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Case 1: co-allocation (1)
• Jobs may use resources in multiple sites: co-allocation 
• Reason:

– to benefit from distributed resources (e.g., processors, data, visualization)

• Resource possession in different sites can be:

– simultaneous (e.g., parallel applications)

– coordinated (e.g., workflows)
• With co-allocation:

– more difficult resource-discovery process
– need to coordinate allocations by autonomous resource managers 

single global job
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Co-allocation (2): slowdown
• Co-allocated applications are less efficient due to the 

relatively slow wide-area communications

• Slowdown of a job:
execution time on multicluster
execution time on single cluster

• Processor co-allocation is a trade-off between 

– faster access to more capacity

– shorter execution times

(>1 usually)
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Co-allocation (3): scheduling policies
• Placement policies dictate where the components of a job go

• Examples of placement policies:

1. Load-aware: Worst Fit (WF)
 (balance load in clusters)

2. Input-file-location-aware: Close-to-Files (CF)
 (reduce file-transfer times)

3. Communication-aware: Cluster Minimization (CM)
 (reduce number of wide-area messages)
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• Model has a host of parameters
• Main conclusions:

– Co-allocation is beneficial when the slowdown ≤ 1.20
– Unlimited co-allocation is no good:

• limit the number of job components
• limit the maximum job-component size

– Give local jobs some but not absolute priority over global jobs
• Mathematical analysis for maximal utilization

Anca Bucur and Dick Epema, HPDC 2003 and IEEE TPDS 2007.Anca Bucur and Dick Epema, HPDC 2003 and IEEE TPDS 2007.

Conclusions:

• There are fundamental problems to be derived from practical  
   scheduling problems in distributed systems that have a general 
   significance

• Combination of simulations and mathematical analysis gives  
   more complete results and better understanding
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Co-allocation (4): simulations/analysis
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average execution time (s)

number of clusters combined

Ozan Sonmez, Hashim Mohamed, and Dick Epema, IEEE TPDS 2010.Ozan Sonmez, Hashim Mohamed, and Dick Epema, IEEE TPDS 2010.

Co-allocation (5): experiments on the DAS3
average execution time (s)

number of clusters combined
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KOALA (1/2): a co-allocating grid scheduler
• Original goals:

1. processor co-allocation: parallel applications
2. data co-allocation: job affinity based on data locations
3. load sharing: in the absence of co-allocation
while being transparent for local schedulers

• Additional goals:
– research vehicle for scheduling and RM research
– support for (other) popular application types

• KOALA has been deployed on the DAS2 – DAS5 since september 2005
• Later versions: KOALA-C (clouds) and KOALA-F (frameworks) 

Hashim Mohamed and Dick Epema, CCPE 2006.Hashim Mohamed and Dick Epema, CCPE 2006.
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KOALA (2/2): the runners
• The KOALA runners are adaptation modules for different application types:

– set up communication / name server / environment

– launch applications + perform application-level scheduling

– scheduling policies

• Current runners:
– CSRunner: for cycle-scavenging applications

– IRunner: for applications using the Ibis Java library

– Mrunner: for malleable parallel applications

– OMRunner: for co-allocated parallel OpenMPI applications

– Wrunner: for co-allocated workflows

– MR-runner: for MapReduce applications (also Spark)

Conclusions:

•  Very beneficial to have a deployed research vehicle (DAS + KOALA) for
•  driving research
•  teaching distributed systems programming
•  doing experimentation
•  visibility

• Very time-consuming to make a scheduler “user proof” (never did a 
release)
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Case 2: scheduling frameworks

• Reduce 
– scheduling overhead of centralized scheduler
– complexity of centralized scheduler

• Provide isolation among frameworks
• Two models:

framework 1 framework 2idle
pool

framework 1framework 2framework 3

optimal sizing balancing
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Balancing allocations with FAWKES

Two-level scheduling 
architecture

FAWKES

NODES

Frameworks

Job submissions

Resource manager

InfrastructureNODES NODESNODES NODESNODESNODES NODES NODES

FAWKES

Bogdan Ghiţ, Nezih Yiğitbaši, Alexandru Iosup, and Dick Epema, ACM Sigmetrics 2014.Bogdan Ghiţ, Nezih Yiğitbaši, Alexandru Iosup, and Dick Epema, ACM Sigmetrics 2014.
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FAWKES in a nutshell

• Gives “fair” shares of the resources to frameworks
• Shares proportional to dynamic weights
• Updates weights when:

• frameworks arrive or leave
• framework states change

FAWKES

w1 w2 w3< <
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How to differentiate frameworks? (1/3)

versus

ServiceUsageDemand

By demand – 3 policies:
o Job Demand (JD)
o Data Demand (DD)
o Task Demand (TD)
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How to differentiate frameworks? (2/3)

versus
ServiceUsageDemand

By usage – 3 policies:
o Processor Usage (PU)
o Disk Usage (DU)
o Resource Usage (RU)

USED

IDLE
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How to differentiate frameworks? (3/3)

versus

ServiceUsageDemand

By service – 3 policies:
o Job Slowdown (JS)
o Job Throughput (JT)
o Task Throughput (TT)
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Performance of FAWKES

Nodes 45
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• Studying queuing models is very beneficial for students for 
- a better understanding of practical performance problems

 - better problem formulation
- better execution of research in scheduling in systems

• Simulations of scheduling frameworks is still required

• Experimentation with Spark and KOALA-F/Mesos are a nightmare 
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…

Case 3: reducing slowdown variability 
in MapReduce

Bogdan Ghiţ and Dick Epema, MASCOTS 2015, CCGrid 2016.Bogdan Ghiţ and Dick Epema, MASCOTS 2015, CCGrid 2016.
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Problem: “slowdown” due to big customers
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Solution: express lanes

Size-based scheduling
Make jobs in a single queue homogeneous
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Queues in datacenters

∞
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Simulator validation
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Less than 1% error between SIM and DAS.

Median 95th

Conclusions:

• Studying queuing models is very beneficial for students for 
   inspiration for scheduling policies and for understanding 
   concepts such as heavy tails

• Fundamental differences with original mathematical analysis 
  of size-based scheduling (other job model, work-conserving 
  pre-emption, partitioning)
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Case 4: workloads of workflows
Previous work Our work

20 s

15 s 31 s

19 s 12 s 7 s

42 s Finished tasks

Running tasks

Eligible tasks

Non-eligible tasks

Alexey Ilyushkin, Bogdan Ghiţ, and Dick Epema, CCGrid 2015 and 2018.Alexey Ilyushkin, Bogdan Ghiţ, and Dick Epema, CCGrid 2015 and 2018.
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Scheduling policies (1/2)
• Greedy backfilling versus some form of reservation
• For reservation, use Level of Parallelism (LoP)
• LoP is compute-intensive, use approximation

LoP=4

Quality of LoP Approximation for Montage workflow
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Scheduling policies (2/2)

1. Strict reservation: use LoP

2. Scaled LoP: use f x LoP, 0 ≤ f ≤ 1

3. Consider future eligible sets

4. Greedy backfilling
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Simulation results
Strict Reservation

Scaled LoP f = 0.2
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What is the use of task runtime estimates?
• Suppose task runtimes are known with some error
• Select tasks from the workflows in the queue based on the  

upward ranks of tasks (length of critical path from task to exit task)
• Online policies (select tasks on the fly) and a plan-based policy 

(based on Heterogeneous Earliest Finish Time) 
• Main conclusions:

– only at extreme utilizations (over 90%) knowledge of task runtimes 
is beneficial

– the sensitivity to inaccuracy of estimates increases at higher utilizations
– plan-based gives very much overhead and does not perform well

Conclusions:

• Fills a gap in queueing models

• For these fundamental questions, no experiments are needed

Conclusions:

• Fills a gap in queueing models

• For these fundamental questions, no experiments are needed
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