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Four scheduling cases
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Case 1: co-allocation (1)

* Jobs may use resources in multiple sites: co-allocation
° Reason:

— to benefit from distributed resources (e.g., processors, data, visualization)

* Resource possession in different sites can be:

— simultaneous (e.g., parallel applications) / / \
L |

— coordinated (e.g., workflows)

*  With co-allocation:

— more difficult resource-discovery process

— need to coordinate allocations by autonomous resource managers
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Co-allocation (2): slowdown

* Co-allocated applications are less efficient due to the
relatively slow wide-area communications

* Slowdown of a job:
execution time on multicluster

—executon-tme-on-sirglecluster (>1 usually)

* Processor co-allocation is a trade-off between
— faster access to more capacity

— shorter execution times
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Co-allocation (3): scheduling policies

* Placement policies dictate where the components of a job go

* Examples of placement policies:

1. Load-aware: Worst Fit (WF)
(balance load in clusters)

2. Input-file-location-aware: Close-to-Files (CF)
(reduce file-transfer times)

3. Communication-aware: Cluster Minimization (CM)
(reduce number of wide-area messages)
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Co-allocation (4): simulations/analysis

. Conclusions:

* There are fundamental problems to be derived from practical
scheduling problems in distributed systems that have a general
significance

* Combination of simulations and mathematical analysis gives
more complete results and better understanding

Anca Bucur and Dick Epema, HPDC 2003 and IEEE TPDS 2007.

o]
TUDelft



Co-allocation (5): experiments on the DAS34==.

average execution time (s) average execution time (s)
Conclusions:
* It may be very difficult to match simulations and experiments
* It is very difficult to do multiple experiments under the same conditions

* It is very difficult to identify (the influence of) “polluting elements”

Ozan Sonmez, Hashim Mohamed, and Dick Epema, IEEE TPDS 2010.
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KOALA (1/2): a co-allocating grid scheduler

\.F\/

* Original goals:
1. processor co-allocation: parallel applications o

2. data co-allocation: job affinity based on data locations

3. load sharing: in the absence of co-allocation
while being transparent for local schedulers

* Additional goals:
— research vehicle for scheduling and RM research

— support for (other) popular application types i
* KOALA has been deployed on the DAS2 - DAS5 since september 2005
* Later versions: KOALA-C (clouds) and KOALA-F (frameworks)

-i!U Delft Hashim Mohamed and Dick Epema, CCPE 2006.



KOALA (2/2): the runners

Conclusions:

* \ery beneficial to have a deployed research vehicle (DAS + KOALA) for
|  driving research
* teaching distributed systems programming
* doing experimentation
* visibility
* \Very time-consuming to make a scheduler “user proof” (never did a
release)
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Case 2: scheduling frameworks

* Reduce
— scheduling overhead of centralized scheduler
— complexity of centralized scheduler

* Provide isolation among frameworks
*  Two models:

R
~idle
- pool .

optimal sizing +— balancing

]
TUDelft

10



Balancing allocations with FAWKES ~ ((a

— — —
Two-level scheduling ~ —— — I Job submissions
architecture
= Frameworks
Q A S S e e e e
| NODEs | NoDEs | NODEs Infrastructure

Bogdan Ghit, Nezih Yigitbasi, Alexandru losup, and Dick Epema, ACM Sigmetrics 2014.
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FAWKES in a nutshell
w, < w, <

W,
Gives “fair” shares of the resources to frameworks

Shares proportional to dynamic weights

Updates weights when:
* frameworks arrive or leave
* framework states change
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How to differentiate frameworks? (1/3)

T

versus

By demand - 3 policies:

O Job Demand (JD)
O Data Demand (DD) I:”:”:

O Task Demand (TD)
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How to differentiate frameworks? (2/3)

Q) A -

== ===~ " I
I @ I
| Demand jTiUsagell Service

vVersus
| usep |

By usage - 3 policies: o - ===
O Processor Usage (PU) *@ I_IDLE _
O Disk Usage (DU) = = =
O Resource Usage (RU) ‘ %ﬂf‘%ﬂ‘%—n;%;nj
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How to differentiate frameworks? (3/3)

e | U @ — OO0

vVersus
By service - 3 policies:

O Job Slowdown (JS) "=p
O Job Throughput (JT) s I:l I:l I:l I:l

O Task Throughput (TT)
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Performance of FAWKES

Nodes

Framev

Minimu

Datase © Studying queuing models is very beneficial for students for
Jobs su - a better understanding of practical performance problems

- better problem formulation

- better execution of research in scheduling in systems

Conclusions:

* Simulations of scheduling frameworks is still required

* Experimentation with Spark and KOALA-F/Mesos are a nightmare

JS - Job Slowdown
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Case 3: reducing slowdown variability

iIn MapReduce
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Bogdan Ghit and Dick Epema, MASCOTS 2015, CCGrid 2016.
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Problem: “slowdown” due to big customers

20 seconds 3 minutes
20 + 180
slowdown = —— = 10
20
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Solution: express lanes

Size-based scheduling
Make jobs in a single queue homogeneous

o]
TUDelft

19



Queues in datacenters
@),
queue L= [ 5] b
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What is the improvement?

before after
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Slowdown
o
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Simulator validation

Conclusions:

* Studying queuing models is very beneficial for students for
inspiration for scheduling policies and for understanding
concepts such as heavy tails

* Fundamental differences with original mathematical analysis
of size-based scheduling (other job model, work-conserving

pre-emption, partitioning)

Less than 1% error between SIM and DAS.
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Case 4: workloads of workflows

Previous work Our work

¢ 2 oEE

@ rinished tasks
@ Running tasks
Eligible tasks

@ Non-eligible tasks
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Alexey llyushkin, Bogdan Ghit, and Dick Epema, CCGrid 2015 and 2018.




Scheduling policies (1/2)

* Greedy backfilling versus some form of reservation
* For reservation, use Level of Parallelism (LoP)
* LoP is compute-intensive, use approximation

Quality of LoP Approximation for Montage workflow
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Scheduling policies (2/2)

Strict reservation: use LoP
Scaled LoP: usefxLoP,0<f<1
Consider future eligible sets

Greedy backfilling
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Simulation results
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Mean slowdown
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What is the use of task runtime estimates?

®  Crisimimmmom bmale sersinadlimm mm mram Deam mnnvam wasfhle mmamm e

Conclusions:

* Fills a gap in queueing models

* For these fundamental questions, no experiments are needed

Is beneficial
— the sensitivity to inaccuracy of estimates increases at higher utilizations
— plan-based gives very much overhead and does not perform well
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