Twenty Years of Scheduling Research—
Models, Methods, and Conclusions

Inauguration Seminar Alexandru losup

Dick Epema
Distributed Systems Group

11 June 2018

]
TUDelft

Four scheduling cases

]
TUDelft

Case 1: co-allocation (1)

* Jobs may use resources in multiple sites: co-allocation
° Reason:

— to benefit from distributed resources (e.g., processors, data, visualization)

* Resource possession in different sites can be:

— simultaneous (e.g., parallel applications) / / \
L |

— coordinated (e.g., workflows)

* With co-allocation:

— more difficult resource-discovery process

— need to coordinate allocations by autonomous resource managers

o]
TUDelft

Co-allocation (2): slowdown

* Co-allocated applications are less efficient due to the
relatively slow wide-area communications

* Slowdown of a job:
execution time on multicluster

—executon-tme-on-sirglecluster (>1 usually)

* Processor co-allocation is a trade-off between
— faster access to more capacity

— shorter execution times

o]
TUDelft

Co-allocation (3): scheduling policies

* Placement policies dictate where the components of a job go

* Examples of placement policies:

1. Load-aware: Worst Fit (WF)
(balance load in clusters)

2. Input-file-location-aware: Close-to-Files (CF)
(reduce file-transfer times)

3. Communication-aware: Cluster Minimization (CM)
(reduce number of wide-area messages)

o]
TUDelft

Co-allocation (4): simulations/analysis

. Conclusions:

* There are fundamental problems to be derived from practical
scheduling problems in distributed systems that have a general
significance

* Combination of simulations and mathematical analysis gives
more complete results and better understanding

Anca Bucur and Dick Epema, HPDC 2003 and IEEE TPDS 2007.

o]
TUDelft

Co-allocation (5): experiments on the DAS34==.

average execution time (s) average execution time (s)
Conclusions:
* It may be very difficult to match simulations and experiments
* It is very difficult to do multiple experiments under the same conditions

* It is very difficult to identify (the influence of) “polluting elements”

Ozan Sonmez, Hashim Mohamed, and Dick Epema, IEEE TPDS 2010.

o]
TUDelft :

KOALA (1/2): a co-allocating grid scheduler

\.F\/

* Original goals:
1. processor co-allocation: parallel applications o

2. data co-allocation: job affinity based on data locations

3. load sharing: in the absence of co-allocation
while being transparent for local schedulers

* Additional goals:
— research vehicle for scheduling and RM research

— support for (other) popular application types i
* KOALA has been deployed on the DAS2 - DAS5 since september 2005
* Later versions: KOALA-C (clouds) and KOALA-F (frameworks)

-i!U Delft Hashim Mohamed and Dick Epema, CCPE 2006.

KOALA (2/2): the runners

Conclusions:

* \ery beneficial to have a deployed research vehicle (DAS + KOALA) for
| driving research
* teaching distributed systems programming
* doing experimentation
* visibility
* \Very time-consuming to make a scheduler “user proof” (never did a
release)

o]
TUDelft

Case 2: scheduling frameworks

* Reduce
— scheduling overhead of centralized scheduler
— complexity of centralized scheduler

* Provide isolation among frameworks
* Two models:

R
~idle
- pool .

optimal sizing +— balancing

]
TUDelft

10

Balancing allocations with FAWKES ~ ((a

— — —
Two-level scheduling ~ —— — I Job submissions
architecture
= Frameworks
Q A S S e e e e
| NODEs | NoDEs | NODEs Infrastructure

Bogdan Ghit, Nezih Yigitbasi, Alexandru losup, and Dick Epema, ACM Sigmetrics 2014.

o]
TUDelft .

o]
TUDelft

FAWKES in a nutshell
w, < w, <

W,
Gives “fair” shares of the resources to frameworks

Shares proportional to dynamic weights

Updates weights when:
* frameworks arrive or leave
* framework states change

12

How to differentiate frameworks? (1/3)

T

versus

By demand - 3 policies:

O Job Demand (JD)
O Data Demand (DD) I:”:”:

O Task Demand (TD)

]
TUDelft

13

How to differentiate frameworks? (2/3)

Q) A -

== ===~ " I
I @ I
| Demand jTiUsagell Service

vVersus
| usep |

By usage - 3 policies: o - ===
O Processor Usage (PU) *@ I_IDLE _
O Disk Usage (DU) = = =
O Resource Usage (RU) ‘ %ﬂf‘%ﬂ‘%—n;%;nj

o]
TUDelft

14

How to differentiate frameworks? (3/3)

e | U @ — OO0

vVersus
By service - 3 policies:

O Job Slowdown (JS) "=p
O Job Throughput (JT) s I:l I:l I:l I:l

O Task Throughput (TT)

]
TUDelft

15

Performance of FAWKES

Nodes

Framev

Minimu

Datase © Studying queuing models is very beneficial for students for
Jobs su - a better understanding of practical performance problems

- better problem formulation

- better execution of research in scheduling in systems

Conclusions:

* Simulations of scheduling frameworks is still required

* Experimentation with Spark and KOALA-F/Mesos are a nightmare

JS - Job Slowdown

o]
TUDelft

16

Case 3: reducing slowdown variability

iIn MapReduce

aoEes
S
i o~

=
@
(=]
=
5
a
£

o]
TUDelft

Bogdan Ghit and Dick Epema, MASCOTS 2015, CCGrid 2016.

17

Problem: “slowdown” due to big customers

20 seconds 3 minutes
20 + 180
slowdown = —— = 10
20

o]
TUDelft

18

Solution: express lanes

Size-based scheduling
Make jobs in a single queue homogeneous

o]
TUDelft

19

Queues in datacenters
@),
queue L= [5] b

| o =53¢
queue =

‘‘‘‘‘‘‘‘

wqueue

o]
TUDelft

What is the improvement?

before after
6041 . . o 60
° o 0° ° no partitioning
wd® . .. o8 2o with feedback
TRL,

slowdown ROPISRIR FI
- % %o ¢

]]]]]
10’ 102 103 104 10°

10’ 10° 10° 10* 10°
job size job size
(total required processor time in seconds)

o]
TUDelft

21

Slowdown
o
1

(&)
|

7
TUDelft

Simulator validation

Conclusions:

* Studying queuing models is very beneficial for students for
inspiration for scheduling policies and for understanding
concepts such as heavy tails

* Fundamental differences with original mathematical analysis
of size-based scheduling (other job model, work-conserving

pre-emption, partitioning)

Less than 1% error between SIM and DAS.

—
DMP

Case 4: workloads of workflows

Previous work Our work

¢ 2 oEE

@ rinished tasks
@ Running tasks
Eligible tasks

@ Non-eligible tasks

]
TUDelft

Alexey llyushkin, Bogdan Ghit, and Dick Epema, CCGrid 2015 and 2018.

Scheduling policies (1/2)

* Greedy backfilling versus some form of reservation
* For reservation, use Level of Parallelism (LoP)
* LoP is compute-intensive, use approximation

Quality of LoP Approximation for Montage workflow

600
E 500 - W Exact LoP
0,400 7 m Approximated LoP
& 300
Z 200

100 —
s

50 100 200 400 800

5
TUDelft WE size

<

LoP=4

24

o]
TUDelft

H w0 N

Scheduling policies (2/2)

Strict reservation: use LoP
Scaled LoP: usefxLoP,0<f<1
Consider future eligible sets

Greedy backfilling

25

Simulation results

Strlct Reservatlon

c
§ e
10!

=

o

n

c

@

0)100 i 1 L]

2 0.0 0.2 0.4 0.6 0.8 1.0
Utilization

_ Scaled Lon 0.2

z - MGO

-glo‘

O

()]

c

©

2, : - :

2 0.0 0.2 0.4 0.6 0.8 1.0
Utilization

o]
TUDelft

Mean slowdown

Mean slowdown

Future EI|g|bIe Sets, depth 2

— SIPHT —e— Montage
—e— Mixture —e— LIGO
10
10° ! i 1
0.0 0.2 0.4 0.6 0.8 1.0
Utilization
Backfilling
—e— Montage —e— Mixture
—— LIGO —e— SIPHT
10" i
The BEST
10° " I
0.0 0.2 0.4 0.6 0.8 1.0
Utilization

26

What is the use of task runtime estimates?

® Crisimimmmom bmale sersinadlimm mm mram Deam mnnvam wasfhle mmamm e

Conclusions:

* Fills a gap in queueing models

* For these fundamental questions, no experiments are needed

Is beneficial
— the sensitivity to inaccuracy of estimates increases at higher utilizations
— plan-based gives very much overhead and does not perform well

o]
TUDelft

27

o]
TUDelft

Acknowledgments

Anca Bucur (co-allocation, 2004)

Lipu Fei (KOALA-C)

Bogdan Ghit (frameworks, MapReduce, 2017)

Bart Grundeken (cycle scavenging)

Alexey llyushkin (workflows, 201x)

Alex losup (KOALA-C, frameworks, simulator, 2009)
Aleksandra Kuzmanovska (KOALA-F, frameworks, 201x)
Wouter Lammers (hardening KOALA)

Hashim Mohamed (design KOALA, 2007)

Ozan Sonmez (application types, 2010)

Nezih Yigitbasi (MapReduce, 2012)

28

	Slide 1
	Four scheduling cases
	Case 1: co-allocation (1)
	Co-allocation (2): slowdown
	Co-allocation (3): scheduling policies
	Co-allocation (4): simulations/analysis
	Co-allocation (5): experiments on the DAS3
	KOALA (1/2): a co-allocating grid scheduler
	KOALA (2/2): the runners
	Case 2: scheduling frameworks
	Balancing allocations with FAWKES
	FAWKES in a nutshell
	How to differentiate frameworks? (1/3)
	How to differentiate frameworks? (2/3)
	How to differentiate frameworks? (3/3)
	Performance of FAWKES
	Case 3: reducing slowdown variability in MapReduce
	Problem: “slowdown” due to big customers
	Solution: express lanes
	Queues in datacenters
	What is the improvement?
	Slide 22
	Case 4: workloads of workflows
	Scheduling policies (1/2)
	Scheduling policies (2/2)
	Simulation results
	What is the use of task runtime estimates?
	Acknowledgments

