
1

dr. ir. Alexandru Iosup

Distributed Systems Group

@AIosup

Graphalytics = From

Benchmarking to Performance

Engineering, leading to

Massivizing Graph-Processing

Systems

Presentation developed jointly with Ana Lucia Varbanescu.

Several slides developed jointly with Yong Guo.

Tim Hegeman, Wing-Lung Ngai, and Stijn Heldens.

https://www.linkedin.com/in/aiosup
https://www.linkedin.com/in/aiosup
https://twitter.com/aiosup
https://twitter.com/aiosup
http://pds.twi.tudelft.nl/~iosup/
http://pds.twi.tudelft.nl/~iosup/

2

(TU) Delft – the Netherlands – Europe

pop.: 100,000 pop: 16.5 M

founded 13th century
pop: 100,000

founded 1842
pop: 15,000

Barcelona

Delft

3

Graphs Are at the Core of Our Society:

The LinkedIn Example

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

A very good resource for matchmaking workforce and

prospective employers

Vital for your company’s life,

as your Head of HR would tell you

Vital for the prospective employees

Tens of “specialized LinkedIns”: medical, mil, edu, gov, ...

400 million Q3

2015

http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

4

LinkedIn’s Service/Ops Analytics

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

but fewer visitors (and page
views)

3-4 new users every second

By processing the graph:

opinion mining, hub detection,

etc. Always new questions

about whole dataset.

Apr 2014300,000,000100+ million questions of

customer retention,

of (lost) customer influence, of ...

Plus new hypotheses to test on

whole dataset.

http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

5

Why Analytics?

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

but fewer visitors (and page
views)

3-4 new users every second

Great, if you can

process this graph:

opinion mining,

hub detection, etc.

Apr 2014300,000,000100+ million questions of

customer retention,

of (lost) customer influence, of ...

Periodic and/or continuous

full-graph analytics

http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

6

How to do Analytics? Graph Processing @large

A Graph Processing Platform

Streaming not considered in this presentation.

Interactive processing not considered in this presentation.

AlgorithmETL
(Extraction, Transf, Loading)

Active Storage
(filtering, compression,

replication, caching)

Distribution
to processing

platform

7

The Data Deluge vs. Analytics

Graph-processing is at the core of our society

Graph processing @large

Which to select? What to tune? What to re-design?

A performance comparison of graph-processing systems

Take-home message

The data deluge: large-scale graphs

Web graph

~50 billion pages

~1 trillion hyperlinks

Brain network

~100 billion neurons

~100 trillion connections

Source: Smith, CHI’10; Blog webpage; Gigandet et al., PLoS ONE 3(12)]

Social network

~1 billion vertices

~100 billion connections

9

The data deluge: graphs everywhere!

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

400M users

??? edges

10

The data deluge: graphs everywhere!

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Oracle 1.2M followers,
132k employees

The data deluge vs. Analytics

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Oracle 1.2M followers,
132k employees

Data-intesive workload
10x graph size  100x—1,000x slower

12

The data deluge vs. Analytics

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Compute-intesive workload
more complex analysis  ?x slower

Oracle 1.2M followers,
132k employees

Data-intesive workload
10x graph size  100x—1,000x slower

13

The data deluge vs. Analytics

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Compute-intesive workload
more complex analysis  ?x slower

Dataset-dependent workload
unfriendly graphs  ??x slower

Oracle 1.2M followers,
132k employees

Data-intesive workload
10x graph size  100x—1,000x slower

The “sorry, but…” moment

Supporting multiple users
10x number of users  ????x slower

Supporting multiple users
10x number of users  ????x slower

Compute-intesive workload
more complex analysis  ?x slower

Dataset-dependent workload
unfriendly graphs  ??x slower

Data-intesive workload
10x graph size  100x—1,000x slower

What would you do to solve this?

18

Graph Processing @Large

Graph-processing is at the core of our society

The data deluge vs. Analytics

Which to select? What to tune? What to re-design?

A performance comparison of graph-processing systems

Take-home message

19

Graph Processing @large

A Graph Processing Platform

Streaming not considered in this presentation.

Interactive processing not considered in this presentation.

AlgorithmETL

Active Storage
(filtering, compression,

replication, caching)

Distribution
to processing

platform

Ideally,

N cores/disks  Nx

faster

Ideally,

N cores/disks  Nx

faster Ideally, Parallel/

Distributed/

Heterogeneous

Graph processing systems

Custom

Systems

Generic

Systems

Dedicated

Systems

Performance

Development Effort

• Specify application
• Choose the hardware
• Implement & optimize
• Think Graph500 performers

• Use existing distributed systems

• Mapping is difficult

• Parallelism is “free”

• Think Hadoop/Spark

• Systems for graph processing
• Separate users from backends
• Think Giraph

21

System diversity (CPU-based)

YARN

Trinity

Dedicated Systems

Generic

Intel Graphmat

22

System diversity (GPU-enabled)
Dedicated Systems

Generic

23

Graph-Processing Platforms

Platform: the combined hardware, software, and programming system that is
being used to complete a graph processing task

Trinity

2

Which to choose?

What to tune?

What to re-design?

Intel Graphmat

24

Graphalytics:

Which system to select?

What to tune? What to re-design?

Graph-processing is at the core of our society

The data deluge vs. Analytics

Graph processing @large

A performance comparison of graph-processing systems

Take-home message

Benchmarking, but … What Is a Benchmark?

Benchmark definition must include:
Data schema: data representation

Workloads: formalize datasets + algorithms

Performance metrics: from performance to non-traditional to cost-related

Execution rules: how to run the benchmark tests, parameter values, etc.

Desirable support for stakeholders:
Live addition of results

Curation of added results

Auditing results

26

What is the performance of

graph-processing platforms?

• Graph500

• Single application (BFS), Single class of synthetic datasets. @ISC16: future diversification.

• Few existing platform-centric comparative studies

• Prove the superiority of a given system, limited set of metrics

• GreenGraph500, GraphBench, XGDBench

• Issues with representativeness, systems covered, metrics, …

Metrics

Diversity

Graph

Diversity

Algorithm

Diversity

27

What is the performance of

graph-processing platforms?

• Graph500

• Single application (BFS), Single class of synthetic datasets

• Few existing platform-centric comparative studies

• Prove the superiority of a given system, limited set of metrics

• GreenGraph500, GraphBench, XGDBench

• Representativeness, systems covered, metrics, …

Metrics

Diversity

Graph

Diversity

Algorithm

Diversity

Graphalytics = comprehensive benchmarking suite for

graph processing across many platforms

Why is “LDBC” here?

ldbcouncil.org

29

Graphalytics, in a nutshell

http://graphalytics.ewi.tudelft.nl

https://github.com/tudelft-atlarge/graphalytics/

• An LDBC benchmark*

• Advanced benchmarking harness

• Many classes of algorithms used in practice

• Diverse real and synthetic datasets

• Diverse set of experiments representative for practice

• Granula for manual choke-point analysis

• Modern software engineering practices

• Supports many platforms

• Enables comparison of community-driven and industrial systems

30

Benchmarking Harness

Iosup et al. LDBC Graphalytics: A Benchmark for Large

Scale Graph Analysis on Parallel and Distributed Platform, VLDB’16.

31

Graphalytics = Representative

Classes of Algorithms and Datasets

• 2-stage selection process of algorithms and datasets

Class Examples %

Graph Statistics Diameter, Local Clust. Coeff., PageRank 20

Graph Traversal BFS, SSSP, DFS 50

Connected Comp. Reachability, BiCC, Weakly CC 10

Community Detection Clustering, Nearest Neighbor,

Community Detection w Label Propagation

5

Other Sampling, Partitioning <15

Guo et al. How Well do Graph-Processing Platforms Perform? An Empirical Performance

Evaluation and Analysis, IPDPS’14.

+ weighted graphs: Single-Source Shortest Paths (~35%)

http://goo.gl/V97zSW

Graphalytics = Distributed Graph

Generation w DATAGEN

Person

Generation

Edge

Generation

Activity

Generation

“Knows”

graph

serializatio

n

Activity

serialization

Graphalytics

32

• Rich set of configurations

• More diverse degree distribution than Graph500

• Realistic properties, e.g., clustering coefficient and assortativity

Level of

Detail

33

Graphalytics = Diverse Automated Experiments

Category Experiment Algo. Data Nodes/

Threads

Metrics

Baseline Dataset variety BFS,PR All 1 Run, norm.

Algorithm variety All R4(S),

D300(L)

1 Runtime

Scalability Vertical vs. horiz. BFS, PR D300(L),

D1000(XL)

1—16/1—32 Runtime, S

Weak vs. strong BFS, PR G22(S)—

G26(XL)

1—16/1—32 Runtime, S

Robustness Stress test BFS All 1 SLA met

Variability BFS D300(L),

D1000(L)

1/16 CV

Self-Test Time to run/part -- Datagen 1—16 Runtime

Graphalytics = Portable

Performance Analysis w Granula

Graph Processing System

Logging Patch

Performance

Analyzer

Granula

Performance

Archive

Granula

Performance

Model

Modeling
Archiving

logs

rules

Granula

Archiver

Sharing

Monitoring

Minimal code invasion + automated data collection at runtime

+ portable archive (+ web UI)  portable bottleneck analysis

35

Graphalytics = Modern Software

Engineering Process

https://github.com/tudelft-atlarge/graphalytics/

Graphalytics code reviews
Internal release to LDBC partners (first, Feb 2015; last, Feb 2016)

Public release, announced first through LDBC (Apr 2015)

First full benchmark specification, LDBC criteria (Q1 2016)

Jenkins continuous integration server

SonarQube software quality analyzer

Implementation status
MR
2

Gi-
raph

Graph
X

Power

Graph

Graph
Lab

Neo4j PGX.
D

Grap

h

Mat

Open

G

TOTEM Map
Graph

Me
du

sa

LCC G G G G G G -- G G -- -- --

BFS G G G G G G G G G V V V

WCC G G G G G G G G G V V V

CDLP G G G G G G G G G -- -- --

P’Ran
k

-- G G G V -- G G G V V V

SSSP -- G G G -- -- G G G -- -- --

https://github.com/tudelft-atlarge/graphalytics/

G=validated, on GitHub

V=validation stage

Implementation status
MR
2

Gi-
raph

Graph
X

Power

Graph

Graph
Lab

Neo4j PGX.
D

Grap

h

Mat

Open

G

TOTEM Map
Graph

Me
du

sa

LCC G G G G G G -- G G -- -- --

BFS G G G G G G G G G V V V

WCC G G G G G G G G G V V V

CDLP G G G G G G G G G -- -- --

P’Ran
k

-- G G G V -- G G G V V V

SSSP -- G G G -- -- G G G -- -- --

Benchmarking and tuning performed by vendors

G=validated, on GitHub

V=validation stage

38

Graphalytics Capabilities: An Example
Graphalytics enables deep comparison of many systems at once, through

diverse experiments and metrics

Your system here!

Diverse algorithms Diverse metrics

Diverse

datasets

39

Processing time (s) + Edges[+Vertices]/s

Which system is the best?

It depends…

Algorithm + Dataset + Metric

OK, but … why is this system better

for this workload for this metric?

40

Graphalytics:

Which system to select?

What to tune? What to re-design?

Graph-processing is at the core of our society

The data deluge vs. Analytics

Graph processing @large

A performance comparison of graph-processing systems

Take-home message

Coarse-grained vs Fine-grained Evaluation (1)

Fine-grained evaluation method is more comprehensive

system viewed as a black-box
Coarse-grained Method Fine-grained Method

system viewed as a white-box

Algorithms, Datasets, Resources Algorithms, Datasets, Resources

(Overall Execution Time)

Graph

processing

system

Fine-grained metricsCoarse-grained metrics

IO operations

Processing

Overheads

(Stage 3 time, straggler tasks)

Coarse-grained vs Fine-grained Evaluation (2)

… but more time-consuming, esp. to implement

knowledge at conceptual level

Graph

Processing

Systems

Distributed

Infrastructure

Few, coarse-grained results

Coarse-grained Method Fine-grained Method

Many, fine-grained results

knowledge at technical level

Fine-grained evaluation method is more comprehensive

GranularAbstract

Graphalytics:

Granula Overview

Modeling

Archiving Visualizing

1

2 3

Concepts

Information

Feedback

https://github.com/tudelft-atlarge/granula/

Fine-grained Method

Granular

1

2

3

Granula Modeller

Operation [Actor @ Mission]

Operation

Operation Operation Operation

Info [StartTime]

Info [EndTime]

Info [….............]

Visual

Visual

Visual

Job

:
:

1

2

31

Time-consuming, expert-only,

Done only once per platform, but incrementally

Incremental Model of Graph-Processing in Giraph
Granula Modeller

1

Granula Archiver

Graph Processing System

Logging Patch

Performance

Analyzer

Job

Performance

Archive

Performance

Model

Modeling Archiving

logs

rules

Granula

Archiver

1

2

3
2

Time-consuming, minimal code invasion,

automated data collection at runtime, portable archive

Granula Visualizer
Portable choke-point analysis for everyone!

3

Computation imbalance!

48

A Performance Comparison of

Graph-Processing Systems

Graph-processing is at the core of our society

The data deluge vs. Analytics

Graph processing @large

Graphalytics: Which system to select? What to tune? What to re-design?

Take-home message

BFS Algorithm: All CPU Platforms, All Datasets

No platform runs fastest for all graphs, but Hadoop is the worst performer.

Not all platforms can process all graphs, but Hadoop processes everything.

Better

Always consider reliability!

PageRank Algorithm: All GPU Platforms, Datasets

10
0

10
1

10
2

10
3

10
4

Amazon

WikiTalk

Citation

KGS
DotaLeague

Scale-22

A
lg

o
ri

th
m

 r
u

n
 t

im
e

 [
m

s]

Datasets

M

T-H

T-G

MG

Better

• Medusa, MapGraph fail on larger

datasets, with MG failing earlier

• Medusa better for small datasets

• Totem the only system able to

process all tried datasets

Guo et al. How Well do Graph-Processing Platforms Perform? An

Empirical Performance Evaluation and Analysis, IPDPS’14.

Always consider reliability!

http://goo.gl/V97zSW

53

2 orders of magnitude

difference due to platform

M. Capota et al., Graphalytics: A Big Data Benchmark

for Graph-Processing Platforms. SIGMOD GRADES 2015

Runtime: The Platform Has Large Impact

Better

54

Neo4j : MapReduce ~ 1:2

Neo4j can fail

Runtime: The Dataset Has Large Impact

M. Capota et al., Graphalytics: A Big Data Benchmark

for Graph-Processing Platforms. SIGMOD GRADES 2015

Neo4j : MapReduce ~ 2:1

Better

55

~7x smaller

Throughput: The Dataset Has Large Impact

M. Capota et al., Graphalytics: A Big Data Benchmark

for Graph-Processing Platforms. SIGMOD GRADES 2015

~2.5x larger

~20x difference
Better

56

The Platform-Algorithm-Dataset (PAD) Triangle

for Performance Engineering of

Graph-Processing Systems

Algorithm

Dataset Platform

Overstudied
Performance is enabled
Portability is disabled

In progress
Algorithms for different
data types and graphs

Understudied
No systematic findings yet
Must be correlated with the algorithm

Introduced

by Ana Lucia

Varbanescu.

Lessons learned*

Performance of graph processing is function of

(Dataset, Algorithm, Platform, Deployment)

All current platforms have important drawbacks

(crashes, long execution time, tuning, etc.)

Best-performing is not only low response time

Scalability with cluster size/number of cores varies per system

Ease-of-use of a platform is very important

58

Take-Home Message

Graph-processing is at the core of our society

The data deluge vs. Analytics

Graph processing @large

Graphalytics: Which system to select? What to tune? What to re-design?

A performance comparison of graph-processing systems

Take-Home Message

Custom

Generic

Dedicated

Systems

Performance

Development Effort

Graphalytics: unified view and benchmarking of

tens of systems, with little effort

The P-A-D Triangle:

Performance = f (Algorithm, Dataset, Platform, …)

Granula: iterative, fine-grained, shareable performance evaluation to

enable performance engineering

Towards addressing the graph data deluge with

high performance, low development effort

60

Reading List

• Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat Perez,

Thomas Manhardt, Hassan Chaffi, Mihai Capotă, Narayanan Sundaram, Michael Anderson,

Ilie Gabriel Tanase, Yinglong Xia, Lifeng Nai, Peter Boncz, LDBC Graphalytics: A Benchmark forLarge-Scale

Graph Analysis on Parallel andDistributed Platforms, VLDB’16.

• Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Erling, and Peter Boncz, Graphalytics: A

Big Data Benchmark for Graph-Processing Platforms, International Workshop on Graph Data Management

Experiences and Systems (GRADES), 2015.

• Guo et al., An Empirical Performance Evaluation of GPU-Enabled Graph-Processing Systems. CCGRID’15.

• A. Iosup, A. L. Varbanescu, M. Capotă, T. Hegeman, Y. Guo, W. L. Ngai, and M. Verstraaten, Towards

Benchmarking IaaS and PaaS Clouds for Graph Analytics, Workshop on Big Data Benchmarking (WBDB), 2014.

• Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke, How Well Do Graph-Processing

Platforms Perform? An Empirical Performance Evaluation and Analysis, IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2014, pp. 395–404.

• Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke, Benchmarking graph-processing platforms,

ACM/SPEC International Conference on Performance Engineering (ICPE), 2014, pp. 289–292.

61

64

System diversity (GPU-enabled)
Dedicated Systems

Generic

65

Medusa

• Enables the use of GPUs for graph processing

• Single-node, multiple GPUs

• In-memory processing

• Simple API that hides GPU programming

• Edge- / vertex-granularity that enables fine-grained parallelism.

• API calls are grouped in kernels

• Kernels are scheduled on one or multiple GPUs

• Run-time for communicating with the GPU

66

Totem

• Enables use of GPUs (T-G)

• Enables *single-node* heterogeneous (T-H) computing on graphs

• Programming requires expert knowledge of all types of systems

• C+CUDA+API for specifying applications

• Based on BSP

• Partitions the data (edge-based) between CPUs and GPUs

• Based on processing capacity

• Minimizing the overhead of communication

• Buffer schemes, aggregation, smart partitioning

67

MapGraph

• Target at high performance graph analytics on GPUs.

• Single GPU available and Multi-GPU ready

• Also available in a CPU-only version

• API based on the Gather-Apply-Scatter (GAS) model as used in

GraphLab.

• Productivity-oriented API

Lessons learned from GPU-based systems

Brave attempts to enable the use of GPUs *inside* graph processing systems

Every system has its own quirks

Lower level programming allows more optimizations, better performance

Higher level APIs allow more productivity

No clear winner, performance-wise

Challenge:

Distributed accelerated graph-processing

69

System diversity (CPU-based)

YARN

Trinity

Dedicated Systems

Generic

Hadoop (Generic)

The most popular MapReduce implementation

Generic system for large-scale computation

Pros:
Easy to understand model

Multitude of tools and storage systems

Cons:
Express the graph application in MapReduce

Costly disk and network operations

No specific graph processing optimizations

Hadoop2 with YARN (Generic)

Next generation of Hadoop
Supports old MapReduce jobs

Designed to facilitate multiple programming models (frameworks,

e.g., Spark)

Separates resource management (YARN) and

job management
MapReduce uses resources provided by YARN

Stratosphere (Generic)

Now Apache Flink (now 6M$ investment from Intel)

Nephele resource manager
Scalable parallel engine

Jobs are represented as DAGs

Supports data flow in-memory, via network, or via files

PACT job model
5 second-order functions (MapReduce has 2):

Map, Reduce, Match, Cross, and CogGroup

Code annotations for compile-time plans

Compiled as DAGs for Nephele

Pregel: dedicated graph-processing +

Apache Giraph (Dedicated)

Proposed a vertex-centric model for graph processing
Graph-to-graph transformations

Front-end:
Write the computation that runs on all vertices

Each vertex can vote to halt

All vertexes halt => terminate

Can add/remove edges and vertices

Back-end:
Uses the BSP model

Message passing between nodes

Combiners, aggregators

Checkpointing for fault-tolerance

GraphLab (Dedicated)

Distributed programming

model for machine learning
Provides an API for graph processing, C++ based

(now Python)

All in-memory

Supports asynchronous processing

GraphChi is its single-node version,

Dato as GraphLab company

Neo4J (Dedicated)

Very popular graph database
Graphs are represented as relationships and annotated vertices

Single-node system
Uses parallel processing

Additional caching and query optimizations

All in-memory

The most widely used solutions for medium-scale problems

Cluster version in development

PGX.D (Dedicated)

Attend presentation of SC15 article!

Designed for beefy clusters
Fully exploits the underlying resources of modern

beefy cluster machines

Low-overhead communication mechanism
Lightweight cooperative context switching mechansim

Support for data-pulling (also data-pushing)
Intuitive transformation of classical graph algorithms

Reducing traffic and balancing workloads
Several advanced techniques: Selective Ghostnodes,

edge based partitioning, edge chunking

PGX.D: Programming Model
High level programming model for Neighborhood Iteration Tasks

foreach(n: G.nodes)
foreach(t: n.Nbrs)

n.foo += t.bar class my_task_pull : public innbr_iter_task {
void run(..) {
read_remote(get_nbr_id(), bar);

}
void read_done(void* buffer,..) {
int foo_v = get_local<int>(node_id, foo);
int bar_v= get_data<int>(buffer);
set_local(node_id, foo_v + bar_v, foo);

}
}

gm
compiler

GraphMat (Dedicated)

 Vertex programming as front-end and

sparse matrix operations as back-end

 “Matrix level performance with

vertex program productivity”

 Unifying vertex programming w

linear algebra is new

𝐴 𝐵 𝐶 𝐷 𝐸

𝐺𝑇 =

𝐴
𝐵
𝐶
𝐷
𝐸

− − − − 4
1 − − − −
3 1 − − −
2 − 2 − −
− − − 2 −

B A

C D

E1

2

1
3

4

2 2

A Vertex Program (Single Source Shortest Path) ~ Giraph

SEND_MESSAGE : message ≔ vertex_distance

PROCESS_MESSAGE : result ≔ message + edge_value

REDUCE : result ≔ min(result, operand)

APPLY : vertex_distance = min(result, vertex_distance)

Example

Granula Archiver

Graph Processing System

Logging Patch

Performance

Analyzer

Job

Performance

Archive

Performance

Model

Modeling Archiving

logs

rules

Granula

Archiver

1

2

3
2

Time-consuming, minimal code invasion,

automated data collection at runtime, portable archive

Granula Visualizer
1

2

3
3

Portable choke-point analysis for everyone!

PGX.D: System Design Overview

Fast Network Connection

M2

Communication
Manager

copier thread

copier thread

copier thread RES RES RES
…

REQ REQ REQ
…

Data
Manager

Task
Manager

Distributed
Property

Graph

Ghostnodes

Local Graph

Graph
Loader

Edge-Partitioning

poller thread

worker thread

worker thread

worker thread

M1

Edge
chunking

Task Task Task Task Task…

…

84

Icons

