
BENCHMARKING PLATFORMS

FOR LARGE-SCALE GRAPH

PROCESSING

The LDBC Approach

Find us online: graphalytics.ewi.tudelft.nl

https://github.com/tudelft-atlarge/graphalytics/

Tutorial

Your hosts today

 Alexandru Iosup, Tim Hegeman
 Delft University of Technology, The Netherlands

 Ana Lucia Varbanescu
 University of Amsterdam, The Netherlands

 Arnau Prat Perez
 UPC Barcelona, Spain

 Mihai Capota
 Intel Labs, USA

 Thomas Manhardt
 Oracle Labs, USA

+ team members:

Wing Lung Ngai,

M. Biczak (TU Delft)

Josep Larriba-Pey (UPC)

Peter Boncz (CWI)

Alex Averbuch (Neo4j)

Before we proceed

 Download and Install VirtualBox from

http://virtualbox.com
During the break before the hands-on session (or now)

http://virtualbox.com/

Size matters

The need for benchmarking

Linked data

The data deluge: large-scale graphs

Social network

~1 billion vertices
~100 billion connections

Web graph

~50 billion pages

~1 trillion hyperlinks

Brain network

~100 billion neurons

~100 trillion connections

Source: Smith, CHI’10; Blog webpage; Gigandet et al., PLoS ONE 3(12)]

Graphs Are at the Core of Our Society:

The LinkedIn Example

6

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

A very good resource for matchmaking workforce

and prospective employers

Vital for your company’s life,

as your Head of HR would tell you

Vital for the prospective employees

Tens of “specialized LinkedIns”: medical, mil, edu, gov, ...

400 million
Q3 2015

http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

LinkedIn’s Service/Ops Analytics

7

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

but fewer visitors (and
page views)

3-4 new users every
second

By processing the graph:

opinion mining,

hub detection, etc.

Apr 2014300,000,000100+ million questions of

customer retention,

of (lost) customer influence,

of ...

http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

Why Analytics?

8

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

but fewer visitors (and
page views)

3-4 new users every
second

Great, if you can

process this graph:

opinion mining,

hub detection, etc.

Apr 2014300,000,000100+ million questions of

customer retention,

of (lost) customer influence,

of ...

Periodic and/or

continuous analytics

at full scale

http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

The data deluge: graphs everywhere!
9

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

400M users

??? edges

The data deluge: graphs everywhere!
10

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Oracle 1.2M followers,
132k employees

The data deluge: graphs everywhere!

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Oracle 1.2M followers,
132k employees

Data-intesive workload
10x graph size  100x—1,000x slower

The data deluge: graphs everywhere!
12

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Compute-intesive workload
more complex analysis  ?x slower

Oracle 1.2M followers,
132k employees

Data-intesive workload
10x graph size  100x—1,000x slower

The data deluge: graphs everywhere!
13

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Compute-intesive workload
more complex analysis  ?x slower

Dataset-dependent workload
unfriendly graphs  ??x slower

Oracle 1.2M followers,
132k employees

Data-intesive workload
10x graph size  100x—1,000x slower

The “sorry, but…” moment

The “sorry, but…” moment

Supporting multiple users
10x number of users  ????x slower

Graph Processing @large

18

A Graph Processing Platform

Streaming not considered in this presentation.

Interactive processing not considered in this presentation.

AlgorithmETL

Active Storage
(filtering, compression,

replication, caching)

Distribution
to processing

platform

Graph Processing @large

19

A Graph Processing Platform

Streaming not considered in this presentation.

Interactive processing not considered in this presentation.

AlgorithmETL

Active Storage
(filtering, compression,

replication, caching)

Distribution
to processing

platform

Ideally,

N cores/disks 

Nx faster

Ideally,

N cores/disks 

Nx faster

Graph-Processing Platforms
Platform= the combined hardware, software, and programming

system that is being used to complete
a graph processing task

20

Trinity

2

Which to choose?

What to tune?

In this tutorial…

 Graphalytics = benchmarking graph analytics

 Analytics = graph processing @large

 Platform = hardware and/or software and/or

programming model we can tune and change

 (Graph) Processing system = computing system that

includes one or more platforms (for graph processing)

 Choke point = system component or workload

characteristic, or combinations thereof, that lead to

poor system performance

Agenda

 Introduction to Linked Data

 LDBC Approach

 Graphalytics

 Systems and models

 Methodology for performance evaluation of graph-
processing platforms

 Graphalytics architecture

 The hour of benchmarking

 Hands-on Graphalytics

 Results analysis & lessons learned

 Fine-grained in-depth analysis with Granula

 Summary & Panel/open discussion

Benchmarking graph-processing activities

About the Linked Data Benchmarking

Council (LDBC)

ldbcouncil.org

Audience

 For developers facing graph processing tasks

 recognizable scenario to compare merits of different
products and technologies

 For vendors of graph processing technology

 checklist of features and performance characteristics

 For researchers, both industrial and academic

 challenges in multiple choke-point areas such as graph
query optimization and (distributed) graph analysis

LDBC Task Forces

 Semantic Publishing Benchmark Task Force

 Develops industry-grade RDF benchmark

 Social Network Benchmark Task Force

 Develops benchmark for graph data management systems

 Broad coverage: three workloads

 Graph Analytics Task Force  Graphalytics

 Spin-off from the SNB task force

 Graph Query Language Task Force

 Not strictly about benchmarking

 Studies features of graph database query languages

Semantic Publishing Benchmark (SPB)

SPB scope

 The scenario involves a media/ publisher
organization that maintains semantic metadata
about its Journalistic assets (articles, photos,
videos, papers, books, etc), also called Creative
Works

 The Semantic Publishing Benchmark simulates:

 Consumption of RDF metadata (Creative Works)

 Updates of RDF metadata, related to Annotations

 Aims to be an industrially mature RDF database
benchmark (SPARQL1.1, some reasoning, text and

GIS queries, backup&restore)

Social Network Benchmark (SNB)

 Intuitive: everybody knows what a SN is

 Facebook, Twitter, LinkedIn, …

 SNs can be easily represented as a graph

 Entities are the nodes (Person, Group, Tag, Post, ...)

 Relationships are the edges (Friend, Likes, Follows, …)

 Different scales: from small to very large SNs

 Up to billions of nodes and edges

 Multiple query needs:

 interactive, analytical, transactional

 Multiple types of uses:

 marketing, recommendation, social interactions, fraud detection, ...

Synthetic graph generation

LDBC Social Network Benchmark (SNB)

Why a synthetic graph generator?
31

 Real graphs are sometimes difficult to obtain

 Not practical to distribute TeraBytes of data

 Privacy concerns

 Real data do not always have the desired

characteristics

Many dimensions to be tested (size, distributions, structural

characteristics, etc.) as they can affect the performance of

the tested systems

 Difficult to obtain real data for all the desired dimension

combinations

Generator’s features (wish list)
32

 Scalable

 From GigaBytes to TeraBytes of data

 Realistic

 Distributions: attributes, degrees, etc.

 Correlations: attributes, edges, etc.

 Structural characteristics: clustering coefficient, largest
connected component, diameter, etc.

 Flexible

 Allow choosing the characteristics of the generated data

 Support different output formats

LDBC DATAGEN
33

 DATAGEN is a fork of S3G2[1]

 Developed during LDBC European Project as the

data generator for the LDBC Social Network

Benchmark Workloads

 Available at:

https://github.com/ldbc/ldbc_snb_datagen

[1] Pham, Minh-Duc, Peter Boncz, and Orri Erling. "S3g2: A scalable structure-correlated social

graph generator." Selected Topics in Performance Evaluation and Benchmarking. Springer Berlin

Heidelberg, 2013. 156-172.

https://github.com/ldbc/ldbc_snb_datagen

LDBC DATAGEN
34

 Generates a Social Network graph

 Uses dictionaries extracted from Dbpedia to populate
the dataset with realistic attributes

 e.g. Person names, countries, companies, tags (interests)

 Correlated attributes

 e.g. Person names with countries, correlations between tags,
etc.

 Realistic distributions

 Facebook-like degree distribution, attribute distributions etc.

 Event-based user activity generation

Mimick spikes of activity around specific events

LDBC DATAGEN
35

 Built on top of Hadoop

 Able to generate Terabytes of data with a small
commodity cluster

 Billion edge graphs in few hours

 Deterministic

LDBC DATAGEN
36

 Continuously evolving towards a more flexible data

generator

 Support for different degree distributions: Zipf,

MOEZipf, Geometric, Discrete Weibull, etc.

 Able to tune structural characteristics of the network

(e.g. clustering coefficient, assortativity, etc.)

 Custom data serializers

 A more flexible schema definition

37

Generation Process

Person

Generati

on

Edge

Generation

Activity

Generation

Knows

graph

serializa

tion

Activity

serializa

tion

Graphalytics

38

Person Generation

 A 4-machine cluster

 100,000 Person network

 Block size m= 10,000 => 10 blocks in total

Block n

DBpedia

dictionaries

Random number

generatorsDegree sequence

generator

P0 P1 P2 … Pm-1

Each block has its

own independent

state, which depends

only on the block id.

This guarantees

determinism.

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Node 0

Node 1

Node 2

Node 3

map/reduce

Persons.file

39

Edge Generation

Edge

Generation

Substep

(Main

Interest)

Edge

Generation

Substep
(University-age-

gender)

Edge

Generation

Substep

(Random)

Edges

Merge

40

Edge Generation

Edge

Generation

Substep

(Main

Interest)

Edge

Generation

Substep
(University-age-

gender)

Edge

Generation

Substep

(Random)

Edges

Merge

41

One substep for each

correlation dimension

Edge Generation Substep

Parallel sort

and rank Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge

generation

42

Persons.file Persons.file.sorted
Edge.file.n

Edge Generation Substep

Parallel sort

and rank

 Sort by correlation dimension:

 e.g. Main interest, University-age,
random

 Set Person keys as their position in
the sorted array (between 0 and
N-1)

43

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge

generation

Persons.file Persons.file.sorted
Edge.file.n

Edge Generation Substep

Parallel sort

and rank

Persons.file Persons.file.sorted
Edge.file.n

Independent

state

P0 P1 P2 Pm-1

Block n

o The probability of creating an edge

decreases geometrically with the distance

o Persons with similar characteristics (close

in the sorted array) are more likely to be

connected, producing a correlated graph

o The amount of edge a person can create

depends on its assigned target degree

44

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge

generation

Edge Merge

Merge

edges

Edges.file.0

Edges.file.1

Edges.file.2
To eliminate duplicate edges

between the same pair of Persons

Persons.Edges.file

45

Knows graph serialization

 Finally, Persons.Edges.file is read and serialized into

HDFS using a configurable serializer.

 Serializers implement ldbc.snb.datagen.serializer*

interfaces

 To write to HDFS

 To directly bulk load data into the Database System

 Provided CSV serializers

 Can output compressed files

46

Performance snapshot
47

 Cluster with four nodes:

 Intel Xeon E5530 @ 2.4 Ghz (4 cores, Year 2010)

 32Gb of RAM

 7200 rpm spinning disks

 1 master, 3 slaves

 12 reducers in total

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000

T
im

e
 (
s)

Millions of Edges

5

hours

Scale Factors

 Provided Scale Factors for LDBC SNB Interactive

and Graphalytics

 Scale factors are just configuration presets of

DATAGEN

Scale Factor #Persons #Edges

Graphalytics.10 235,000 10,000,000

Graphalytics.30 592,500 30,000,000

Graphalytics.100 1,167,000 100,000,000

Graphalytics.300 4,350,000 300,000,000

Graphalytics.1000 12,750,000 1,000,000,000

Graphalytics.3000 32,500,000 3,000,000,000

Final remarks

 The generated Graph is structurally correlated

 Persons tend to be connected with similar people

 Characteristics typical from real social networks

 6-degrees of separation, large connected component,

moderately large clustering coefficient, skewed distribution

 Very good scalability: current experiments show linear

scalability

 Rapidly evolving to support new features such as tuning

structural properties of the graph, or being able to

change the generated schema

Questions?

Agenda

 Introduction to Linked Data

 LDBC Approach

 Graphalytics

 Systems and models

 Methodology for performance evaluation of graph-
processing platforms

 Graphalytics architecture

 The hour of benchmarking

 Hands-on Graphalytics

 Results analysis & lessons learned

 Fine-grained in-depth analysis with Granula

 Summary & Panel/open discussion

Systems and models

Graph processing @ scale

 The characteristics of graph processing

 Poor locality

 Unstructured computation

 Variable parallelism

 Low computer-to-memory ratio

 @ Scale: resources matter

 Distributed processing is mandatory

 Parallel processing is very useful

Implementing graph applications is already difficult. Dealing with large

scale systems on top (below, in fact) them is even harder.

Graph processing systems

 Provide simplified ways to develop graph processing

applications

 Typical scenario: analytics on single- or multi-node platfoms

 Heterogeneity is becoming popular

 Target *productivity* and *performance*

 Productivity => ease-of-implementation, development time

 Performance => optimized back-ends / engines /runtimes

 Portability comes “for free”

 Both commercial and academic, many open-source

Graph processing systems

Custom

Generic

Dedicated

Systems

• Specify application

• Choose the hardware

• Implement & optimize

• Think Graph500

• Use existing large scale

distributed systems

• Mapping is difficult

• Parallelism is “free”

• Think MapReduce

• Systems for graph processing

• Separate users from backends

• Think Totem, Medusa,

• Think Giraph, GraphLab, PGX

Performance

Development

Effort

Before Graphalytics: we did extensive

performance evaluation of tens of systems

(presented next), with considerable effort

but without a unified view

GPU-enabled dedicated systems

Platforms we have evaluated

 Accelerated, Dedicated

 Medusa

 Totem

 MapGraph

 In progress…

 Ligra

 Gunrock

Medusa

 Enables the use of GPUs for graph processing

 Single-node, multiple GPUs

 In-memory processing

 Simple API that hides GPU programming

 Edge- / vertex-granularity that enables fine-grained

parallelism.

 API calls are grouped in kernels

 Kernels are scheduled on one or multiple GPUs

 Run-time for communicating with the GPU

Totem

 Enables *single-node* heterogeneous computing on graphs

 C+CUDA+API for specifying applications

 Based on BSP

 Partitions the data (edge-based) between CPUs and GPUs

 Based on processing capacity

 Minimizing the overhead of communication

 Buffer schemes, aggregation, smart partitioning

 Shows promising performance

 BFS

 PageRank

 Betweenness centrality

MapGraph

 Target at high performance graph analytics on

GPUs.

 API based on the Gather-Apply-Scatter (GAS)

model as used in GraphLab.

 Productivity-oriented API

 Single GPU available and Multi-GPU ready

 Also available in a CPU-only version

Evaluation setup

 Use GPU-enabled graph platforms to compare their
performance*

 Datasets:

 SNAP repository

 The Game Trace Archive

 Graph500 generated benchmarks

 Scale-22/Synth

 Algorithms

 BFS (traversal)

 PageRank

 Weakly connected components

*Yong Guo et. al: An Empirical Performance Evaluation of GPU-
Enabled Graph-Processing Systems. CCGrid 2015, May 2015

PageRank [algorithm]

10
0

10
1

10
2

10
3

10
4

Amazon

W
ikiTalk

Citation

KGS
DotaLeague

Scale-22

A
lg

o
ri

th
m

 r
u

n
 t

im
e

 [
m

s
]

Datasets

M

T-H

T-G

MG

Better

PageRank [full]

10
0

10
1

10
2

10
3

10
4

Amazon

W
ikiTalk

KGS
Citation

DotaLeague

Synth

E
x
e

c
u
ti
o
n

 t
im

e
 [
m

s
]

Datasets

M

T-H

T-G

MG

Better

Lessons learned

 Brave attempts to enable the use of GPUs *inside*
graph processing systems

 Every system has its own quirks

 Lower level programming allows more optimizations,
better performance

 Higher level APIs allow more productivity

 No clear winner, performance-wise

 Challenge:

 Distributed accelerated graph-processing

Distributed/Large Scale platforms

Interesting platforms

 Distributed or non-distributed

 Dedicated or generic

YARN

Non-distributed

(Dedicated)
Distributed (Generic)

Distributed

(Dedicated)

Hadoop (Generic)

 The most popular MapReduce implementation

 Generic system for large-scale computation

 Pros:

 Easy to understand model

 Multitude of tools and storage systems

 Cons:

 Express the graph application in MapReduce

 Costly disk and network operations

 No specific graph processing optimizations

Hadoop2 with YARN (Generic)

 Next generation of Hadoop

 Supports old MapReduce jobs

 Designed to facilitate multiple programming models

(frameworks, e.g., Spark)

 Separates resource management (YARN) and

job management

 MapReduce uses resources provided by YARN

Stratosphere (Generic)

 Now Apache Flink

 Nephele resource manager

 Scalable parallel engine

 Jobs are represented as DAGs

 Supports data flow in-memory, via network, or via files

 PACT job model

 5 second-order functions (MapReduce has 2):
Map, Reduce, Match, Cross, and CogGroup

 Code annotations for compile-time plans

 Compiled as DAGs for Nephele

Pregel: dedicated graph-processing

 Proposed a vertex-centric model for graph processing

 Graph-to-graph transformations

 Front-end:

 Write the computation that runs on all vertices

 Each vertex can vote to halt

 All vertexes halt => terminate

 Can add/remove edges and vertices

 Back-end:

 Uses the BSP model

 Message passing between nodes

 Combiners, aggregators

 Checkpointing for fault-tolerance

Pregel

Pregel

Apache Giraph (Dedicated)

 Based on the Pregel model

 Uses YARN as back-end (yet another framework)

 In-memory

 Limitations in terms of partition sizes

 Spilling to disk added recently, removes memory

limitations

 Enables

 Iterative data processing

 Message passing, aggregators, combiners

GraphLab (Dedicated)

 Distributed programming model for machine learning

 Provides an API for graph processing, C++ based (now Python)

 All in-memory

 Supports asynchronous processing

 GraphChi is its single-node version,

Dato as GraphLab company

Neo4J (Dedicated)

 Very popular graph database

 Graphs are represented as relationships and
annotated vertices

 Single-node system

 Uses parallel processing

 Additional caching and query optimizations

 All in-memory

 The most widely used solutions for medium-scale
problems

 Cluster version
in development

PGX.D (Dedicated)

 Designed for beefy clusters

 Fully exploits the underlying resources of modern beefy
cluster machines

 Low-overhead communication mechanism

 Lightweight cooperative context switching mechansim

 Support for data-pulling (also data-pushing)

 Intuitive transformation of classical graph algorithms

 Reducing traffic and balancing workloads

 Several advanced techniques: Selective Ghostnodes, edge
based partitioning, edge chunking

Attend presentation of SC15 article!

PGX.D: System Design Overview

Fast Network Connection

M2

Communication
Manager

copier thread

copier thread

copier thread RES RES RES
…

REQ REQ REQ
…

Data
Manager

Task
Manager

Distributed
Property

Graph

Ghostnodes

Local Graph

Graph
Loader

Edge-Partitioning

poller thread

worker thread

worker thread

worker thread

M1

Edge
chunking

Task Task Task Task Task…

…

PGX.D: Programming Model

High level programming model for Neighborhood Iteration Tasks

class my_task_pull : public innbr_iter_task {
void run(..) {
read_remote(get_nbr_id(), bar);

}
void read_done(void* buffer,..) {
int foo_v = get_local<int>(node_id, foo);
int bar_v= get_data<int>(buffer);
set_local(node_id, foo_v + bar_v, foo);

}
}

foreach(n: G.nodes)
foreach(t: n.Nbrs)

n.foo += t.bar

gm
compiler

GraphMat (Dedicated)

 Vertex programming as front-end and

sparse matrix operations as back-end

 “Matrix level performance with

vertex program productivity”

 Unifying vertex programming w

linear algebra is new

𝐴 𝐵 𝐶 𝐷 𝐸

𝐺𝑇 =

𝐴
𝐵
𝐶
𝐷
𝐸

− − − − 4
1 − − − −
3 1 − − −
2 − 2 − −
− − − 2 −

B A

C D

E1

2

1
3

4

2 2

A Vertex Program (Single Source Shortest Path) ~ Giraph

SEND_MESSAGE : message ≔ vertex_distance

PROCESS_MESSAGE : result ≔ message + edge_value

REDUCE : result ≔ min(result, operand)

APPLY : vertex_distance = min(result, vertex_distance)

Example

∞
∞
∞
∞
∞

𝐼𝑛𝑖𝑡

0
∞
∞
∞
∞

− − − − 4
1 − − − −
3 1 − − −
2 − 2 − −
− − − 2 −

,

0
−
−
−
−

𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

+
𝑅𝑒𝑑𝑢𝑐𝑒

−
1
3
2
−

−
1
3
2
−

,

0
∞
∞
∞
∞

𝐴𝑝𝑝𝑙𝑦

0
1
3
2
∞

Iteration

0

− − − − 4
1 − − − −
3 1 − − −
2 − 2 − −
− − − 2 −

,

−
1
3
2
−

𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

+
𝑅𝑒𝑑𝑢𝑐𝑒

−
−
2
5
4

−
−
2
5
4

,

0
1
3
2
∞

𝐴𝑝𝑝𝑙𝑦

0
1
2
2
4

Iteration

1

𝑆𝑒𝑛𝑑
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑆𝑒𝑛𝑑
𝑚𝑒𝑠𝑠𝑎𝑔𝑒

B A

C D

E1

2

1
3

4

2 2

B A

C D

E1

2

1
3

4

2 2

B A

C D

E1

2

1
3

4

2 2

0 ∞∞

∞∞

0 ∞1

23

0 41

22

reduced

values

previous

distances

updated

distances

Single Source Shortest Path

SEND_MESSAGE : message ≔ vertex_distance

PROCESS_MESSAGE : result ≔ message + edge_value

REDUCE : result ≔ min(result, operand)

APPLY : vertex_distance = min(result, vertex_distance)

Setup*

 Benchmarking-like experiment

 6 algorithms:

 Stats, BFS, PageRank, connected components, community detection,
graph evolution.

 7 data-sets

 From 1.2M to 1.8B edges, various types, real and synthetic

 Many platforms

 Implement all algorithms on all platforms

 Run and compare many aspects, including …

 Performance

 Weak / Strong, Horizontal / Vertical scalability

 Estimate usability* *Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do

Graph-Processing Platforms Perform? An Empirical Performance Evaluation and

Analysis, IPDPS 2014

Hardware for Main Experiments

 DAS4: a multi-cluster Dutch grid/cloud

 Intel Xeon 2.4 GHz CPU (dual quad-core, 12 MB cache)

 Memory 24 GB

 1 Gbit/s Ethernet network

 Size

 Most experiments take 20 working machines

 Up to 50 working machines

 HDFS used as distributed file system

BFS:

Results for all-2-all

No platform runs fastest for all graphs, but Hadoop is the worst performer.

Not all platforms can process all graphs, but Hadoop processes everything.

Better

Giraph:

Results for (algo*,platform*)

Storing the whole graph in memory helps Giraph perform well

Giraph may crash when graphs or number of messages large

Better

Horizontal scalability:

BFS on Friendster (31 GB)

Using more computing machines can reduce execution time

Tuning needed for horizontal scalability, e.g., for GraphLab, split large

input files into number of chunks equal to the number of machines

Better

PGX.D: Performance Evaluation
(PageRank, Twitter, Infiniband)

0

5

10

15

20

25

2 4 8 16 32

2
 M

a
ch

in
es

 G
ra

p
hL

a
b
 i
s

b
a
se

li
ne

Number of Machines

PGX.D

GraphLab

GraphX

Single Machine

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

2-machine GraphLab

Better

GraphMat Weak Scalability

(Preliminary results, Amazon EMR)

0.1

1

10

100

1 2 4

T
im

e
 p

e
r

it
e
ra

ti
o
n

 (
in

 s
e
c)

#Nodes

Pagerank

GraphMat

GraphX

0.1

1

10

100

1000

1 2 4

T
im

e
 i
n
 s

e
co

n
d
s

#Nodes

Shortest path

GraphMat

GraphX

Weak scaling, 128 M edges/node

Graph500 scale 23-24-25Better

Overhead (BFS, DotaLeague)

We need new metrics, to capture meaning of computation time (more later)

In some systems, overhead is by and large wasted time (e.g., in Hadoop)

Better

Additional Overheads

Data ingestion time

 Data ingestion

 Batch system: one ingestion, multiple processing

 Transactional system: one ingestion, one processing

 Data ingestion matters even for batch systems

Amazon DotaLeague Friendster

HDFS 1 second 7 seconds 5 minutes

Neo4J 4 hours days n/a

Productivity

 Low throughput in terms of LOC for all models

 Days to hours development time for the simpler

applications

We need better productivity metrics!

Lessons learned*

 Performance is function of
(Dataset, Algorithm, Platform, Deployment)

 Previous performance studies may lead to tunnel vision

 Platforms have their own drawbacks
(crashes, long execution time, tuning, etc.)

 Best-performing is not only low response time

 Ease-of-use of a platform is very important

 Some platforms can scale up reasonably with cluster
size (horizontally) or number of cores (vertically)

 Strong vs weak scaling still a challenge

*All results and details:

http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2013/PDS-2013-004-4.pdf

Such manual evaluation is never comprehensive or scalable …

Adding PGX.D by hand would take 4-5 weeks!

There are 20+ other interesting platforms …

Can we do better than manual ?

Questions?

From single- to many- (to all ?) evaluations

A systematic approach

Methodology

Graph Processing Platforms

 Platform: the combined hardware, software, and

programming system that is being used to complete

a graph processing task.

Trinity

Which to choose?

What to tune?

Abstraction

A Graph Processing Platform

AlgorithmETL

Active Storage
(filtering, compression,

replication, caching)

Distribution
to processing

platform

Objectives: scalability & peformance

A Graph Processing Platform

AlgorithmETL

Active Storage
(filtering, compression,

replication, caching)

Distribution
to processing

platform

Ideally,

N cores/disks 

Nx faster

Ideally,

N cores/disks 

Nx faster

What does a benchmark consist of?

 Four main elements:

 data schema: defines the structure of the data

 workloads: defines the set of operations to perform

 performance metrics: used to measure (quantitatively)
the performance of the systems

 execution rules: defined to assure that the results from
different executions of the benchmark are valid and
comparable

 Software as Open Source (GitHub)

 data generator, query drivers, validation tools, ...

Evaluating graph-processing platforms

• Graph500

• Single application (BFS), Single class of synthetic datasets

• Few existing platform-centric comparative studies

• Prove the superiority of a given system, limited set of metrics

• GreenGraph500, GraphBench, XGDBench

• Representativeness, systems covered, metrics, …

Metrics

Diversity

Graph

Diversity

Algorithm

Diversity

Graphalytics = A Challenging

Benchmarking Process

 Methodological challenges

 Challenge 1. Evaluation process

 Challenge 2. Selection and design of performance metrics

 Challenge 3. Dataset selection and analysis of coverage

 Challenge 4. Algorithm selection and analysis of coverage

 Practical challenges

 Challenge 5. Scalability of evaluation, selection processes

 Challenge 6. Portability

 Challenge 7. Result reporting

Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke:

Benchmarking graph-processing platforms: a vision. ICPE 2014.

Graphalytics = Advanced Harness

Support of cloud-based platforms

technically feasible,

methodologically difficult

M. Capota et al., Graphalytics: A Big Data Benchmark

for Graph-Processing Platforms. SIGMOD GRADES 2015

Graphalytics = Real &

Synthetic Datasets

108

The Game Trace Archive

https://snap.stanford.edu/ http://www.graph500.org/ http://gta.st.ewi.tudelft.nl/

Y. Guo and A. Iosup. The Game

Trace Archive, NETGAMES 2012.

G8: LDBC DATAGEN synthetic graphs (described next)

https://snap.stanford.edu/
http://www.graph500.org/
http://gta.st.ewi.tudelft.nl/

Graphalytics = Graph

Generation w DATAGEN

Person

Generation
Edge

Generation

Activity

Generation

“Knows”

graph

serializa

tion

Activity

serializa

tion

Graphalytics

109 DATAGEN Process
• Rich set of configurations

• More diverse degree distribution than Graph500

• Realistic clustering coefficient and assortativity

Level of Detail

Graphalytics = Many

Classes of Algorithms

• Literature survey of of metrics, datasets, and algorithms

• 2009–2013, 120+ articles in 10 top conferences: SIGMOD, VLDB, HPDC,

110

Class Examples %

Graph Statistics Diameter, Local Clust. Coeff., PageRank 16.1

Graph Traversal BFS, SSSP, DFS 46.3

Connected Component Reachability, BiCC, Weakly CC 13.4

Community Detection Clustering, Nearest Neighbor, Label Propagation 5.4

Graph Evolution Forest Fire Model, PAM 4.0

Other Sampling, Partitioning 14.8

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L.

Willke. How Well do Graph-Processing Platforms Perform? An Empirical

Performance Evaluation and Analysis, IPDPS’14.

http://goo.gl/V97zSW

Graphalytics = Choke-Point Analysis

 Choke points are crucial technological challenges
that platforms are struggling with

 Examples
 Network traffic

 Access locality

 Skewed execution
(stragglers)

 Challenge: Select benchmark workload based on
real-world scenarios, but make sure benchmark
covers important choke points

111 ongoing work

Choke-point analyss often

require fine-grained analysis of

system operation,

across many systems

Coarse-grained vs Fine-grained Evaluation (1)

Fine-grained evaluation method is more comprehensive

system viewed as a black-box
Coarse-grained Method Fine-grained Method

system viewed as a white-box

Algorithms, Datasets, Resources Algorithms, Datasets, Resources

(Overall Execution Time)

Graph

processing

system

Fine-grained performance metricsCoarse-grained performance metrics

IO operations

Processing

operations

Overheads

(Stage 3 time, straggler tasks)

Coarse-grained vs Fine-grained Evaluation (2)

… but more time-consuming, esp. to implement

knowledge at conceptual level

Graph

Processing

Systems

Distributed

Infrastructure

several performance results

Coarse-grained Method Fine-grained Method

many performance results

knowledge at technical level

Fine-grained evaluation method is more comprehensive

GranularAbstract

Graphalytics:

Granula Overview

Modeling

Archiving Visualizing

1

2 3

Concepts

Information

Feedback

https://github.com/tudelft-atlarge/granula/

Fine-grained Method

Granular

1

2

3

Granula Modeller

Operation [Actor @ Mission]

Operation

Operation Operation Operation

Info [StartTime]

Info [EndTime]

Info [….............]

Visual

Visual

Visual

Job

:
:

1

2

31

Time-consuming, expert-only, done only once

Granula Archiver

Graph Processing System

Logging Patch

Performance

Analyzer

Job

Performance

Archive

Performance

Model

Modeling Archiving

logs

rules

Granula

Archiver

1

2

3
2

Time-consuming, minimal code invasion,

automated data collection at runtime, portable archive

Granula Visualizer
1

2

3
3

Portable choke-point analysis for everyone!

Graphalytics = Modern Software

Engineering Process

 Graphalytics code reviews
 Internal release to LDBC partners (Feb 2015)

 Public release, announced first through LDBC (Apr 2015)

 First full benchmark specification, LDBC criteria (Q1 2016)

 Jenkins continuous integration server

 SonarQube software quality analyzer

118https://github.com/tudelft-atlarge/graphalytics/

Graphalytics in Practice

 Missing results = failures of the respective systems

119

6 classes of algorithms

10 platforms tested w prototype implementation

Many more metrics supported

Data ingestion not included here!

6 real-world datasets +

2 synthetic generators

M. Capota et al., Graphalytics: A Big Data Benchmark

for Graph-Processing Platforms. SIGMOD GRADES 2015

Runtime: the Platform has large impact

2 orders of magnitude

difference due to

platform

Runtime: the Dataset has large impact

Neo4j : MapReduce ~

2:1

Neo4j : MapReduce ~

1:2

Neo4j can

fail

Throughput: Dataset structure matters!

20x difference

Graphalytics, in a nutshell

 An LDBC benchmark

 Advanced benchmarking harness

 Diverse real and synthetic datasets

 Many classes of algorithms

 Granula for manual choke-point analysis

 Modern software engineering practices

 Supports many platforms

123

http://graphalytics.ewi.tudelft.nl

https://github.com/tudelft-atlarge/graphalytics/

Implementation status

X = done ? = April 2015

MapR

educ
e2

Giraph GraphX Graph

Lab

Neo4j PGX.D Graph

Mat

TOTEM Map

Graph

Me

du
sa

Stats G G G G G -- -- -- -- --

BFS G G G G G V V V V V

CON G G G G G V -- V V V

CD G G G G G -- -- -- -- --

EVO G G G -- G -- -- -- -- --

P’Ra
nk

-- G V V -- V V V V V

https://github.com/tudelft-atlarge/graphalytics/

G=validated, on GitHub

V=validation stage

Ongoing Work

 Final benchmark definition (Q1 2016)

 Data schema: formalize schema, support stakeholders

 Workloads: formalize datasets + algorithms

 Performance metrics: done

 Execution rules: select parameter values

 Online Live Performance Results (Q4 2016)

 Live addition of results

 Curation of added results

 Auditing results

Questions?

Agenda

 Introduction to Linked Data

 LDBC Approach

 Graphalytics

 Systems and models

 Methodology for performance evaluation of graph-
processing platforms

 Graphalytics architecture

 The hour of benchmarking

 Hands-on Graphalytics

 Results analysis & lessons learned

 Fine-grained in-depth analysis with Granula

 Summary & Panel/open discussion

DATAGEN in practice

Graphalytics in practice

Zooming in with Granula

The hour of benchmarking

Schedule

 How to use DATAGEN?

 Generating graph structure vs rich graphs

 Benchmarking with Graphalytics

 Comparing Giraph and PGX.D

 Fine-grained in-depth analysis with Granula

 Performance modeling, archiving, and visualizing

 In-depth performance evaluation

How to use DATAGEN?

 Step 1: generate structural graph

 Generate graphalytics-1 using DATAGEN

 Inspect resulting graph

 Step 2: generate rich graph

 Generate snb-1 using DATAGEN

 Compare (meta)data included in snb-1 with

graphalytics-1

10 minutes – See Handout Section 3

Graphalytics:

Benchmarking Giraph and PGX.D

 Step 1: benchmark Giraph

 Prepare platform

 Launch pre-configured Graphalytics for Giraph

 Step 2: benchmark PGX.D

 Launch pre-configured Graphalytics for PGX.D

 Step 3: compare results

 What can be learned?

20 minutes – See Handout Section 4

Granula Overview

Modelling

Archiving Visualizing

1

2 3

Concepts

Information

Feedback

https://github.com/tudelft-atlarge/granula/

1

2

3

Framework for fine-grained performance evaluation

of Big Data Processing (BDP) systems

Granula Demo

Live analysis of two benchmark reports for a 5- and

20-node Giraph cluster.

Feel free to follow along on your device, or explore

on your own!

Agenda

 Introduction to Linked Data

 LDBC Approach

 Graphalytics

 Systems and models

 Methodology for performance evaluation of graph-
processing platforms

 Graphalytics architecture

 The hour of benchmarking

 Hands-on Graphalytics

 Results analysis & lessons learned

 Fine-grained in-depth analysis with Granula

 Summary & Panel/open discussion

Open discussion

What does a benchmark consist of?

 Four main elements:

 data schema: defines the structure of the data

 workloads: defines the set of operations to perform

 performance metrics: used to measure (quantitatively)
the performance of the systems

 execution rules: defined to assure that the results from
different executions of the benchmark are valid and
comparable

 Software as Open Source (GitHub)

 data generator, query drivers, validation tools, ...

Discussion 1 (execution rules, metrics)

 How much preprocessing should we allow in the ETL

phase?

 How to choose a metric that captures the

preprocessing?

AlgorithmETL

Active Storage
(filtering, compression,

replication, caching)

Distribution

to processing

platform

Graph Processing

Discussion 2

 Trade-off between fast dataset submission (reads

from the database or full-scale generation) and cost

(of storage, of computation).

Discussion 3

 Should we allow platform-specific algorithms or

only implementations of exhaustively defined

algorithms?

Discussion 4

 How should we asses the correctness of algorithms

that produce approximate results?

Discussion 5

 How to setup the platforms? Should we allow

algorithm-specific platform setups or should we

require only one setup to be used for all

algorithms?

Take home message

Summary

 Graph processing is a hot topic for both software

and hardware developers

 Challenges in scale and irregularity

 Existing platforms: over 80!

 Choose which one to use

 Quick: pick a platform where your graph fits and that

you can program.

 Graphalytics: use systematic benchmarking!

Find us online: graphalytics.ewi.tudelft.nl

https://github.com/tudelft-atlarge/graphalytics/

Bibliography

 Graphalytics
 Capota, M., Hegeman, T., Iosup, A., Prat-Pérez, A., Erling, O., & Boncz, P. (2015). Graphalytics: A

Big Data Benchmark for Graph-Processing Platforms, GRADES 2015.

 A. Iosup, A. L. Varbanescu, M. Capota, T. Hegeman, Y. Guo, W.-L. Ngai, M. Verstraaten. Towards
Benchmarking IaaS and PaaS Clouds for Graph Analytics, In the WBDB 2014

 LDBC and in particular DATAGEN
 Erling, Orri, et al. "The LDBC Social Network Benchmark: Interactive Workload." Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data. ACM, 2015.

 http://ldbcouncil.org/sites/default/files/LDBC_D2.2.2.pdf

 http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf

 Performance evaluation of graph-processing systems
 Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke: Benchmarking graph-processing

platforms: a vision. ICPE 2014: 289-292

 Guo et al., An Empirical Performance Evaluation of GPU-Enabled Graph-Processing Systems.
CCGRID’15.

 A. L. Varbanescu, M. Verstraaten, C. de Laat, A. Penders, A. Iosup, H. J. Sips: Can Portability
Improve Performance?: An Empirical Study of Parallel Graph Analytics. ICPE 2015: 277-287

http://ldbcouncil.org/sites/default/files/LDBC_D2.2.2.pdf
http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf

