Most (70%) major
flashcrowds start right after swarm creation.

3) Flashcrowds are short: the average duration of the major
flashcrowd is around 12 hours.

Our findings can be used to generate synthetic yet realistic
flashcrowds for simulation studies. They may be used in the
future for real-system tuning and for improving the operation
of BitTorrent through the design of flashcrowd mitigation
mechanisms. In particular, we are currently trying to apply
these findings to improve our operational BitTorrent system
Tribler [19].
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