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I n the mid 1990s, grid computing 
engineers formed a new vision — one 
in which the grid operated as a ubiq-

uitous and uninterrupted computing 
and data platform that offered uniform 
user access, similar to a power grid.1 
Grids such as the Enabling Grids for 
E-Science grid (EGEE, which is global 
although mostly European-based), 
the Open Science Grid (OSG, which is 
also global although mostly US-based), 
Teragrid (US), Naregi (Japan), Grid’5000 
(France), and the Distributed ASCI 
Supercomputer (DAS, the Netherlands), 
have grown from serving tens of scien-
tists to hundreds. These grids are used 
for many application areas, including 
physics, bioinformatics, Earth sciences,  
life sciences, finance, space engineering, 

and so on. They assist the fields of sci-
ence and engineering and couple theory 
and experimentation with computation 
and data-intensive discovery.2,3 Grids 
still pose many research challenges—
among them, the high and variable job 
wait times. To continue evolving and 
tuning grids for production work, it’s 
important to understand the character-
istics of entire grid workloads. 

Grids are collections of resources 
ranging from clusters to supercom-
puters. Often, grid resource providers  
and grid resource consumers (users) are 
different entities. Providers determine 
resource management policies and  
offer only minimal, generic job man-
agement services. To simplify manage-
ment, virtual organizations (VOs) group  

In the mid 1990s, the grid computing community promised the “compute 

power grid,” a utility computing infrastructure for scientists and engineers. 

Since then, a variety of grids have been built worldwide, for academic purposes, 

specific application domains, and general production work. Understanding 

grid workloads is important for the design and tuning of future grid resource 

managers and applications, especially in the recent wake of commercial 

grids and clouds. This article presents an overview of the most important 

characteristics of grid workloads in the past seven years (2003-2010). Although 

grid user populations range from tens to hundreds of individuals, a few users 

dominate each grid’s workload both in terms of consumed resources and the 

number of jobs submitted to the system. Real grid workloads include very few 

parallel jobs but many independent single-machine jobs (tasks) grouped into 

single “bags of tasks.”
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administratively users and/or resource pro-
viders. Over time, scientists and engineers 
have tried many types of jobs on grids — from 
sequential to parallel, from compute-intensive 
to data-intensive, and from coordinated appli-
cations to bags of independent tasks. A contem-
porary grid-based experiment may require the 
repeated execution of a computational task on 
different sets of input parameters or data.

In this work, we discuss the characteristics of 
grid workloads, with a focus on the past seven 
years. We look at four main grid workload axes: 
system usage (utilization and task arrivals), user 
population (number of users and VOs), general 
application characteristics (CPU, memory, disk, 
and network), and characteristics of grid-specific 
application types (presence, structure, and so 
on). We show that grid workloads are very dif-
ferent from the workloads of other environments 
used by scientists and engineers, and emphasize 
the emergence of workflows and bags of many 
tasks as important application types. 

General Workload Characteristics
Our analysis is based on grid workload traces 
collected from more than 15 real grids. Grid own-
ers and users kindly provided these traces; some 

of the traces are now publicly available via the 
Grid Workloads Archive (GWA; http://gwa.ewi.
tudelft.nl/).4 Table 1 summarizes two properties 
of the studied traces: duration and system size. 
The values illustrate our study’s breadth. Nine of 
the traces are long term (one year of operation 
or more) and 13 are medium term (six months 
or more); we collected the traces from several 
large  grids (2,000 CPUs or more), including 
EGEE, Grid’5000, Grid3 (the precursor of OSG), 
and NorduGrid. The traces also include examples 
of system replacement (DAS-2 was phased out 
and replaced with DAS-3, and traces GWA-T-15 
and GWA-T-16 represent the replacement of the 
job manager), system evolution (traces GWA-T-13 
and GWA-T-17 come from the same system but at 
a 3.5-year interval), and detailed/coarse views of 
the same system (for example, the traces GWA-
T-6/GWA-T-11 for EGEE). 

Grid workloads exhibit several features that 
we examine in this article; more information 
appears in our previous studies.4

System Utilization 
The long-term average grid utilization ranges 
from very low (10 to 15 percent in research 
grids DAS and Grid’5000) to very high (more 

Table 1. Summary of the properties of the studied traces.

Trace ID Source system Number of … in system

(GWA index) Name (country, type) Period Sites CPUs

GWA-T-1 DAS-2 (NL, academic) Feb 05 – Mar 06 5 400

GWA-T-2 Grid’5000 (FR, academic) May 04 – Nov 06 15 2,500+

GWA-T-3 NorduGrid (EU, academic/production) May 04 – Feb 06 75+ 2,000+

GWA-T-4 AuverGrid (FR, production) Jan 06 – Jan 07 5 475

GWA-T-5 NGS (UK, production) Feb 03 – Feb 07 1 400+

GWA-T-6 LCG, RAL cluster (UK, production) May 05 – Jan 06 1* 880

GWA-T-7 GLOW (US, production) Sep 06 – Jan 07 1* 1,400+

GWA-T-8 Grid3 (US, academic/production) Jun 04 – Jan 06 29 2,200+

GWA-T-9 TeraGrid-1, ANL cluster (US, production) Aug 05 – Mar 06 1* 96

GWA-T-10 SHARCNET (CA, production) Dec 05 – Dec 06 10 6,828

GWA-T-11 EGEE/LCG (EU, production) Nov 05 – Dec 05 220+ 24,000+

GWA-T-12 Condor U.Wisc.-Madison (US, production) Oct 06 – Nov 06 5 2,100+

GWA-T-13 TeraGrid-2, NCSA cluster (US, production) May 06 – Jan 07 1* 1,000

GWA-T-14 DAS-3 (NL, academic) July 06 – Oct 08 5 544

GWA-T-15 Austrian Grid (AT, academic/production) Sep 06 – Oct 07 8 250

GWA-T-16 Austrian Grid 2 (AT, academic/production) May 07 – Nov 07 8 250

GWA-T-17 TeraGrid-2, NCSA cluster (US, production) Jan 10 – May 10 1* 930

*The trace only represents a part of the system.
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than 85 percent in production grids such as 
the Large Hadron Collider (LHC) Computing 
Grid (LCG), Condor University Wisconsin-Mad-
ison, and AuverGrid). Short-term utilization 
can be very high, and every grid we inves-
tigated in this work experienced week-long 
overloads (full-capacity utilization and excess 
demand) during their existence. Load imbal-
ance between grid sites and submission spikes 
happen often.

Workload Size
Table 2 summarizes the size characteristics of 
grid workloads. A single grid cluster can provide 
more than 750 CPU years per year (for example, 
the RAL cluster in LCG), whereas a single user VO 
can consume more than 350 CPU years per year 
in combined use (for example, the Atlas VO in 
Grid3). On average, grid systems complete more 
than 4,000 jobs per day in LCG’s RAL cluster, 
and between 500 and 1,000 in Grid3 and DAS-2.  
Although the number of hourly job arrivals is 
generally small, the number of jobs running in 
a grid can spike to more than 20,000 per day 
for a single cluster (for example, in DAS-2 and 
the LCG RAL cluster traces), and to more than 
20,000 per hour for a whole grid (Sharcnet). 

Often, fewer than five users dominate the work-
load, both in terms of number of jobs submitted 
to the grid and resources consumed.7 

Submission Patterns 
Grid workloads exhibit strong time patterns, 
including seasonal, workday, and hourly. Most 
grids are used less during holidays, weekends, 
and midday. Many academic grids are overloaded 
during periods preceding major conferences.  

Table 2. Summary of the content of the studied traces.

Trace ID Source system Number of observed

(GWA index) Name (country/region) Jobs GRP USR CPU time Arrivals Spike

GWA-T-1 DAS-2 (NL) 602K 12 332 69y 71 19,550

GWA-T-2 Grid’5000 (FR) 951K 10 473 128y — —

GWA-T-3 NorduGrid (EU) 781K 106 387 2,444y 28 7,953

GWA-T-4 AuverGrid (FR) 404K 9 405 278y 46 823/h 

GWA-T-5 NGS (UK) 632K 1 379 270y 23 4,994/h

GWA-T-6 LCG, RAL cl. (UK) 1.1M 25 206 751y — 22,550 

GWA-T-7 GLOW (US) 216K 1* 18 120y — 6,590

GWA-T-8 Grid3 (US) 1.3M 1* 19 240y — 15,853 

GWA-T-9 TeraGrid-1, ANL cl. (US) 1.1M 26 121 — — 7,561

GWA-T-10 SHARCNET (CA) 1.2M — 412 3,782y 127 22,334/h 

GWA-T-11 EGEE/LCG (EU) 188K 28 216 54y 504 1,638/h

GWA-T-12 Condor U.Wisc.-Madison (US) 765K — — 22,370y — —

GWA-T-13 TeraGrid-2, NCSA cl. (US) 140K — — 222y — —

GWA-T-14 DAS-3 (NL) 2.0M 12 333 — — —

GWA-T-15 Austrian Grid (AT) 141k — — 152d — —

GWA-T-16 Austrian Grid 2 (AT) 46k — — 41d — —

GWA-T-17 TeraGrid-2, NCSA cl. (US) 28K — 83 — — —

*The trace only represents a part of the system. GRP and USR are acronyms for number of groups (VOs) and of users, respectively. The 
“Arrivals” column lists the average number of arrivals per hour. The “Spike” column lists the maximum number of jobs running per day.

Table 3. Summary of the job characteristics for the studied traces.*

Overall job characteristics

System Size (CPUs) Runtime (s) Memory (Mbytes)

GWA-T-1 4.3 (6.3) 370 (3,938) 46 (346)

GWA-T-3 1.1 (1.0) 89,274 (284,300) 200 (307)

GWA-T-4 1.0 (0.0) 25,186 (40,780) 296 (343)

GWA-T-5 1.4 (2.8) 2,925 (17,908) 39 (226)

GWA-T-6 1.0 (0.0) 14,599 (28,641) 195 (206)

GWA-T-7 1.0 (0.0) 4,705 (14,488) 332 (276)

GWA-T-8 1.0 (0.0) 13,797 (25,201) n/a

GWA-T-10 1.5 (6.2) 31,964 (117,088) 81 (466)

GWA-T-11 1.0 (0.0) 8,971 (32,833) n/a

*Standard deviations are in parentheses.
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The submission behavior of individual users 
varies greatly, but top users often replace irreg-
ular (manual) submission with tools that submit 
jobs at regular intervals.

Grids vs. Parallel Production
Compared to the clusters and low-end super-
computers of the late 1990s and early 2000s, 
grids over the past seven years exhibit similar 
resource consumption, complete more jobs per 
day, demonstrate higher spikes in the number 
of concurrently running jobs, and can reach 
much higher utilizations (see Table 2). Specifi-
cally, parallel production environments (PPEs) 
offer 50 to 1,300 CPU years per year and have 
(on average) fewer than 500 jobs completed per 
day, spikes of 300 to 5,400 jobs, and utilization 
often in the mid-60th percentile. (These results 
hold for each individual PPE trace in the Par-
allel Workloads Archive at http://cs.huji.ac.il/
labs/parallel/workload/.)

General Job Characteristics 
In this article, we characterize the jobs present 
in grid workloads, regardless of their application 
domain or structure. Table 3 summarizes the 
averages and standard deviations of the num-
ber of processors allocated to jobs, job runtimes, 
and memory consumption of jobs. Figure 1  
depicts the cumulative distribution functions 
(CDFs) associated with various job character-
istics. Both indicate the high variability of job 
characteristics in the grid.

Not every grid workload trace we use in 
this study contains information about all char-
acteristics. In particular, only a few contain  
memory-, I/O-, and network-related information.  
For I/O and network information, we use the 
Condor-based system traced in GWA-T-12 and 
independently analyze five data subsets, each 
coming from a traced resource pool. Subsets t1 
and t2 comprise mostly engineering and com-
puter science jobs, respectively; subsets t3, t4, 
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Figure 1. CDFs of the most important job characteristics for NorduGrid, Condor GLOW, Condor UWisc-South, TeraGrid,  
Grid3, LCG, DAS-2, and DAS-2 Grid. Time-related characteristics are in logscale. (a) Interarrival time. (b) Job parallelism. 
(c) Run time. (d) Consumed disk space. (e) Wait time. (f) Consumed memory. 
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and t5 comprise exclusively high-energy phys-
ics (HEP) jobs of different characteristics. Other 
studies4–6 offer a more detailed examination of 
typical jobs present in grid workloads.

Parallel Jobs
Grid workloads exhibit little intra-job paral-
lelism (see Figure 1b); in contrast to PPE work-
loads, which include mostly parallel jobs — that 
is, jobs that require more than a single node 
to operate — grid workloads are dominated by 
loosely coupled jobs. Moreover, in many grid 
workload traces, no parallel jobs exist. How-
ever, we did find two exceptions, Sharcnet and 
TeraGrid, both of which run scientific applica-
tions as parallel jobs. Even for the few grids 
that do run parallel jobs, job parallelism is low: 
mostly fewer than 32 processors per job (the 
most is 800 [Sharcnet] and 128 [others]). These 
small parallel job sizes match the parallel work-
loads of early 2000s PPEs. 

Job Runtimes, Arrival Times,  
and Wait Times
In general, grid jobs require several hours 
to complete, with per-grid averages ranging 
from about one hour to one day. HEP jobs were 
designed for approximately 12 hours of pro-
cessing on low-end machines; thus, many run 
for between six and seven hours on regular 
grid nodes.6 The DAS-2 and DAS-3 grids were 
designed to promote the use of small, interactive 

jobs, which explains the DAS-2 outlier average-
job runtime of 370 seconds. Although the aver-
ages are relatively high, most grid workloads 
contain large numbers of much shorter or much 
longer jobs. Notably, Figure 1c shows a runtime 
of 2 minutes or less for a quarter of the jobs 
in many grids. The high variability of grid job 
runtimes and arrival times (see also Figures 1a 
and 1c) is an important factor in the high and 
variable wait times of grid jobs (see Figure 1e).

Memory Requirements
On average, grid jobs require tens to hundreds 
of Mbytes of memory. Most HEP jobs require 
machines with at least 2 Gbytes of memory per 
processor, although they might use less in prac-
tice. On average, production grid jobs require 
more memory than academic grid jobs. The CDF 
of memory consumption in Figure 1f shows the 
existence of preferred memory consumption 
sizes; the NorduGrid trace has a distribution 
mode of approximately 500 Mbytes.

I/O Requirements
Many grid jobs are compute-intensive and have 
modest I/O requirements. Table 4a summarizes 
the I/O consumption for five subsets of the GWA-
T-12 trace — one for each resource pool in the sys-
tem. The total number of operations and the total 
I/O traffic averaged by grid jobs are both higher 
than for typical scientific applications.5 The vari-
ability of observed values remains high. The sizes 

Table 4a. Average data per job in Condor-based grids (I/O in operations and volume).

T-12 part I/O (KOps) I/O Traffic (Mbytes) 

Total Rd Wr Wr % Total Rd Wr %

t1 28 18 6 20 469 174 63

t2 957 770 187 20 144 114 21

t3 904 881 23 3 161 130 19

t4 13,058 9 13,049 100 389 33 92

t5 11,128 8 11,121 100 330 31 91

Table 4b. Average data per job in Condor-based grids (network traffic).

T-12 part File Transfer (Mbytes) Remote Sys. Calls (Mbytes)

Total In In % Out % Total In In %

t1 10,865 8,259 76 24 28� 71 16 59

t2 1,736 1,542 89 11 77 28 40

t3 1,938 1,738 90 10 6 32 42

t4 1,043 653 63 37 44 6 100

t5 671 432 64 36 40 91
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and rates of various I/O operations exhibit pro-
nounced distributional modes, so system design-
ers can optimize for common cases. However, the 
high fraction of writes, from all I/O operations, 
might make caching difficult. HEP jobs have 
much larger I/O requirements6 (see Figure 1d). At 
roughly 65 MBps for single experiments, these 
jobs process about 2.2 Pbytes of data per year; 
their mean file size is 300 Mbytes, almost 5 per-
cent of their files are larger than 1 Gbyte, and 
each job accesses more than 100 files on average.

Network Requirements
In grids, network traffic can be generated by 
I/O file transfers — to and from the processing 
nodes — and by remote system calls. Table 4b 
summarizes the network consumption per job 
for the same five subsets of the GWA-T-12 trace 
we used for the I/O analysis (see Table 4a). The 
input varies widely among these subsets and, in 
all traces, represents more than 60 percent of 
file traffic. The traffic used for remote system 
calls is much lower than for files; here, the frac-
tion of output traffic ranges from 0 to 60 per-
cent of the total traffic.

Bags of Tasks
Bags of tasks (BoTs) are loosely coupled parallel 
jobs in which a set of tasks are executed to pro-
duce a meaningful, combined result. Many grid 
workload traces are missing information about 
the job-to-BoT mapping, and the use of BoT 
managers can make the automatic identification 
of BoTs in such traces very difficult. For exam-
ple, many BoT managers delay task submissions 
to ensure that a limited number of tasks run 
concurrently in the grid; thus, tasks belonging 

to the same BoT become grid jobs with differ-
ent submission times. When job-to-BoT map-
ping information is missing from the trace, 
we identify BoTs using a method7,8 in which 
jobs submitted by the same user are grouped 
according to their relative arrival time. Table 5  
summarizes the presence of BoTs in several 
selected grids. In most grid traces, BoT submis-
sions account for more than 75 percent of the 
tasks and consumed CPU time (see Table 5). For 
some grids, BoTs are even responsible for over 
90 percent of the total consumed CPU time. The 
average number of tasks per BoT in the differ-
ent grid traces we investigated ranges between 
2 and 70; most averages for these traces fall 
between 5 and 20. 

A model accounting for the highly variable 
data we observed for grid BoTs8 could focus on 
four aspects: the submitting user, BoT arrival 
patterns, BoT size, and intra-BoT (individual 
task) characteristics. The probability of a specific 
user submitting a grid job is well modeled by a 
Zipf distribution. For most systems, BoT inter-
arrival time, BoT size, and variability of BoT task 
runtimes are best modeled by a Weibull distribu-
tion. For most systems, the normal distribution 
models the average BoT task runtime well.

Workflows, Pilots, and Others
Although grids already support (small) bags of 
tasks, the performance of their generic job and 
resource management services can be improved 
via user- and application-specific tools and 
policies. Motivated by high rates of system 
and middleware failure,9 high job manage-
ment overhead, and slow job failure detection, 
the grid community has built tools and mecha-
nisms for improved execution and coordination 
of specific types of jobs in grids. 

Grid Workflows
Grid workflows are jobs with a graph structure, 
in which nodes are computing or data-transfer 
tasks, and edges are dependencies between the 
tasks. A common workflow would consist of 
preprocessing, simulation, and postprocessing 
steps, each consisting of several tasks (more 
details appear elsewhere2). 

It’s difficult to identify the presence of work-
flows in most of the grid workload traces used 
in this study — at this level of tracing, we found 
little data concerning workflows. In a recent 
study,10 five scientific workflows covering  

Table 5. Summary of BoT presence in grid traces.

Trace Observed Percentage from total

ID BoTs Jobs (%) CPUTime (%)

GWA-T-1 57k 92 78

GWA-T-2 26k 85 30

GWA-T-3 50k 94 90

GWA-T-6 43k 95 95

GWA-T-7 13k 95 96

GWA-T-8 302k 94 98

GWA-T-10 16k 93 92

GWA-T-11 5k 96 97

GWA-T-12 135K 94 96

GWA-T-13 68K 96 86
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astronomy, Earth sciences, and bioinformatics 
had sizes of tens to tens of thousands of tasks; 
the same authors reported cases of even larger 
instances. The sums of task runtimes in these 
workflows range from hours to weeks, which 
makes workflows equivalent to long-running 
grid jobs. As we’ve recently shown using the 
GWA-T-15 and GWA-T-16 traces,11 engineering 
and scientific workflows can have very differ-
ent characteristics. For engineering workflows, 
the average number of tasks is in the low tens, 
with 75 percent of the workflows having at 
most 40 tasks and 95 percent having at most 
200. Tasks in these engineering workflows can 
be very short, with more than 75 percent of 
them taking less than 2 minutes to complete. A 
possible explanation for the small size of engi-
neering workflows is that common grid work-
flow schedulers incur execution overheads that 
increase quickly with the size and complexity 
of the workflow.12

Pilot Jobs (BoTs with Many Tasks)
For performance and reliability reasons, pilot 
jobs install the user’s own job management sys-
tem on the resources provisioned from the grid 
and then execute (pilot) through this new sys-
tem a stream or a bag of tasks. Common pilot 
job tools are Condor (through its glide-in fea-
tures), Falkon,13 and GridBot.14 For pilot jobs, 
a common performance metric is throughput 
(defined as the number of tasks completed per 
second [tps]); the Falkon system has achieved 
a throughput of approximately 500 tps, two  
orders of magnitude better than regular — that is, 
non-pilot-job-enabled — grid job-management  
systems.13 

Currently, no study of a pilot job workload 
exists. With pilot jobs, grid systems can record 
jobs that run for days or even weeks; in real-
ity, such jobs run streams of short tasks that 
can each take anywhere from a few minutes to 
an hour.  Researchers have used GridBot13 to 
execute the workload of a real bioinformatics 
community through pilot jobs — hundreds  to 
millions of tasks were able to go through per 
pilot job (stream), and each pilot job averaged 
approximately 4,000 tasks. These pilot jobs took 
an average of 0.5 CPU years, with the average 
task runtime being 15 minutes for medium-
sized jobs and between 0.5 and 5 minutes for 
small-sized jobs; the largest pilot jobs consumed 
each more than 100 CPU years.

Others
Coallocation — the simultaneous allocation of 
resources from different grid clusters or even sites 
for a single grid job — was one of the first grid 
mechanisms designed for user-specific resource 
management.15 Another was malleable allocation —  
the dynamic allocation and deallocation of 
resources for single grid jobs. No study of the 
actual use of either mechanism in real grid work-
loads exists; however, only about 6,000 coal-
located (parallel) jobs exist in Grid’5000, fewer 
than 2 percent of the jobs recorded in that trace.

U nderstanding grid workloads is important 
for tuning existing grids and for design-

ing future grids. With the possibility of grid 
workloads moving to clouds (several high-
performance computing centers are currently 
installing private clouds for their user com-
munities), this understanding might drive the 
design and tuning of clouds as well. Ultimately, 
it may affect the way scientists work and even 
think about their work.

Our overview of seven years of grid work-
loads reveals several emerging trends (such as 
the prevalence of pilot jobs) that require further 
investigation. Will interdependent, many-task 
jobs become daily scientific tools? Will parallel 
jobs see an increase in the number of multicore 
grid nodes? Will scientists rely on increasingly 
interactive jobs? New data and new studies of 
the characteristics and evolution of grid and 
cloud workloads are required to answer these 
questions. With the clear trend of increasing the 
number of resources and application types, new 
challenges arise in collecting and mining work-
load data — will new methods and technologies 
be able to respond?�
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