
1

Twenty Years of Scheduling Research—
Models, Methods, and Conclusions

Inauguration Seminar Alexandru Iosup

Dick Epema
Distributed Systems Group

11 June 2018

2

Four scheduling cases

20 s

15 s 31 s

19 s 12 s 7 s

42 s

4

1 3

2

3

Case 1: co-allocation (1)
• Jobs may use resources in multiple sites: co-allocation
• Reason:

– to benefit from distributed resources (e.g., processors, data, visualization)

• Resource possession in different sites can be:

– simultaneous (e.g., parallel applications)

– coordinated (e.g., workflows)
• With co-allocation:

– more difficult resource-discovery process
– need to coordinate allocations by autonomous resource managers

single global job

4

Co-allocation (2): slowdown
• Co-allocated applications are less efficient due to the

relatively slow wide-area communications

• Slowdown of a job:
execution time on multicluster
execution time on single cluster

• Processor co-allocation is a trade-off between

– faster access to more capacity

– shorter execution times

(>1 usually)

5

Co-allocation (3): scheduling policies
• Placement policies dictate where the components of a job go

• Examples of placement policies:

1. Load-aware: Worst Fit (WF)
 (balance load in clusters)

2. Input-file-location-aware: Close-to-Files (CF)
 (reduce file-transfer times)

3. Communication-aware: Cluster Minimization (CM)
 (reduce number of wide-area messages)

6

• Model has a host of parameters
• Main conclusions:

– Co-allocation is beneficial when the slowdown ≤ 1.20
– Unlimited co-allocation is no good:

• limit the number of job components
• limit the maximum job-component size

– Give local jobs some but not absolute priority over global jobs
• Mathematical analysis for maximal utilization

Anca Bucur and Dick Epema, HPDC 2003 and IEEE TPDS 2007.Anca Bucur and Dick Epema, HPDC 2003 and IEEE TPDS 2007.

Conclusions:

• There are fundamental problems to be derived from practical
 scheduling problems in distributed systems that have a general
 significance

• Combination of simulations and mathematical analysis gives
 more complete results and better understanding

Conclusions:

• There are fundamental problems to be derived from practical
 scheduling problems in distributed systems that have a general
 significance

• Combination of simulations and mathematical analysis gives
 more complete results and better understanding

Co-allocation (4): simulations/analysis

7

average execution time (s)

number of clusters combined

Ozan Sonmez, Hashim Mohamed, and Dick Epema, IEEE TPDS 2010.Ozan Sonmez, Hashim Mohamed, and Dick Epema, IEEE TPDS 2010.

Co-allocation (5): experiments on the DAS3
average execution time (s)

number of clusters combined

Conclusions:

• It may be very difficult to match simulations and experiments

• It is very difficult to do multiple experiments under the same conditions

• It is very difficult to identify (the influence of) “polluting elements”

Conclusions:

• It may be very difficult to match simulations and experiments

• It is very difficult to do multiple experiments under the same conditions

• It is very difficult to identify (the influence of) “polluting elements”

8

KOALA (1/2): a co-allocating grid scheduler
• Original goals:

1. processor co-allocation: parallel applications
2. data co-allocation: job affinity based on data locations
3. load sharing: in the absence of co-allocation
while being transparent for local schedulers

• Additional goals:
– research vehicle for scheduling and RM research
– support for (other) popular application types

• KOALA has been deployed on the DAS2 – DAS5 since september 2005
• Later versions: KOALA-C (clouds) and KOALA-F (frameworks)

Hashim Mohamed and Dick Epema, CCPE 2006.Hashim Mohamed and Dick Epema, CCPE 2006.

9

KOALA (2/2): the runners
• The KOALA runners are adaptation modules for different application types:

– set up communication / name server / environment

– launch applications + perform application-level scheduling

– scheduling policies

• Current runners:
– CSRunner: for cycle-scavenging applications

– IRunner: for applications using the Ibis Java library

– Mrunner: for malleable parallel applications

– OMRunner: for co-allocated parallel OpenMPI applications

– Wrunner: for co-allocated workflows

– MR-runner: for MapReduce applications (also Spark)

Conclusions:

• Very beneficial to have a deployed research vehicle (DAS + KOALA) for
• driving research
• teaching distributed systems programming
• doing experimentation
• visibility

• Very time-consuming to make a scheduler “user proof” (never did a
release)

Conclusions:

• Very beneficial to have a deployed research vehicle (DAS + KOALA) for
• driving research
• teaching distributed systems programming
• doing experimentation
• visibility

• Very time-consuming to make a scheduler “user proof” (never did a
release)

10

Case 2: scheduling frameworks

• Reduce
– scheduling overhead of centralized scheduler
– complexity of centralized scheduler

• Provide isolation among frameworks
• Two models:

framework 1 framework 2idle
pool

framework 1framework 2framework 3

optimal sizing balancing

11

Balancing allocations with FAWKES

Two-level scheduling
architecture

FAWKES

NODES

Frameworks

Job submissions

Resource manager

InfrastructureNODES NODESNODES NODESNODESNODES NODES NODES

FAWKES

Bogdan Ghiţ, Nezih Yiğitbaši, Alexandru Iosup, and Dick Epema, ACM Sigmetrics 2014.Bogdan Ghiţ, Nezih Yiğitbaši, Alexandru Iosup, and Dick Epema, ACM Sigmetrics 2014.

12

FAWKES in a nutshell

• Gives “fair” shares of the resources to frameworks
• Shares proportional to dynamic weights
• Updates weights when:

• frameworks arrive or leave
• framework states change

FAWKES

w1 w2 w3< <

13

How to differentiate frameworks? (1/3)

versus

ServiceUsageDemand

By demand – 3 policies:
o Job Demand (JD)
o Data Demand (DD)
o Task Demand (TD)

14

How to differentiate frameworks? (2/3)

versus
ServiceUsageDemand

By usage – 3 policies:
o Processor Usage (PU)
o Disk Usage (DU)
o Resource Usage (RU)

USED

IDLE

15

How to differentiate frameworks? (3/3)

versus

ServiceUsageDemand

By service – 3 policies:
o Job Slowdown (JS)
o Job Throughput (JT)
o Task Throughput (TT)

16

Performance of FAWKES

Nodes 45

Frameworks 3

Minimum shares 10

Datasets 300 GB

Jobs submitted 900

None – Minimum shares
EQ – Equal shares
TD – Task Demand
PU – Processor Usage
JS – Job Slowdown

Up to 20% lower slowdown

Policy

highest
load

medium
load

minimum
load

Av
er

ag
e

Sl
ow

do
w

nConclusions:

• Studying queuing models is very beneficial for students for
- a better understanding of practical performance problems

 - better problem formulation
- better execution of research in scheduling in systems

• Simulations of scheduling frameworks is still required

• Experimentation with Spark and KOALA-F/Mesos are a nightmare

Conclusions:

• Studying queuing models is very beneficial for students for
- a better understanding of practical performance problems

 - better problem formulation
- better execution of research in scheduling in systems

• Simulations of scheduling frameworks is still required

• Experimentation with Spark and KOALA-F/Mesos are a nightmare

17

…

Case 3: reducing slowdown variability
in MapReduce

Bogdan Ghiţ and Dick Epema, MASCOTS 2015, CCGrid 2016.Bogdan Ghiţ and Dick Epema, MASCOTS 2015, CCGrid 2016.

18

Problem: “slowdown” due to big customers

20 seconds 3 minutes

slowdown = = 10
20 + 180

20

19

Solution: express lanes

Size-based scheduling
Make jobs in a single queue homogeneous

20

Queues in datacenters

∞
Partition 2

Partition 3

Partition 1
feedback

queue 1

queue 2

queue 3

21

0

20

40

60

101 102 103 104 105

Job Size [s]

Slo
wd

ow
n

What is the improvement?

95%

no partitioning
with feedback

50%

slowdown

before after

job size
(total required processor time in seconds)

job size

22

Simulator validation

0

5

10

15

FBQ TAGS SITA COMP
Policy

Sl
ow

do
wn

System

SIM
DAS

FBQ TAGS SITA COMP
Policy

Workload of 50 jobs, system load of 0.7.

Less than 1% error between SIM and DAS.

Median 95th

Conclusions:

• Studying queuing models is very beneficial for students for
 inspiration for scheduling policies and for understanding
 concepts such as heavy tails

• Fundamental differences with original mathematical analysis
 of size-based scheduling (other job model, work-conserving
 pre-emption, partitioning)

Conclusions:

• Studying queuing models is very beneficial for students for
 inspiration for scheduling policies and for understanding
 concepts such as heavy tails

• Fundamental differences with original mathematical analysis
 of size-based scheduling (other job model, work-conserving
 pre-emption, partitioning)

23

Case 4: workloads of workflows
Previous work Our work

20 s

15 s 31 s

19 s 12 s 7 s

42 s Finished tasks

Running tasks

Eligible tasks

Non-eligible tasks

Alexey Ilyushkin, Bogdan Ghiţ, and Dick Epema, CCGrid 2015 and 2018.Alexey Ilyushkin, Bogdan Ghiţ, and Dick Epema, CCGrid 2015 and 2018.

24

Scheduling policies (1/2)
• Greedy backfilling versus some form of reservation
• For reservation, use Level of Parallelism (LoP)
• LoP is compute-intensive, use approximation

LoP=4

Quality of LoP Approximation for Montage workflow

25

Scheduling policies (2/2)

1. Strict reservation: use LoP

2. Scaled LoP: use f x LoP, 0 ≤ f ≤ 1

3. Consider future eligible sets

4. Greedy backfilling

26

Simulation results
Strict Reservation

Scaled LoP f = 0.2

Future Eligible Sets, depth 2

Backfilling

Utilization

M
ea

n
sl

ow
do

w
n

The WORST

Utilization

M
ea

n
sl

ow
do

w
n

The BEST

Utilization

M
ea

n
sl

ow
do

w
n

Utilization

M
ea

n
sl

ow
do

w
n

27

What is the use of task runtime estimates?
• Suppose task runtimes are known with some error
• Select tasks from the workflows in the queue based on the

upward ranks of tasks (length of critical path from task to exit task)
• Online policies (select tasks on the fly) and a plan-based policy

(based on Heterogeneous Earliest Finish Time)
• Main conclusions:

– only at extreme utilizations (over 90%) knowledge of task runtimes
is beneficial

– the sensitivity to inaccuracy of estimates increases at higher utilizations
– plan-based gives very much overhead and does not perform well

Conclusions:

• Fills a gap in queueing models

• For these fundamental questions, no experiments are needed

Conclusions:

• Fills a gap in queueing models

• For these fundamental questions, no experiments are needed

28

Acknowledgments
• Anca Bucur (co-allocation, 2004)
• Lipu Fei (KOALA-C)
• Bogdan Ghiţ (frameworks, MapReduce, 2017)
• Bart Grundeken (cycle scavenging)
• Alexey Ilyushkin (workflows, 201x)
• Alex Iosup (KOALA-C, frameworks, simulator, 2009)
• Aleksandra Kuzmanovska (KOALA-F, frameworks, 201x)
• Wouter Lammers (hardening KOALA)
• Hashim Mohamed (design KOALA, 2007)
• Ozan Sonmez (application types, 2010)
• Nezih Yiğitbaši (MapReduce, 2012)

	Slide 1
	Four scheduling cases
	Case 1: co-allocation (1)
	Co-allocation (2): slowdown
	Co-allocation (3): scheduling policies
	Co-allocation (4): simulations/analysis
	Co-allocation (5): experiments on the DAS3
	KOALA (1/2): a co-allocating grid scheduler
	KOALA (2/2): the runners
	Case 2: scheduling frameworks
	Balancing allocations with FAWKES
	FAWKES in a nutshell
	How to differentiate frameworks? (1/3)
	How to differentiate frameworks? (2/3)
	How to differentiate frameworks? (3/3)
	Performance of FAWKES
	Case 3: reducing slowdown variability in MapReduce
	Problem: “slowdown” due to big customers
	Solution: express lanes
	Queues in datacenters
	What is the improvement?
	Slide 22
	Case 4: workloads of workflows
	Scheduling policies (1/2)
	Scheduling policies (2/2)
	Simulation results
	What is the use of task runtime estimates?
	Acknowledgments

