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Graphs at the Core of Our Society:

The LinkedIn Example
The State of LinkedIn

Canada
5373475
\ \,

\ _\\\

A very good resource for matchmaking

workforce and prospective employers

mn R0 £ap SR 1,034,660 ustralia

Vital for your company’s life,
as your Head of HR would tell you

Vital for the prospective employees 2

registered members 100M Mar 2011’ 69M |\/|ay 2010
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Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/ TU Delft
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/
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http://vincos.it/the-state-of-linkedin/
http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

Graphs at the Core of Our Society:
The LinkedIn Example
The State of LinkedIn

i Apr 2014

MILLION MEMBERS

We now have 300 million Linkedln members, more than half of whom live
outside ofthe U.S. That's enough to make Linkedin the fourth largest country
in the world. In celebration, we took a look back to see how much our
membership has grown and diversified over the past five years. It's a helpful
reminder of not only where we've been, but also where we're headed as we
work to create economic opportunity for every professional in the world.
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Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/ TU Delft
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/
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The data deluge: large-scale graphs

Linked

P

300M users

270M MAU
200+ avg followers

??7? edges

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

friendstere®

>240B edges
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The data deluge: large-scale graphs

Linked m\ /’

Oracle 1.2M followers, . m e s, y 270M MAU

132k employees 200+ avg followers

company/day: 3 >54B edges
40-60 posts, 500-700 comments [
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1.2B MAU 0.8B DAU
A 2o A 200+ avg followers
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The data deluge: large-scale graphs

LIthd m\ /’
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Data-lnteswe workload
10x graph size = 100x—1,000x slower
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The data deluge: large-scale graphs

Llnkedm\ | /

Data-mteswe workload
10x graph size -) 100x—1,000x slower
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Compute- |nte3|ve workload

more complex analysis = ?x slower
. .
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The data deluge: large-scale graphs

Llnked in ,

Data-mteswe workload -
10x graph size -) 100x—1,000x slower

WD TETMCF ST

Compute- |nte3|ve workload
more complex anaIyS|s = ?X slower

A 1 = //11 1] -_'.l.l_Lﬁ

Dataset-dependent workload
unfriendly graphs = ??x slower
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Graphs at the Core of Our Society:

The LinkedIn Example
The State of LinkedIn

3-4 new users every
second

but fewer visitors (and
page views)

Great, If you can
process this graph:
opinion mining,
hub detection, etc.
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Sources: Vincenzo Cosenza, The State of LinkedlIn, http://vincos.it/the-state-of-linkedin/ TU Delft
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/
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Graphs at the Core of Our Society:
The LinkedIn Example

3-4 new users every The State Of Llnkedln but fewer visitors (and

second Dage Views)

Periodic and/or
continuous

I analytics

'II at full scale

e . 7 S — N ¢
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Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/ TU Delft
Delft University of Technology

via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/
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. Ana Lucia Varbanescu's Professional Network
LlnkEdm MmPS as of Movember 28 2013

2013 Linkedln - Getyour netwok map at inmaps.linkedinlabs.com



Supporting multiple users
10x number of users = ????x slower




Graph Processing @large

Linked m\ /’

A Graph Processing
Platform

Distribution _
» ETL to processing Algorithm »
platform

Active Storage
(filtering, compression,
replication, caching)

/ \@XFIRE"

: of
friendster®)?

Interactive processing not considered in this presentation. 3 6
. | N . TUDelft
Streaming not considered in this presentation.



Graph Processing @large

Linked m\ /’

A Graph Processing
Platform

Distribution
Ideally, to processing Ideally,

N cores/disks platform N cores/disks

- NXx faster - NXx faster

replication, caching)

@Q/ \@XFIRE"

friendster®)?

Interactive processing not considered in this presentation. 3 -
. | N . TUDdﬁ
Streaming not considered in this presentation.
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Graph-Processing Platforms

o Platform: the combined hardware, software, and
programming system that is being used to complete

a graph processing task
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What is the performance of
graph-processing platforms?

Metrics Graph Algorithm
Diversity Diversity Diversity

Graphalytics = comprehensive
benchmarking suite for graph processing
across all platforms

The graph & RDF <3
LDBC @ benchmark reference @ @ TU Delft 19
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Spec

Graphalytics = A Challenging
Benchmarking Process

* Methodological challenges
e Challenge 1. Evaluation process
e Challenge 2. Selection and design of performance metrics
» Challenge 3. Dataset selection and analysis of coverage
e Challenge 4. Algorithm selection and analysis of coverage

* Practical challenges
« Challenge 5. Scalability of evaluation, selection processes
e Challenge 6. Portability

« Challenge 7. Result reporting

. Guo, A. L. Varbanescu, A. Tosup, C. Martella, T. L. Willke:
Benchmarking graph-processing platforms: a vision. ICPE 2014: 289-292

@ @ =

The graph & RDF

L D B C @ benchmark reference

]
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http://goo.gl/V97zSW

Graphalytics = Many Classes of Algorithms

o Literature survey of of metrics, datasets, and algorithms
e 10 top research conferences: SIGMOD, VLDB, HPDC ...
« Key word: graph processing, social network
o 2009-2013, 124 articles

Class Examples %0
Graph Statistics Diameter, PageRank 16.1
Graph Traversal BFS, SSSP, DFS 46.3
Connected Component Reachability, BiCC 13.4
Community Detection Clustering, Nearest Neighbor 5.4
Graph Evolution Forest Fire Model, PAM 4.0
Other

Future work

. Guo, M. Biczak, A. L. Varbanescu, A. Tosup, C. Martella, and T. L.
Willke. How Well do Graph-Processing Platforms Perform? An Empirical

Performance Evaluation and Analysis, IPDPS”14.
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Graphalytics = Real &
Synthetic Datasets

Graphs #V #E d D | Directivity
Q Gl | Amazon 262,111 1,234,877 1.8 4.7 directed
Ch G2 | WikiTalk 2,388,953 5,018,445 0.1 2.1 directed
W G3 | KGS _ | undirected
[i]CM— Citation Interaéflon graphs L directed
q G5 | Dotaleague (possible work) undirected
q G6 | Synth  re e roreat, OFTOZUTO = 59 undirected
Cp G7 | Friendster 65,608,366 | 1,806,067,135 0.1 55.1 undirected
.. L . ® X
. ,SNAP' ° _LDBC The Game Trace Archive
L e ® Social Network
. L Generator ]
. Guo and A. losup. The Game _ifu Delft .

Trace Archive, NETGAMES 2012.

Delft University of Technology
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Graphalytics = Advanced Harness

=

User

Datasets

Configuration Report
Generator
Benchmark - Output System
Core Validator Monitor

| ‘ |

Dataset
Generator

LDBC®

Platform-specific
algorithm
implementation

Graph analytics
platform

The graph & RDF
benchmark reference
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D
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Spec
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Cloud support technically feasible,
methodologically difficult
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* A battery of graphs covering
a rich set of configurations

« Datagen extensions to
* More diverse degree distributions

» Clustering coefficient and
assortativity

Ongoing work

ttp: council.org/sites/detault/Tiles/ILDBC D3.3.34.p

and Orri Erling et al. The LDBC Social Network Benchmark: Interactive
Workload. SIGMOD?15
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N

Diverse metrics: CPU, IOPS, Network, Memory use, ...

<

Graphalytics = Advanced Monitoring &
Logging System 2 jfeee] =

—
4

Results
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A. Tosup et al., Towards Benchmarking TaaS and
PaaS Clouds for Graph Analytics. WBDB 2014
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Graphalytics = Choke-Point Analysis

 Choke points are crucial technological challenges that
platforms are struggling with

 Examples
* Network traffic
» Access locality
» Skewed execution

e Challenge: Select benchmark workload based on
real-world scenarios, but make sure they cover the
Important choke points

near-future work

5
TUDelft =
Delft University of Technology
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Graphalytics = Advanced Software
Engineering Process
https://github.com/mihaic/graphalytics/

 All significant modifications to Graphalytics are
peer-reviewed by developers
» Internal release to LDBC partners (Feb 2015)
* Public release, announced first through LDBC (Apr 2015%)

« Jenkins continuous integration server
e SonarQube software quality analyzer

5
TUDelft 21



Graphalytics in Practice

Data ingestion not included here!

6 real-world datasets +

2 synthetic generators

|

Graph500 23 Patents B SNB 1000
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Many more metrics supported

Platform

|

10 platforms tested w prototype implementation

5 classes of algorithms

e Missing results = failures of the respective systems

]
TUDelft

Delft University of Technology
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Key Findings So Far

e Performance is function of
(Dataset, Algorithm, Platform, Deployment)
* Previous performance studies lead to tunnel vision

o Platforms have their specific drawbacks
(crashes, long execution time, tuning, etc.)
« Best-performing system depends on stakeholder needs

 Some platforms can scale up reasonably with cluster size
(horizontally) or number of cores (vertically)
e Strong vs weak scaling still a challenge—workload scaling tricky
« Single-algorithm is not workflow/multi-tenancy

. Guo, M. Biczak, A. L. Varbanescu, A. Tosup, C. Martella, and T. L.
Willke. How Well do Graph-Processing Platforms Perform? An Empirical

Performance Evaluation and Analysis,IPDPS”14.
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Thank you for your attention!
Comments? Questions? Suggestions?

http://graphalytics.ewi.tudelft.nl

https://github.com/mihaic/graphalytics/

PELGA 2015, May 15 Alexandru losup

http://sites.google.com/site/pelga2015/ A Iosup@tudelft nl

GRAPHALYTICS was made
possible by a generous
contribution from Oracle.

ORACLE
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Discussion

« How much preprocessing should we allow in the ETL
phase?

 How to choose a metric that captures the
preprocessing?

http://graphalytics.ewi.tudelft.nl

TU Delft 32
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Discussion

e How should we asses the correctness of algorithms
that produce approximate results?

* Are sampling algorithms acceptable as trade-off time
to benchmark vs benchmarking result?

http://graphalytics.ewi.tudelft.nl

TU Delft 32
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Discussion

 How to setup the platforms? Should we allow
algorithm-specific platform setups or should we require
only one setup to be used for all algorithms?

http://graphalytics.ewi.tudelft.nl

]
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Discussion

 Towards full use cases, full workflows, and
Inter-operation of big data processing systems

 How to benchmark the entire chain needed to produce
useful results, perhaps even the human in the loop?

http://graphalytics.ewi.tudelft.nl

osup, I. Tannenbaum, M. Farrellee, pema, M. Livny: Inter-

operating grids through Delegated MatchMaking. Scientific Programming
16(2-3)- 233-253 (2008)
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