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Abstract—Today’s Massively Multiplayer Online Games (MMOGs) can include millions of concurrent players spread across the world

and interacting with each other within a single session. Faced with high resource demand variability and with misfit resource renting

policies, the current industry practice is to overprovision for each game tens of self-owned data centers, making the market entry

affordable only for big companies. Focusing on the reduction of entry and operational costs, we investigate a new dynamic resource

provisioning method for MMOG operation using external data centers as low-cost resource providers. First, we identify in the various

types of player interaction a source of short-term load variability, which complements the long-term load variability due to the size of the

player population. Then, we introduce a combined MMOG processor, network, and memory load model that takes into account both

the player interaction type and the population size. Our model is best used for estimating the MMOG resource demand dynamically,

and thus, for dynamic resource provisioning based on the game world entity distribution. We evaluate several classes of online

predictors for MMOG entity distribution and propose and tune a neural network-based predictor to deliver good accuracy consistently

under real-time performance constraints. We assess using trace-based simulation the impact of the data center policies on the quality

of resource provisioning. We find that the dynamic resource provisioning can be much more efficient than its static alternative even

when the external data centers are busy, and that data centers with policies unsuitable for MMOGs are penalized by our dynamic

resource provisioning method. Finally, we present experimental results showing the real-time parallelization and load balancing of a

real game prototype using data center resources provisioned using our method and show its advantage against a rudimentary client

threshold approach.

Index Terms—Distributed applications, modeling techniques, performance attributes, real time, games.
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1 INTRODUCTION

MASSIVELY Multiplayer Online Games (MMOGs) have
emerged in the past decade as a new type of large-

scale distributed application characterized by a huge real-
time virtual world entertaining millions of players spread
across the world, e.g., World of Warcraft counts over six
million unique players daily. Invented and promoted by
industry, MMOGs have started to attract the interest of
scientific researchers as well, and challenges such as
scalability, trust, and data consistency have been identi-
fied by the distributed systems [1] and database [2]
communities. In this paper, we draw the attention to the
resource provisioning problem for MMOGs as a new
direction of research.

Today’s MMOGs operate as client/server architectures
in which the game server simulates a world via computing
and database operations, receives and processes commands
from the clients, and interoperates with a billing and
accounting system [3], [4]. Based on the actions submitted
by the players, the game servers compute the global state of

the game world represented by the position and interac-
tions of the entities, and send appropriate real-time
responses to the players containing the new relevant state
information. Depending on the game, typical response
times to ensure fluent play must be between 100 milli-
seconds in online First Person Shooter (FPS) action games [5]
and 1-2 seconds for Role-Playing Games (RPGs). A good
game experience is critical in keeping the players engaged,
and has an immediate consequence on the income of the
MMOG operators. Failing to deliver timely simulation
updates leads to a degraded game experience and triggers
player departure and account closing [3], [4].

Today, a single computer is limited at around 500
simultaneous and persistent network connections, and
databases can manage the update of around 500 objects
per second [2]. To support at the same time millions of
active concurrent players and many more other game entities,
MMOG operators need to install and operate a large
dedicated multiserver infrastructure [4], with hundreds to
thousands of computers hosting the distributed load of
each game [3]. However, due to the dynamic character of
MMOGs, both on the short and long term, the game
providers have to overprovision their infrastructure, which
leads to a low and inefficient resource utilization and new
providers finding it difficult to join the market. For
example, the operating infrastructure of the Massively
Multiplayer Online Role Playing Game (MMORPG) World of
Warcraft has over 10,000 computers [6].

In this paper, we propose a dynamic resource provision-
ing solution that addresses the overprovisioning and the low-
cost market joining problems. We first present in Section 2 a
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realistic model for an MMOG ecosystem that describes the
resource providers, the application, and their integration.
Extending previous work where resources were provided by
a single data center [7], [8], in our model, the MMOG
resources are provided by multiple geographically distrib-
uted data centers with different lease policies. In contrast to
the previous models of client/server Internet applications
[7], [8], [9], [10], which focus on noninteracting user requests,
our model is designed around the notion of player interac-
tions within the same application instance. In Section 3, we
demonstrate through the analysis of traces from the popular
MMOG RuneScape [11] that MMOGs are more dynamic than
previously believed [12] and that the interaction between
players is another major component of the MMOG workload,
complementing the player population size.

Motivated by the dynamic MMOG workloads, we
propose a dynamic provisioning method in which the
amount of resources is first predicted, and then obtained
dynamically from data centers external to the MMOG
operator. We devise in Section 4 an analytical MMOG load
model for three types of resources: processor, memory, and
network. The model takes into account both the player
interaction type and the population size. By feeding real-
time measurements or online predictions into the model,
the game operators can dynamically estimate the amount of
resources needed for running their MMOG. However,
measuring the values of our proposed MMOG load model’s
parameters in real time may not be cost-efficient or even
feasible due to the system scale and geographical spread.
Moreover, player interactivity types are not uniform across
the whole game, making real-time prediction difficult to
adapt to MMOGs. We address these two problems in
Section 5 by proposing a novel strategy for applying
predictions to MMOG player interaction. We partition the
simulated world into small areas, where real-time predic-
tion proves to be accurate, and aggregate the estimates to
get an overall prediction. We evaluate several classes of
online predictors from moving averages to simple neural
networks, and find that the simple neural networks have
better accuracy than the studied alternatives for a variety of
MMOG workloads.

In Section 6, we evaluate the efficiency and the Quality-
of-Service (QoS) of our dynamic resource provisioning. We
show through simulations that dynamic resource provi-
sioning, which favors data centers that lease fewer
resources at a time and for shorter periods of time
considerably, reduces the MMOG operation costs with a
reasonable loss of QoS, even when the centers are busy. We
also find that when game operators use our dynamic
resource provisioning, the data centers are incentivized to
offer MMOG-friendly hosting policies when competition
exists on the data center market.

We designed, implemented, and deployed our methods
in the edutain@grid environment [13] targeting a platform
for scalability, QoS provisioning, and user-friendly business
models for real-time online interactive applications, with
string focus on MMOG. In Section 7, we present a prototype
experiment of applying our integrated methods on a real
online game in a distributed infrastructure.

Finally, in comparison with the related work surveyed
in Section 8, our study is the first to investigate the
resource provisioning for a multi-MMOG, multidata
center ecosystem.

2 MMOG ECOSYSTEM MODEL

In this section, we introduce a model and platform for an
MMOG ecosystem in which a global network of data
centers host services that execute many MMOGs at the
same time. Our multi-MMOG and multidata center model
extends previous work, which focuses on either a single
application (usually a web service) and/or a single data
center [9], [14], [15].

2.1 Application Model

MMOGs are large-scale simulations of persistent game
worlds comprising various objects or entities that we classify
into four categories:

1. Avatars are in-game representation of the players.
2. Bots or nonplayer characters (NPCs) are mobile entities

that have the ability to act independently.
3. Movable objects (such as boxes or guns) are passive

entities which can be manipulated but do not initiate
interactions.

4. Immutable entities or decor.

The mostly employed architectural model for MMOGs is
client/server [3], with game operators maintaining the
servers that simulate a distributed game world. The
simulation consists for every MMOG of an identical set of
steps to be executed each discrete game time unit (game
tick), described in Section 4.1. The clients dynamically
connect to a joint game session and interact with each other
by sending play actions such as movements, shootings,
operations on game objects, or chat. To ensure scalability
and real-time response, an MMOG session is distributed on
multiple game servers, and each player is mapped to an
avatar on one of the servers, usually to one in its closest
proximity to minimize latencies. We call the entities hosted
by game server in a distributed session as active entities
(from the point of view of that server). The vast majority of
game servers follow a similar computational model im-
plementing an infinite loop, where in each loop iteration
(also called tick), there are certain steps to be performed:
1) processing events coming from the connected clients and
other servers; 2) processing the states of the active entities;
and 3) broadcasting state update to the connected clients.

2.2 Game Session Parallelization

Today’s MMOGs use three main session parallelization
techniques to serve at the same time hundreds of thousands
of players: zoning, replication, and instancing. These techni-
ques use the combined capacity of a group of servers working
in parallel; in this sense, we use in this work the terms server
and server group interchangeably. We describe in the follow-
ing each of these techniques, in turn. In Section 7, we present
experiments with a real game that uses all three techniques.

Spatial scaling of a game session is achieved through a
conventional parallelization technique called zoning [16],
based on similar data locality concepts as in scientific
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parallel processing. Zoning partitions the game world into
geographical areas to be handled independently by separate
machines (see Fig. 1). Zones are not necessarily of same
shape and size, but should have an even load distribution
that satisfies the QoS requirements. Today, zoning is
successfully employed in slower paced (compared to fast-
paced FPS action games) MMORPG, where the transition
between zones can only happen through certain portals
(e.g., special doors, teleportation, accompanied on the
screen by a load clock or some standard animation video)
and requires an important amount of time. Typically, zones
are started manually by the game operators based on the
current load, player demand, or new game world and
scenario developments.

The second technique called replication [17] targets
parallelization of game sessions with a large density of
players located and interacting within each other’s area of
interest (see Fig. 1). Such situations are typical to fast-paced
FPS action games in which players typically gather in
certain hot-spot action areas that overload the game servers
that are no longer capable of delivering state updates at the
required rate. To address this problem, replication defines a
novel method of distributing the load by replicating the
same game zone on several CPUs. Each replicated server
computes the state for a subset of entities called active
entities, while the remaining ones, called shadow entities
(which are active in the other participating servers), are
synchronized across servers.

The third technique called instancing is a simplification of
replication, which distributes the session load by starting
multiple parallel instances of the highly populated zones.
The instances are completely independent of each other,
meaning that two avatars from different instances will not
see each other, even if they are located at nearby coordinates.

2.3 Load Complexity Model

The load of an MMOG depends not only on the number of
active concurrent players, but also on the number and type
of their interactions (see Section 3.4 for empirical evidence).
The interaction type and count span a wide range
depending on the game design. The number of interactions
between the entities may be very low (e.g., for puzzle games
where a player interacts with the system after long periods
of thinking), to low (e.g., for MMORPGs where small
groups of people interact with a sparse environment), and

to very high (e.g., for FPS action games where many players
test their reaction time in a confined area).

Assuming that the number of entities is n, the interaction
complexity may range from OðnÞ for games in which
players are mostly solitary or the game does not need to
make many state changes or compute complex interactions,
to Oðn2Þ for games in which many players acting
individually are interacting, and to Oðn3Þ for games in
which groups of many players are interacting. To reduce
the computational load, most MMOGs simulate and send
updates only for world regions representing the area of
interest of each avatar [18]. When using such techniques, the
interaction complexity may become Oðn � lognÞ from Oðn2Þ,
and Oðn2 � lognÞ from Oðn3Þ.

The lack of responsiveness of an MMOG may also be
caused by high latency, independently from the game
operator’s server and bandwidth capacity. However, de-
pending on the game design, MMOGs have different latency
tolerance. The latency tolerance has been investigated by
previous research [5], [19]; for example, for FPS, action games
latencies above 100 ms severely disrupt the gameplay, while
for MMORPGs, any latency below 1.5 s is tolerable.

2.4 Hosting Model

We consider the hosting platform as consisting of data
centers scattered around the world, where each center pools
together resources that may serve several game operators
simultaneously (see Fig. 1). For simplicity, we assume that
each data center consists of a single computing resource,
which can be a shared or distributed memory parallel
machine owned by a hoster. The game operators submit
requests to the data center by specifying the type, number,
and duration for which the resources are desired. We
consider four resource types: CPU, memory, input from the
external network (ExtNet[in]), and output to the external
network of a data center (ExtNet[out]); here, the external
network connects the data center with the Internet.

Depending on the data center’s service model (either best
effort or advance reservation-based), resource requests are
queued or immediately fitted in the schedule, respectively.
Once the available resources are matched against the
requests, these resources are allocated to the game operators.
From the game operator’s point of view, we say that the
resources have been provisioned. We use from here on the
terms resource allocation and resource provisioning inter-
changeably. The allocated resources are reserved for
executing the MMOG servers for the entire duration of
the game operator’s request (task preemption or migration
is not supported).

Our hosting model considers the size and the duration of
the minimal resource allocation, which may be not only for
a resource as a whole (e.g., a server in web data centers [14]
or a multiprocessor node in a Grid system), but also for a
fraction of that resource (e.g., a virtual machine running on
a physical node [10], or a channel of an optical network).
Similarly, the minimal duration for which a resource may
be allocated may be between a few seconds (servicing one
user request by a web service) to several months (a typical
value for web server hosting). We define the resource bulk as
the minimum number of resources that can be allocated for
one request, expressed as the multiple of a minimal

382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 3, MARCH 2011

Fig. 1. The MMOG ecosystem architecture.



resource size. Similarly, we define the time bulk as the
minimum duration for which a resource allocation can be
performed expressed as multiple of a minimal time period.
A data center may choose to allocate resources for MMOGs
only in bulks under a space-time hosting policy imposed by
the hosters.

2.5 Complete Ecosystem Model

The MMOG ecosystem comprises multiple hosters and
multiple game operators, where each hoster may set a
different space-time policy for its resources. The game
operators handle simultaneously MMOGs of different
genres and designs with different interactivity types and
counts, and with different latency tolerance. The relative
success of each game is characterized by the number of
registered players. Fig. 2 displays the number of MMORPG
players over time for the US and European markets based
on the survey of Woodcock [20] for dates until June 2006,
and on our own research afterward. The chart shows that
there are currently six games with more than 500 thousand
players each. The total number of MMORPG players is well
approximated by the exponential trend � � e�x, where � ¼
7 � 10�9 and � ¼ 0:028 give a Pearson’s coefficient of
determination R2 ¼ 0:974. Assuming the same rate of
growth, we can estimate over 60 million players by 2011
in the US and EU markets alone. The large number of
MMOG players, for the whole ecosystem and for each game
in part, is an important motivation for our work.

The game operators make requests based on the load of
their game servers and the data centers respond with offers
based on their local time-space renting policy. The resource
allocation is realized by a request-offer matchmaking
mechanism according to three criteria that favor the game
operator. First, the number and the type of resources
requested must match with the offer, and when they do not
match, an offer that includes at least the requested amounts
is selected. Second, depending on the game latency
tolerance, the resources closest to the request are preferred.
Third, to deal with data center hosting policies, the finer
grained resources with the shorter period of reservation
time are preferred.

3 MMOG WORKLOAD ANALYSIS

Previous work on MMOG workload characterization
focused on highly interactive games with few users playing
together [21], traced small- to mid-sized MMOGs [12], [22],
or collected data from only one server from a large
distributed MMOG [23]. In contrast, our analysis focuses
on all server groups of one of the largest commercial
MMOGs for which we analyze the workload at both server
and network level based on server location and user
interactions.

3.1 RuneScape Traces

RuneScape [11], ranked second by number of players in the
US and European markets (see Fig. 2), is not a traditional
MMORPG, but combines elements of RPG and FPS (and
other genres) in specific parts of the game world called
minigames, where player interaction follows different rules.
Thus, various levels of player interactivity coexist and the
game load cannot be trivially computed, for example, using
the linear models employed in [15]. We started monitoring
and collecting traces from the official RuneScape webpage
[11] in August 2007. The traces are sampled every two
minutes and contain the number of players over time for
each server group used by the game operators. In this work,
we analyze the traces for a period of over six months until
March 2008.

3.2 Global Number of Players

The number of RuneScape players has surged over the past
two years, starting with the introduction of the minigames.
From 180,000 active players (i.e., players that played at least
once in the last month) at the beginning of 2005, the game is
estimated to have now over 5,000,000 active players from
over 8,000,000 open accounts in 2007. Our study of the
official list of top RuneScape players counted over 3,000,000
active players in September 2007. Since a player needs to be
efficiently active for about a month to become a top player,
we conclude that RuneScape converts into dedicated players
between 30 and 60 percent of the starting players.

Our study shows that the maximum global number of
active concurrent players for RuneScape is around 250,000.
However, this number is strongly driven by the mood of the
player base. Fig. 3 depicts the number of active concurrent
users for RuneScape over a period of two months. A highly
unpopular decision issued on 10 December 2007 resulted in
massive account cancellations, which dropped the number of
active concurrent players by over 30,000 units (a quarter of its
value) in less than one day. Under intense pressure, the game
operators agreed to amend the changes and the number of
active concurrent players raised again to 95 percent of the
previous value. On 18 December 2007 and 15 January 2008,
the game operators released new content, which caused an
over 50-percent surge of the number of active concurrent
players after about one week in each case.

This high MMOG variability in the number of active and
concurrent players determines a very dynamic resource
requirement, which means that static resource provisioning
would lead to significant overprovisioning that is a strong
motivation for our work.
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3.3 Patterns in the Regional Number of Players

Our RuneScape traces characterize a global population
spread across five geographical regions including Europe
and the US East and West Coasts. We present in this section
the analysis of the number of players that use the server
groups of region zero representing Europe. The input for
this analysis is a subset of two weeks (middle to end of
August 2007) from the original RuneScape traces aggregat-
ing over 11,000 data samples, where each sample contains
one load value for each server in the region. The analysis of
the other four regions, as well as of the rest of the traces,
yielded very similar results. The top subplot of Fig. 4 shows
the minimum, the median, and the maximum load
measured in number of online users in any server group
in the region at each time step. The median load shows a
diurnal pattern and a strong load variation during the peak
hours when the median is about 50 percent higher than the
minimum. There are also some heavy fluctuations caused
by few sporadic and short-lived server group outages,
which fall outside the scope of this analysis.

To characterize the load variability between different
server groups, the middle subplot depicts the load inter-
quartile range (IQR) over time, defined as the difference

between the 75th and 25th percentiles of a data set. Similar to
the median load, the load variability has a diurnal cycle.
Unlike the load of e-business and web servers [24], the
median load shows no weekend effects, e.g., the load does not
differ significantly between weekend and normal work days.

To establish the duration of the cycles observed in the top
and middle subplots, the bottom subplot displays the
autocorrelation function for each of the European server
groups. We see a significant peak at around 720 (720 samples
* 2 minutes per sample = 24 hours) and a strong negative peak
at around 360 (12 hours), which shows again the diurnal
pattern of the load of most servers. However, the same
subplot shows that the load of 2-5 percent of the servers is
always 95 percent except for outages, which does not follow a
diurnal pattern.

3.4 Player Interaction Influence on Server Load

A fundamental premise of our work is that MMOG work-
loads depend on the player interaction. We demonstrate in
this section that this is indeed the case. Using the tcpdump
tool, we collected eight RuneScape traces labeled T1; . . . ; T8,
and analyzed the packet size distribution and the inter-
arrival time (IAT) between consecutive packets. Each trace is
collected from a session of at least five minutes and at most
one hour. To ensure the independence of the measurements,
the traces were collected at different dates over a six month
period, while the traces T5a and T5bwere collected from the
same environment at consecutive periods of time.

Fig. 5 illustrates that the network load depends on the
number and type of player interaction. For traces T1 and T6
that involve a fast-paced game, the level of interaction (i.e.,
crowded or noncrowded) does not increase the server load
as the players are very sensitive to delays. Thus, for fast-
paced games, the server needs to send packets as often as
possible and including as much information as possible. For
traces T2 (market) and T7 (new content) that involve direct
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player-to-player interaction, the packet sizes are similar but
their IAT is very different. The statistical moments of the
IAT of T7 are lower than those of T2, as for T2 the need for
updates is conditioned by players starting and agreeing to
trades, with more thinking time than for the player actions
in T7. For the trace T4 that involves group interaction, the
packets need to arrive more often (lower IAT than for other
traces) and to include information about more objects
(higher packet size).

4 MMOG LOAD MODELING

We propose in this section an analytical model for the load
of MMOGs. Our model covers three main types of resources
used by MMOGs: CPU, memory, and network.

Let us consider N clients connected to a distributed game
session aggregating a total of H (parallel, cluster) machines
from different hosters. Let us further consider that the game
world is populated by BE moving bots or NPCs (entity
category 2 in Section 2.1). On each machine, there are only
AE active entities and C clients connected.

4.1 CPU Load Model

For modeling the load of one machine in a distributed
session, we distinguish three basic time-consuming activities
within one game tick: 1) the computation of the interaction
between pairs of entities (consumed time for each computa-
tion: ti); 2) the reception of event messages from each client
(tm); and 3) the update of entity states received from/sent to
another machine (tu). In order to keep the complexity of the
model acceptable, we assume that NPC entities do not
interact, which is true for many MMOGs. We model the CPU
time tM spent for sending and receiving messages from a
server to each client (active avatars) as

tM ¼ C � tm:

The CPU time tU spent by the server for processing state
updates from the other machines is

tU ¼ N � Cð Þ � tu þ BE �AEð Þ � tu þAE � tu;

and the time tI spent by the server for computing the
interactions between the active entities is

tI ¼ I � ti;

where I is the total number of interactions involving the
active entities. Obviously, the computation of interactions
that do not involve active entities is allotted to other
machines.

For quantifying the interactions between entities, we use
a generic function fðe1; e2Þ, which has to be instantiated for
each interaction type introduced in Section 2.3:

fðe1; e2Þ ¼

e1 þ e2; for O ðnÞ interaction;
e1 � logðe2Þ; for O ðn � logðnÞÞ interaction;
e1 � e2; for O ðn2Þ interaction;
e2

1 � logðe2Þ; for O ðn2 � logðnÞÞ interaction;
e2

1 � e2; for O ðn3Þ interaction;

8>>>><
>>>>:

where e1 and e2 are two classes of interacting entities.
Let IC denote the number of avatars interacting with any

other entities (either avatars or NPCs). Furthermore, we

define pci as the average number of interactions involving
active avatars entities expressed as a percentage of IC.
Analogously, we define pei as the average number of
interactions involving active NPCs expressed as a percen-
tage of BE. The total number of interactions is composed of
the number of interactions between active avatars and the
number of interactions between active avatars and NPC
entities:

I ¼ pci � f IC; ICð Þ þ pei � f IC;BEð Þ:

Consequently, the CPU time tI for processing the interac-
tions involving all active entities can be calculated as
follows:

tI ¼ pci � f IC; ICð Þ þ pei � f IC;BEð Þð Þ � ti:

Approximating the time for sending/receiving an event as
equal to the time for updating the state of one entity
(tm ¼ tu), the total CPU time consumed in one tick becomes

tC ¼ N þBEð Þ � tu þ pci � f IC; ICð Þ þ pei � f IC;BEð Þð Þ � ti:

Furthermore, quantifying ti with regard to tu as ti ¼ pui � tu,
where pui is the ratio between the time necessary for one
entity update and the time for computing one interaction (in
percentage), the CPU time consumed in one tick becomes

tC ¼ ðN þBE þ pui � pci � fðIC; ICÞ
þ pui � pei � fðIC;BEÞÞ � ti:

Finally, considering tSAT as the tick saturation threshold,
we can define the CPU load function:

LCPU ¼
tC
tSAT

¼ N þBE þ pui � pci � f IC; ICð Þ þ pui � pei � f IC;BEð Þ
v

;

where v is the CPU speed expressed as an integer
representing the number of tu-long tasks the CPU is able
to perform in a tSAT -long time interval.

4.2 Memory Load Model

The memory model is less complex than the processor load
model, since all machines keep the entity state records for
all entities participating in the game session. First, we take
into account the game-dependent constants such as the
amount of memory mgame needed to run the actual game
engine with no game world loaded and no clients
connected. Next, we define mworld as the amount of memory
used for the game world being played. As for entity-related
memory constants, let mcs denote the amount of memory
needed to store the state of one avatar, and mes the amount
of memory needed to store the state of an NPC entity. The
interaction between entities does not have a significant
impact on the memory load and we ignore it. Aggregating
all these data, the memory consumption M on a machine
taking part in a distributed session is

M ¼ N �mcs þBE �mes þmgame þmworld:

As a consequence, the final memory load function is

LMEM ¼
M

Mmachine
¼ N �mcs þBE �mes þmgame þmworld

Mmachine
;
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where Mmachine represents the amount of memory available
on a machine.

4.3 Network Load Model

In terms of network consumption, we define the outgoing
network bandwidth usage for a machine running a server of
a distributed game session as follows:

Dout ¼ C � dcout þ H � 1ð Þ � C þAEð Þ � dupdt;

where dcout represents the amount of data sent to a client
and dupdt the amount of data exchanged between machines
for updating a single entity state.

The incoming network bandwidth usage for a machine
in a distributed session is defined as

Din ¼ C � dcin þ N � C þBE �AEð Þ � dupdt;

where dcin is the amount of data received from a client.
Finally, we define an overall network load function as

the maximum between the incoming and outgoing loads,
since the network is congested once one of the two maxima
is reached:

LNET ¼ max
C � dcout þ ðH � 1Þ � ðC þAEÞ � dupdt

Bout
;

�

C � dcin þ ðN � C þBE �AEÞ � dupdt
Bin

�
;

where Bin and Bout denote, respectively, the input and
output network bandwidths.

4.4 Complete Load Model

We integrate the presented models into a complete resource
load model for MMOGs, where the load of the entire system
is imposed by the maximum load of the individual resources:

L ¼ max LCPU; LMEM;LNETð Þ:

To stress the generality of our approach, MMOG classes can
be defined using the set of constants involved in all the
models previously described:

MMOGclass ¼ BEð Þ; mcs;mes;mgame;mworld

� �
;

�
dcout; dcin; dupdt
� ��

:

Note that BE is not MMOG-dependent, but rather game
world and play style (e.g., single versus team play)-
dependent. Nevertheless, we included it among the
constants because we can consider games running different
game worlds and play styles as belonging to different
MMOG classes.

5 MMOG LOAD PREDICTION

In this section, we introduce an MMOG load prediction
solution comprising a load prediction strategy and a
tuned neural network-based predictor that offers good
real-time prediction accuracy for a variety of MMOG
workloads. We also present the evaluation of several
classes of predictors leading to the selection of the neural
network-based predictor.

5.1 MMOG Load Prediction Strategy

We have shown in Section 3 that the load of MMOGs is
more dynamic than previously believed, mostly because of
the player interactions. Therefore, fast and accurate load
prediction algorithms are required to dynamically allocate
resources for MMOGs, which, besides the entity count,
also consider the entity interaction. However, due to the
different play styles of the players logged in at different
moments of time, the number of interactions can vary
greatly. Thus, predicting the number of interactions for
the whole game in real time leads to low accuracy. To
address this problem, our prediction strategy for MMOGs
is to first partition the game world into subareas, where
the size of a subarea is small enough to be characterized
by the entity count and interaction type (see Section 2.3).
Then, the entity count for each subarea is used as input
for the model described in Section 4. We define the overall
entity distribution as the set of entity counts for each
subarea. The overall MMOG load prediction is obtained
by using the entity distribution as input to many instances
of the load model.

The main problem to be solved for this strategy is finding
a predictor with high accuracy for a variety of MMOG
workloads and good performance. As the overall entity
distribution is required for one overall MMOG load
prediction, the predictor needs to be able to deliver tens
of thousands of predictions per second. In the remainder of
this section, we address the problem of finding such a
predictor.

5.2 Predictor Families

Two options are available for quantitative predictions in
MMOGs: explanatory models and time series prediction.
While explanatory models can deliver good accuracy with
little computation, they are difficult to obtain for complex
applications such as MMOGs, and are tightly coupled to the
application instance and sometimes to platform for which
they have been constructed. With MMOGs relying on
frequent and large updates to maintain interest among the
players (in Fig. 3, we see a rate of one update per month),
the explanatory models quickly become unmaintainable.
Thus, our work is based on prediction algorithms that use
historical values to discover patterns in the historical data
series, and extrapolate these patterns into the future.

Many such prediction algorithms have already been
proposed [25]. Simple prediction algorithms like exponen-
tial smoothing and variants thereof are computationally
inexpensive and can be applied in parallel on several data
sets, but their predictive power is limited. More elaborated
prediction algorithms like autoregressive (AR), integrated
(I), moving average (MA) models, and combinations there-
of like ARMA or ARIMA try to find the best prediction
model for the given data set. Although their predictive
power is higher, such methods are also more time-
consuming and resource intensive, thus, being ill suited
for highly dynamic MMOGs.

5.3 Neural Network-Based Prediction

As an alternative to other prediction algorithms, we
investigated the use of neural networks [26] that provide
a robust approach to approximating real or discrete-valued
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target functions. Low-complexity neural networks are
capable of approximating complex and noisy functions
provided that good input preprocessing is performed. Our
predictor uses one separate neural network for each game
subarea, which receives as input the entity count at
equidistant past time intervals and delivers as output the
entity count at the next time step.

A downside of neural networks is that they require a
long offline training phase consisting of several subphases.
First, the data set collection phase is a long process in which
the game is observed by gathering entity count samples for
all subareas at equidistant time steps. The second training
phase uses most of the collected samples as training sets,
and the remaining ones as test sets. The training phase runs
for a number of eras, until a convergence criterion is
fulfilled. A training era consists of three steps: 1) presenting
all the training sets in sequence to the network, 2) adjusting
the network’s weights to better fit the expected output (the
real entity count for the next time step), and 3) testing the
network’s prediction capability with the different test sets.
Separating the training from the test sets is crucial for
avoiding memorization and ensures that the network has
enough generalization potential for delivering good results
on new data sets.

5.4 Traces for Testing MMOG Predictors

To experiment and validate the neural network prediction,
we developed a distributed game simulator, which
realistically emulates the behavior of game players. The
motivation for using an emulator is twofold: 1) we do not
have available the exact coordinates of entities in the
RunScape game world (and we do not have access to the
code or the documentation of the RuneScape server either)
and 2) through this emulator, we are able to give further
evidence that the player interaction determines the server
load (see also Section 3.4).

5.4.1 Emulator

We have designed an MMOG emulator, which simulated a
virtual environment populated by avatars. The environ-
ment consists of real maps from the popular FPS game
Counter Strike [27]. The avatars are driven by several
Artificial Intelligence profiles that match the four behavioral
patterns most encountered in MMOGs [3]: the achiever
determines the avatar to seek and interact with opponents;
the socializer causes the avatar to act in a group together
with its teammates; the explorer leads the avatar for
discovering uncharted zones of the game world (not

guaranteeing any interaction); and the killer simulates a
well-known tactic in FPS games to hide and wait for the
opponent (thus, gaining a tactical advantage through the
element of surprise). To also account for the mixed behavior
encountered in deployed MMOGs [3], each entity has its
own preferred profile, but can change the profiles dynami-
cally during the emulation.

5.4.2 Generated Traces

We used this emulator to generate eight different data traces
for a duration of one day each with a sampling rate of two
minutes, modeling four parameters (see Table 1): peak hours,
peak load, overall dynamics, and instantaneous dynamics.
The peak hours correspond to the periods with high player
count in online gaming such as late afternoons (see Section 3).
The peak load represents the highest load observed in an
MMOG, which is a good measure for its relative popularity.
The overall dynamic represents the variability of the entity
interaction over a period of one day, while the instantaneous
dynamic indicates the same variability over a period of two
minutes. The eight data sets exhibit three major types of
signals: type I with high instantaneous dynamics and
medium overall dynamics (sets 2-4); type II with low
instantaneous dynamics (sets 6-8); and type III with medium
instantaneous dynamics (sets 1 and 5).

5.5 Prediction Results

In this section, we compare the neural network prediction
against other well-known fast prediction methods such as
last value, average, moving average, sliding window
median, and three levels of exponential smoothing. We
used a well-tuned Multilayer Perceptron with a ½6; 3; 1�
structure representing the number of neurons on each layer,
which delivered the most accurate results in a series of
offline network tuning experiments [28]. The goal of our
experiment is to minimize the prediction error:

PE ¼
PN

i¼1 n
ðrealÞ
i � nðpredÞi

��� ���PN
i¼1 n

ðrealÞ
i

;

where N is the total number of samples in the trace data set,
and n

ðrealÞ
i and n

ðpredÞ
i are, respectively, the real and

predicted entity counts at time step i.
Each prediction method receives as input every trace

data set described in Table 1, and outputs for each input set
a sample prediction. The results in Fig. 6 show that, apart
from having lower prediction errors, the quality of our
neural network-based predictor is its ability to adapt to
various types of input signals. In contrast, other algorithms
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exhibit poor performance for some types of signals (e.g., the
average method is the second most accurate for Type I
signals, but performs poorly for all Type II and for some
Type III signals). Notably, our neural network predictor
was significantly better than the others for the sets with
high instantaneous dynamics (Types I and III signals).

Fig. 7 depicts the duration of one prediction on an Intel
Core Duo E6700 (2.66 GHz) processor. Although the neural
network predictor is the slowest with an average predic-
tion duration of approximately 7 microseconds, it is
nevertheless fast enough and suitable to MMOGs. To
justify this statement, let us consider a RuneScape setup
consisting of a hoster managing 200 game servers, each one
with an upper client limit of 2,000. Moreover, let us
consider the worse case scenario in which our predictor
would use a number of subareas equal to the number of
players, and that all game worlds are handling the
maximum number of players (i.e., 250,000 subareas in
total, see Section 3.2). The approximate total prediction
time using our proposed predictor would be 14 milli-
seconds per server, and 2.8 seconds per hoster considering
a single threaded execution. From a realistic prediction
interval of 2 minutes, the prediction time would amount
approximately 2 percent, leaving the remaining 98 percent
for resource allocation and load balancing actions.

6 MMOG RESOURCE PROVISIONING

In this section, we present an evaluation of our MMOG
resource provisioning model described in Section 2.5. As
outlined in Table 2, we cover an experimental space with six
axes: the provisioning mechanisms, the prediction algo-
rithms, the player interaction, the hosting policies, the
latency tolerance, and the multi-MMOG workloads.

6.1 Experimental Setup

6.1.1 Metrics

We evaluate each experiment by using three metrics:
resource overallocation, resource underallocation, and
number of significant underallocation events.

The resource overallocation characterizes the percentage of
a resource (i.e., CPU, memory, network) that has been
allocated from the amount used for the seamless execution
of an MMOG session. We define the resource overallocation
at time instance t as the cumulated overallocation for all M
resources participating in the game session, where �mðtÞ is
the total allocated resource and �mðtÞ is the resource usage
(the generated load):

� tð Þ ¼
PM

m¼1 �m tð ÞPM
m¼1 �m tð Þ

� 100½%�:

The resource underallocation characterizes the percentage
of resources that have not been allocated from the amount
necessary for the seamless execution of the MMOG, but
considering that missing resources on one machine can be
hidden by overallocating the resource on other machines.
We define resource underallocation at time instance t as
the average difference between the allocated and used
resources. The min function limits the maximum under-
allocation value to at most zero, and thus, an over-
allocation at a certain time does not reduce impact of an
underallocation at a different time instance (that is, �ðtÞ
and �ðtÞ are not correlated):

� tð Þ ¼
PM

m¼1 min �m tð Þ � �m tð Þ; 0ð Þ
M

� 100½%�:

The number of significant underallocation events indicates the
number of times the underallocation causes game play
disruption over a long period of time. In this work, we
consider an underallocation as being disruptive (and
frustrate players that may quit the game) if its absolute value
is over 1 percent for a period of time of at least two minutes.

6.1.2 Environment

We performed experiments in a simulated RuneScape-like
environment. The input workload consisted of the first two
weeks from the RuneScape trace data analyzed in Section 3,
which, with the metrics being evaluated every two minutes,
gives over 10,000 metric samples for each simulation,
ensuring statistical soundness. The data centers are located
on four continents and seven countries, as depicted in Table 3.
Each machine in the specified setup is capable of handling at
least one game server at full load (e.g., 2,000 simultaneous
clients for RuneScape). The data centers were configured to
use different hosting policies, where each policy describes
one time and one resource bulk for each type of resource (see
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prediction algorithms applied to MMOG data.
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The Experimental Space Coverage

TABLE 3
Data Center Physical Characteristics



Section 2.4). The measurement unit for the policy resources is
a generic “unit,” which represents the requirement for the

respective resource in a fully loaded RuneScape game server
(e.g., one external outward network unit is equivalent to a

real bandwidth value of 3 MB/s—see also Fig. 5).
In our simulation, the game operators perform a predic-

tion of the game load (that is, of the number of players and of

the interactions per zone) every two minutes and request an
appropriate amount of resources to the data centers. The

protocol how resources are matched based on their number,
type, location, and time in this ecosystem was presented in
Section 2.5. We assume zero overhead in resource allocation,

provisioning, and setup from data centers to game operators.

6.2 Prediction Impact

In this experiment, we evaluate the impact of the prediction
method on the provisioning process. We assign the HP-1 and

HP-2 hosting policies described in Table 4 to the data centers
presented in Table 3 in a round-robin fashion. When two data
centers have the same location (column “Country” in Table 3),

their hosting policies are set differently to HP-1, respectively,
HP-2, and their machine size to half the number of resources

at that location (column “Machines” in Table 3).
We first compare the performance of our dynamic

provisioning strategy using one of the six prediction

algorithms (see Section 5), as presented in Table 5. For
overallocation, we observe two performance classes: the poor

performance class with one member (the average predictor)
and the normal performance class with the other five
predictors as members. The reason for the big overallocations

for the external network bandwidth is that the two utilized
policies were not well fitted to the input workload (i.e., the

policies in Table 4 included too much external network
bandwidth relative to the CPU). We will show in Section 6.5

that the resources from data centers with such policies are not
used when other suitable alternatives exist.

We further rank the five predictors from the normal
performance class using the underallocation metric. First,
only the neural network and the last value predictors lead to
no underallocation of the external network bandwidth, in
addition to leading to the lowest CPU underallocation. Fig. 8
depicts the cumulative number of significant underalloca-
tion events over time for the five predictors with a normal
overallocation value, which shows that the neural network
predictor exhibits the lowest number and the most stable
evolution. We conclude that our novel neural network
predictor enables the best resource provisioning, followed
by the last value predictor which confirms our results from
Section 5.5.

Fig. 9 comparatively displays the resource overallocation
resulted from the use of static, respectively, dynamic
provisioning strategy (using the neural network predictor)
for the same workload. As expected, the dynamic provision-
ing of resources achieves better results, its average over-
allocation being around 25 percent, compared to 250 percent
for the static allocation. The overallocation for dynamic
provisioning is not the outcome of unreliable predictions
and can be lowered if the data centers policies are more
favorable. In this experiment, the deallocation of resources
was only allowed at least six hours after the start of the
allocation (column “Time” in Table 4).

6.3 Player Interaction Impact

In this section, we study the impact of player interaction on
the dynamic provisioning using the neural network
predictor.

Fig. 10 shows the resource over- and underallocation
over time for the OðnÞ, Oðn � lognÞ, Oðn2Þ, Oðn2 � lognÞ, and
Oðn3Þ MMOG update models described in Section 2.1, for
dynamic resource provisioning. We observe that the higher
the complexity of the update model is, the greater the
fluctuations in resource overallocation are. At the same
time, the significant underallocation events become more
frequent as the complexity of the update model increases.
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This is further confirmed in Fig. 11, which depicts the
cumulative number of significant underallocation events
over time, at the end of the two simulation weeks, this
number being significantly higher for Oðn3Þ than for OðnÞ.

Table 6 compares the average static and dynamic
resource provisioning mechanisms for various interaction
types. The static provisioning has five to seven times higher
resource overallocation than the dynamic one, but no
underallocation events. However, the number of significant
underallocation events over the whole simulated period
remains below 3 percent for dynamic provisioning (at most
30 samples from over 10,000 samples used in the simula-
tion). When even this low occurrence cannot be tolerated, a
mechanism that increases the overallocation shall be used.

6.4 Data Center Hosting Policy Impact

We further evaluate the influence of the hosting policies on
the dynamic resource provisioning, where each hosting
policy expresses the sizes of the resource and of the time
bulks (see also Section 2). When more resource types are
involved in the matchmaking process, there is a separate
bulk size for each resource type. Because the resource and
the time bulks have a combined influence on the provision-
ing of resources, we conduct three separate experiments
that use a different resource hosting policy setup each. We
first study in Section 6.4.1 the individual impact of the
resource and time bulk parameters on resource provision-
ing by varying one of them and keeping the other constant.
Then, we study the combined effect of the resource and
time bulks by using a heterogeneous hosting policy setup in
Section 6.4.2.

6.4.1 The Independent Impact of the Resource and

Time Bulks

We first estimate the impact of the CPU resource bulk
variation on the resource allocation performance by using
five hosting policies from HP-3 to HP-7 in Table 4. The

resource bulks for other resource types and the time bulk are
kept constant. The values selected for the CPU resource bulk,
i.e., from 0.22 to 1.11, are not evenly distributed in the
selected interval, which reflects the real-life policies of data
centers that try to maximize their own resource usage and do
not willingly adapt to a specific MMOG’s resource require-
ments. We will show in Section 6.5 that in our MMOG
ecosystem, the game operators are not always forced to
accept such conditions and can penalize the data centers with
unsuitable hosting policies by not using their resources.

Experiment batch A in Table 7 illustrates the influence of
the CPU resource bulk on the dynamic resource provision-
ing. There is a visible tendency of higher overallocation
values for bigger CPU resource bulks. Conversely, we can
observe an increase in significant underallocation events as
the CPUs are offered with finer grained quantities. In
conclusion, the finer grained policies have the potential to
increase the resource provisioning efficiency, but also the
risk of increasing the number of significant underallocation
events. An optimal value for the resource bulk granularity
can be determined with respect to the type of game serviced
and its tolerance to resource shortages.

To observe the impact of the time bulk, we vary it from
0.1 to 2.0 days while keeping the resource bulks constant. To
this end, we use the policies HP-5, and HP-8 to HP-11
described in Table 4. The results of experiment batch B
presented in Table 7 show that the efficiency of resource
provisioning can be significantly improved by using
resources from the data centers whose policies specify the
shortest time bulks. The increase of the average under-
allocation is low if the time bulks are set to realistic values,
e.g., above one hour.

6.4.2 The Combined Impact of the Resource

and Time Bulks

To study the combined impact of the resource and time
bulks, we aggregate the policies used in the previous two
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Static versus Dynamic Provisioning for Various Interactions
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experiments by taking all possible CPU-time bulk combina-
tions (the other resource bulks are identical for all involved
policies). The results from the experiment batch C depicted
in Table 7 follow the same pattern as those obtained when
varying the time bulk in Section 6.4.1 with higher under-
allocation values. We conclude that changing the time bulk
has a higher impact on the dynamic resource provisioning
than changing the resource bulk.

6.5 MMOG Latency Tolerance Impact

We now investigate the impact of the MMOG latency
tolerance on the quality of the dynamic resource provision-
ing. We consider an ideal network behavior, where the
latency between players and data centers is exclusively
determined by the physical distance between them. The
higher the latency tolerance of an MMOG, the further away
the servers can be located from the users, and the longer the
list of data centers from which resources can be dynami-
cally provisioned is. We show in this experiment that higher
latency tolerance leads to resources of the data centers with
unsuitable hosting policies being unused when other
suitable alternatives exist.

We define five classes of maximal physical distance
between the players and the server locations, where, in
practice, the distance values would depend on the design of
each MMOG:

1. Same location, when users must be handled by
resources at the same location.

2. Very close, when resources can be allocated within a
radius of 1,000 km from their users.

3. Close, within a radius of 2,000 km.
4. Far, within a radius of 4,000 km.
5. Very far, when any server can serve any user.

We consider from the setup described in Table 3 only the
data centers located in the North American region, and
select from the workload only the requests that arrive at
these data centers. The hosting policies are coarse grained
(i.e., with large resource and time bulks) for the data centers
located on the US East Coast and become gradually finer
grained for the data centers located at the Central and West
Coast locations.

We first consider a restricted workload in which only the
data centers from the US East Coast location receive
allocation requests from game operators. Fig. 12 shows
the distribution of the allocated resources for various
latency tolerance values. As expected, because of the
hosting policies setup, the desirability for a data center
increases with its distance from the US East Coast. For the
maximal latency tolerance, all requests are served on
resources located at the maximal distance from the US East
Coast, i.e., on the data centers from the US West Coast.

We now investigate the system behavior in a realistic
situation under the combined workload of all North
American game operators. Fig. 13 shows for this setup the
distribution of the allocated resources for various latency
tolerance values. Due to the resource contention, the
resource allocation follows different patterns than in the
optimal case. Fig. 14 depicts the resource allocation for all
North American data centers, which demonstrates that the
US East Coast data centers with the most unsuitable hosting
policies are penalized by having more unused resources,
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Fig. 13. Resource allocation distribution for all North American resource
requests and various latency tolerance values.
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especially when the latency tolerance admits far and very
far maximal service distances. In addition, the US East
Coast requests are served under the best policies even in a
busy system.

6.6 Impact of Servicing Multiple MMOGs

In this last experiment, we evaluate the dynamic provision-
ing when servicing multiple types of MMOGs. We select
three MMOG types with different interaction complexities,
as defined in Section 6.3: MMOG A uses an Oðn � logðnÞÞ,
MMOG B an Oðn2Þ, and MMOG C an Oðn2 � logðnÞÞ
interaction complexity. We run seven scenarios in which
the system has to handle resource requests for the three
selected MMOG types in different proportions. The work-
load structure for each scenario is depicted in the “Work-
load structure” group of columns from Table 8.

When the workload is dominated by the more compu-
tationally intensive B or C MMOGs, i.e., the first six rows in
Table 8, the behavior of dynamic provisioning is stable. The
overallocation under a workload of only C MMOGs is less
than 3 percent higher than under a workload of only B
MMOGs. In the seventh scenario, when the workload
comprises only the (less computationally intensive) A
MMOGs, the dynamic resource provisioning is significantly
better than in the other scenarios. We conclude that the
quality of the dynamic provisioning is determined by its
biggest consumer. Under these circumstances, game opera-
tors of a different MMOG type (e.g., type A) may find it
more convenient to install their own infrastructure. As an
alternative, we plan to investigate in future work the impact
of prioritizing resource requests according to the MMOG
interaction complexity.

7 REAL-WORLD EXPERIMENT

We designed and implemented our MMOG ecosystem
within the edutain@grid project [13], aiming to provide a
platform for scalability, QoS provisioning, and user-friendly
business models for real-time online interactive applica-
tions, with strong focus on MMOGs. edutain@grid is using

as pilot a commercial FPS game application called Hunter
developed by the Darkworks game development company
with the headquarters in Paris, France. Parallelization of a
game session according to the zoning, mirroring, and
instancing techniques outlined in Section 2.2 is achieved
by means of a generic portable library called Real-Time
Framework (RTF) [29].

We used in our experiments an FPS demonstrator
application that uses the open-source three-dimensional
graphics engine (OGRE—http://www.ogre3d.org/) for
graphics and sound, and the RTF library for game session
parallelization. The resource testbed consists of six servers
provided by the Amis telecommunication company located
in Maribor, Slovenia and managed by one resource
allocation service. The game world consists of two adjacent
zones, handled in the beginning by two idle game servers.
Clients connect to a game operator located at the University
of Innsbruck, which processes their requests and arranges
for the real-time connection the game servers. To stress the
servers, we generated waves of incoming clients, imple-
mented as nonplayer characters (or bots) and modeled
using the profiles described in Section 5.4.

We ran three distributed sessions using different resource
provisioning methods. One session used our dynamic
provisioning method and the other two were managed
using a fixed threshold on the number of clients to create
replication servers and migrate clients. We set the replica-
tion thresholds to 40 and 50 clients, respectively. The goal of
each session was to accommodate a total of 190 clients,
which connect in four waves (one minute apart from each
other) of 80, 30, 30, and 50 clients with as little resource
utilization as possible, and at the same time providing good
QoS for the clients (i.e., the least underallocation).

Fig. 15 shows three histograms with the total number of
clients, their zone distribution, the resource provisioning,
and load balancing measures taken for the distributed
session using our provisioning method. Fig. 16 presents the
underallocation events for the three distributed sessions.
The average underallocation for the session managed by
our dynamic resource provisioning method is 0.66 percent,
and for the two sessions utilizing the client threshold is 0.86
and 8.69 percent, respectively. Although the underalloca-
tion for the client threshold method with a threshold of 40 is
relatively close to the one exhibited by our method, there is
a difference in the resource utilization. In this case, the
client threshold method utilizes a total of six machines,
whereas our provisioning method only needed five
machines to accommodate the same amount of clients. It
is possible to reduce the resource utilization using a higher
client threshold, but the resource underallocation events
increase drastically, as seen in the session with the client
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Fig. 14. Far maximal allocation distance (left) and very far maximal allocation distance (right) for all North American data centers and resource
requests.



threshold of 50, which utilized only five machines and had
an average underallocation of 8.69 percent. We conclude
that our dynamic resource provisioning method performs
better than the rudimentary client threshold-based method
by providing a better service to the clients while offering a
good resource utilization.

8 RELATED WORK

We have already reviewed, in this paper, existing works
related to our MMOG ecosystem, workload, and prediction
models. We now turn our attention to the related work in
the area of resource provisioning and identify three main
directions from the resource provider’s perspective.

8.1 Data Centers

The case when resources from one data center are shared
between multiple applications with statistical performance
guarantees has received much attention [9], [10], [14], [30],
[31]. In all these approaches, the variables characterizing
requests (such as “service time”) can be expressed indepen-
dently of the system state, for example, with a random
variable whose behavior is well characterized by a well-
known statistical distribution. However, an important
component of the resource demands in the MMOG ecosystem
is the interaction between players, which makes the resource
demands of MMOGs very different from traditional web
applications. To express the interaction between concurrent
system users, in our model, a request is dependent on
transient system state parameters, such as the number of
active players and the location of players (see Section 4.1).

From this body of related work, much attention has been
given to modeling single-tier web applications; with the
notable difference in expressing interaction between con-
current users, these models are similar to ours. The MUSE
system [14] allocates periodically a percentage of the
resource capacity for each service class such that a target
utilization is achieved at the data center level. An approach
based on virtual machines, as opposed to physical
resources, has also been explored [30]. Resource demand
profiles for business applications are constructed for
various durations (e.g., hour, day, week) and resources
are allocated in advance to provide statistical performance

guarantees [9]. A similar approach based on application
profiles was proposed in [10]. Closest to our work, the
benefit of provisioning resources from single data centers
has been evaluated for databases and web services [8]. Our
work differs from this approach in two significant aspects.
First, MMOGs have a different load model and their load in
particular depends also on the interaction between users.
Second, we consider multiple data centers to handle the
different load patterns in different geographical locations
specific to MMOGs.

Recently, research has focused on multitier models of
web applications [8], [31]. They use probability distribu-
tions to characterize resource demands, queuing theory to
analyze the system, and proactive and reactive resource
provisioning; the target environment is a single data center.
In contrast, our approach seems less sophisticated, but it
already fosters emerging behavior in a multidata center
MMOG ecosystem, that is, the emergence of a complex
system from the large number of simple choices and
interactions; for example, we have shown in Section 6.5
evidence that hosters have incentives to offer MMOG-
friendly hosting policies when the market is competitive.

8.2 Grid Computing

The problem of dynamically allocating geographically
distributed resources to applications has been a popular
topic in Grid computing research. Recent work investigates
mechanisms for resource allocation across single and
multicluster Grids [32]. They assess the performance of
various resource allocation mechanisms for typical Grid
workloads comprising batches of scientific and engineering
jobs [33]. Unlike MMOGs, scientific Grid applications do
not change their resource requirements at runtime. More-
over, the Grid resource allocation policies only allow for
whole resources be allocated at a time, while our work also
considers the subunitary allocation sizes specific to business
data centers.

Closest to our work, the industrial game hosting plat-
form Butterfly.net Grid (now renamed the Emergent Plat-
form) [34] uses Grid technology to provide on-demand
access to cluster resources. Their hosting policy only
considers multiunitary resource bulks and long time bulks;
as such, this platform fits well into our MMOG ecosystem
as a typical large hoster.

8.3 Peer-to-Peer Computing

Peer-to-peer computing has emerged as a scalable and low-
cost technology, and as a potential alternative to traditional
on-demand resource provisioning. When employing peer-
to-peer technology, the game operators make use of the
resources of their clients instead of renting them from
hosters. The NPSNET project [35] uses a peer-to-peer
approach in which all the game computation is performed
on client resources. The SimMud [36] project uses a similar
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Fig. 16. Underallocation event comparison.

Fig. 15. Number of clients connected over time in a distributed session.



approach to NPSNET, but also balances and optimizes the
use of resources. However, three problems have prevented
so far the adoption of peer-to-peer technology for MMOGs:
the lack of appropriate business models, the widespread
attempts of cheating, and the low availability of peers
observed for other peer-to-peer systems (such as the
Gnutella and the BitTorrent file sharing networks [37], [38]).

9 CONCLUSION AND FUTURE WORK

We focused in this work on MMOGs as a new type of large-
scale distributed simulation with a growing user base of
tens to millions of players. To ensure that the user demand
is satisfied at all times, game operators resort to static
resource provisioning by building and maintaining com-
puting platforms of up to 10,000 machines located on
several continents for a single MMOG. In this paper, we
proposed a more efficient alternative based on the dynamic
resource provisioning and management of data center
resources. Ours is the first thorough investigation of an
MMOG ecosystem, that is, of a multi-MMOG, multidata
center environment.

We showed in this work that the number and the type of
interactions between players, and between players and the
environment, are an important contributor to the game load.
To address it, we have introduced a new MMOG model that
focuses on the interaction count and type between game
entities, shown that interaction leads to much more dynamic
resource demands than previously believed, and proposed a
novel prediction algorithm based on neural networks that is
fast yet accurate. Our algorithm performed significantly
better than the six-time predictors also investigated in this
work. We have further investigated the performance of the
resource provisioning and management of data center
resources with a large variety of scenarios that focus both on
MMOG-specific properties and data center hosting policies.
Most importantly, we have shown that the static resource
provisioning can be, on average, from five up to 10 times more
inefficient than dynamic allocation under the same condi-
tions, and that the game operators can penalize the data
centers with unsuitable hosting policies, by not using their
resources. Finally, we have designed and implemented our
methods on top of the platform offered by the EU project
edutain@grid, and presentedan experiment showing the real-
time resource provisioning for a real game prototype.
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