(1) Non-trivial Cloud Computing Phenomena: The Impact of Performance Variability on Big Data

(2) Exploring Computing Infrastructure Convergence: HPC and Big Data Graph Processing on Multicores

Alexandru Uta

a.uta@vu.nl Vrije Universiteit Amsterdam

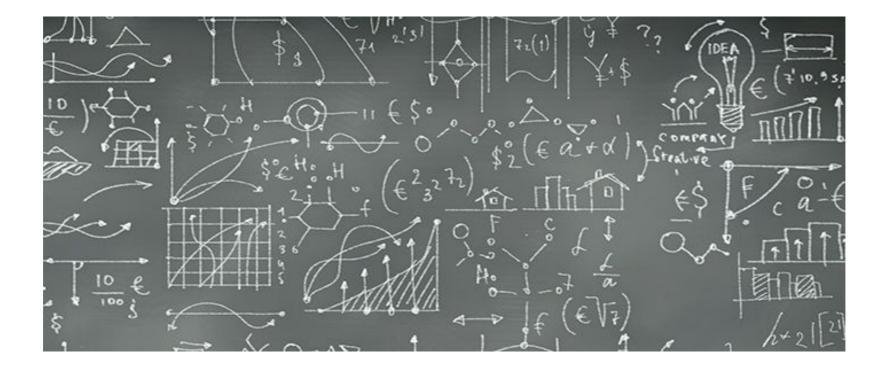
Data-intensive Scientific Discovery

• Thousand years ago: **empirical/experimental** science

The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.

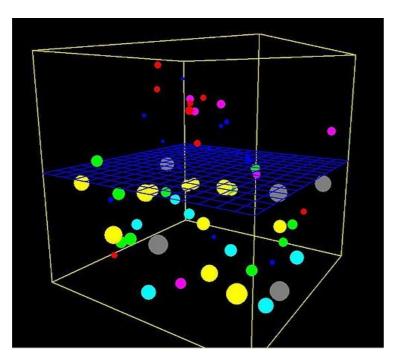
• Last few centuries: **theoretical** science

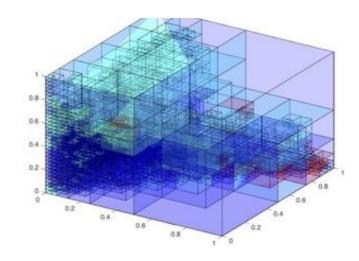
The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.



• Last few decades: **computational** science

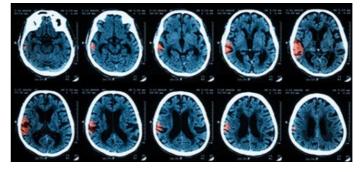
The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.





- Today: **data exploration** (eScience)
 - Data captured by instruments/generated by a generator
 - Processed by software
 - Information/knowledge stored on a computer
 - Analysis of data

The Fourth Paradium - Data-Intensive Scientific Discovery, T. Hey, S. Tansley and K. Tolle. 2009.



What is Big Data?

Big Data is data that is difficult to process and extract value from.

Why is it difficult?

Volume: The "Data Deluge"

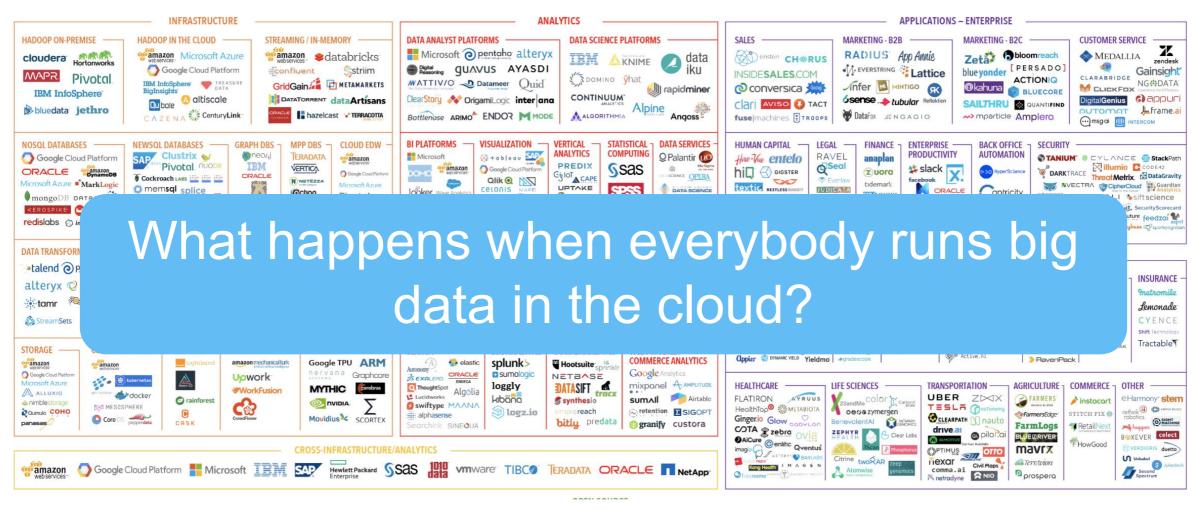
Many Vs of Big Data:

- Volume: the amount of data to process
- Velocity: the rate at which new data arrives
- Variety: different forms of data
- Veracity: uncertainty of data

How do we explore and extract value from big data?

Wide variety of frameworks

BIG DATA LANDSCAPE 2017



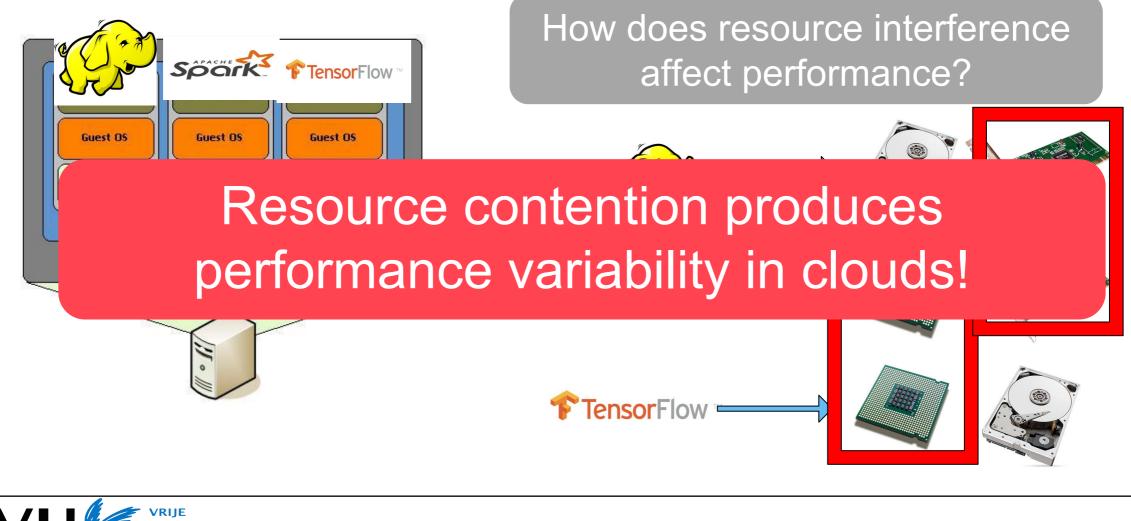
VRHE

UNIVERSITEIT

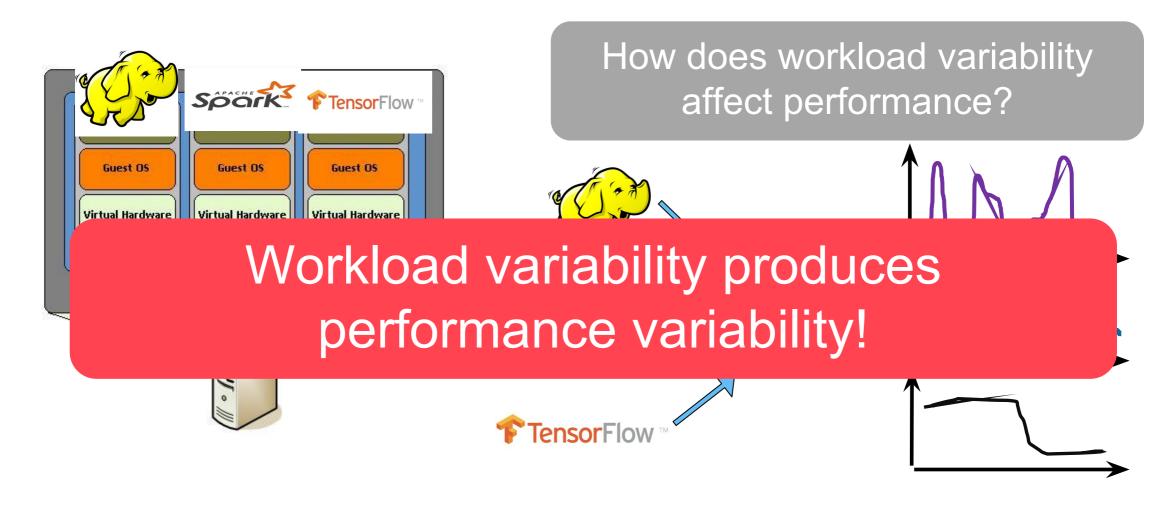
AMSTERDAM

Image courtesy of mattturck.com

Co-location induces (resource) performance variability



Co-location induces (resource) performance variability



Cloud (resource) performance is highly variable!

1000

800

[Mb/s]

• Due to:

Ne⁺

Affect

- Co-location
- Virtualization
- Workload variability

Emergent behavior in large-scale

ecosystems!

Α

Ballani et al., SIGCOMM 2011

 \square

Cloud

T

F

G

Iosup et al., CCGrid 2011

B

Convenient to use big data + cloud, but...

Variability entails:

- Poor performance predictions
- Poor scheduling decisions

How to study performance variability? How to control the variability?

How to study performance variability?

Traditional performance analysis:

- •(1) Trace analysis
- •(2) Benchmarking
- •(3) Performance modeling

Current models, benchmarks do not consider resource variability!

- No study on resource performance variability and big data
- Variability within clouds and between clouds (performance portability issues)

A Framework for Studying Performance Variability

ightarrow •Fallback to empirical evaluation based on previous observations

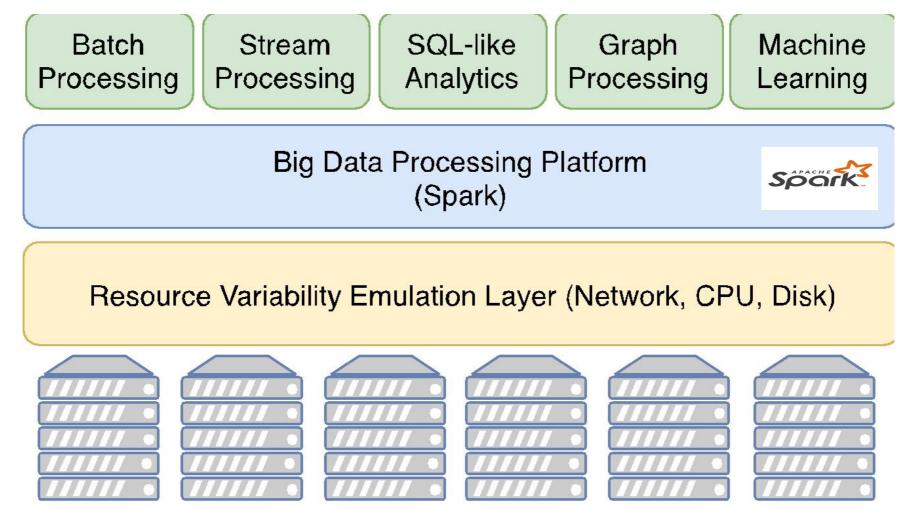
3

Controlled environment that emulates real-world variability scenarios

• Multiple classes of big data applications

•Statistical analysis and performance modeling to understand correlations

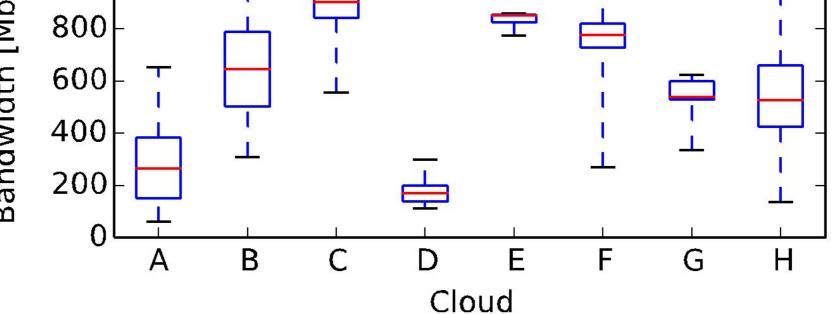
Benchmarking Performance Variability



Quantifying network variability impact on Big Data

 Systematic study using A-H cloud bandwidth distributions •Run a series of big data applications

> 1000 Bandwidth [Mb/s] T 800 600 400 200 В F G Н F Α Π



Cloud network bandwidth emulation

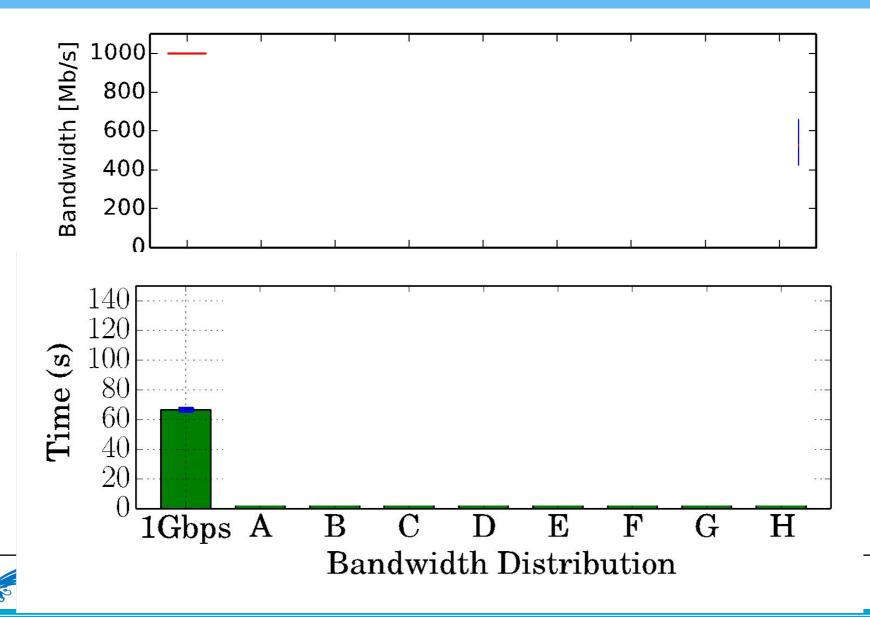
•For each distribution:

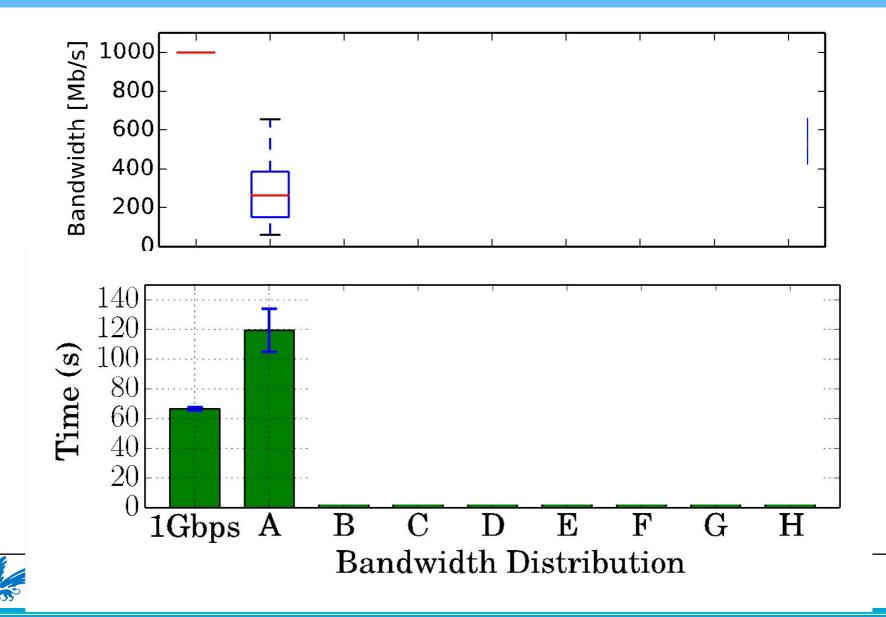


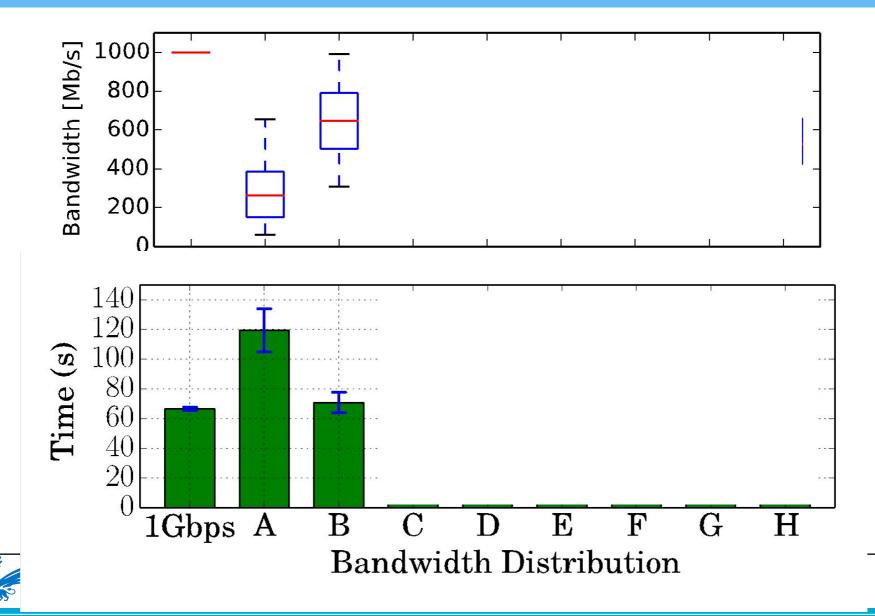
Big Data Workloads

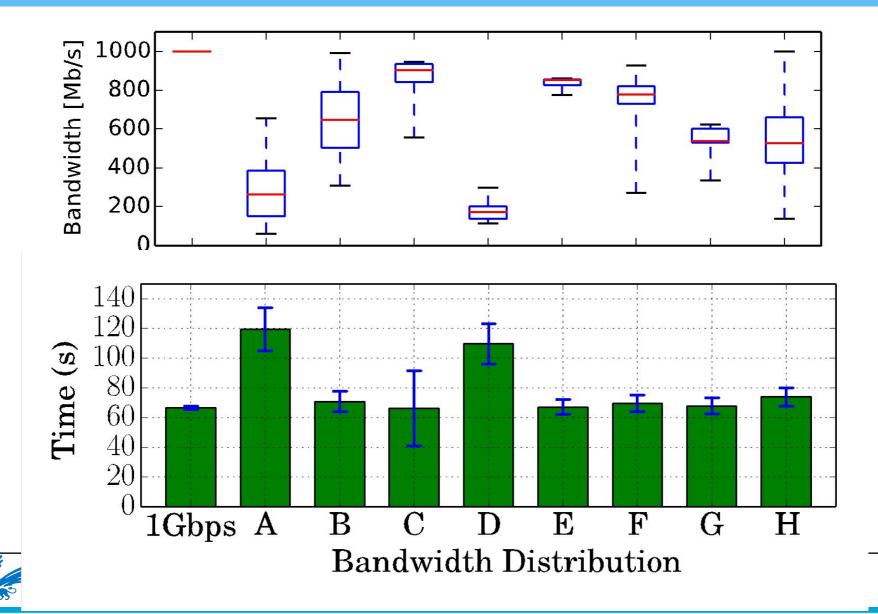
- HiBench suite, MapReduce-style apps
- 6 real-world applications from various domains
- Each app having different resource usage

Application				1.
Wordcount	++		0	0
Sort		++	0	++
Terasort	++	0	++	++
Naïve Bayes	0	0	++	
K-means	++		0	
PageRank	0		0	



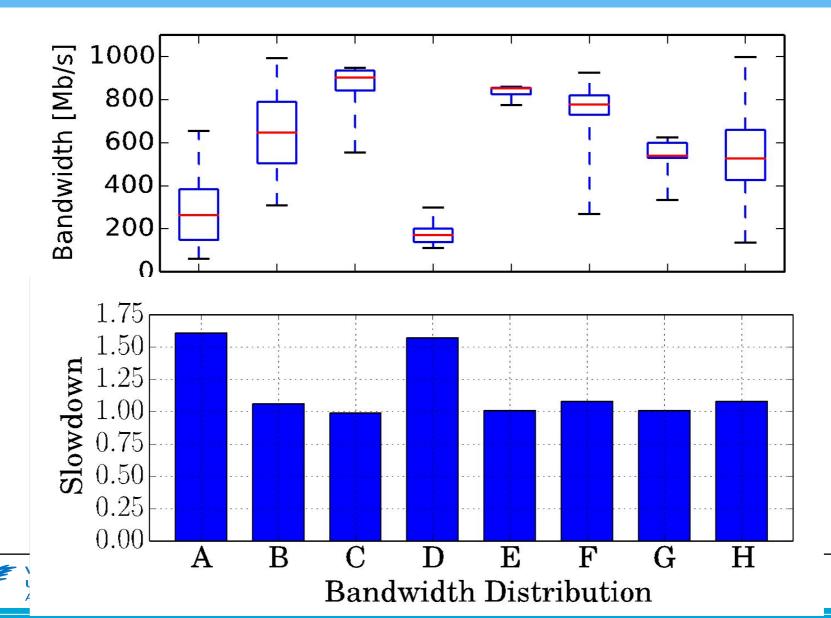






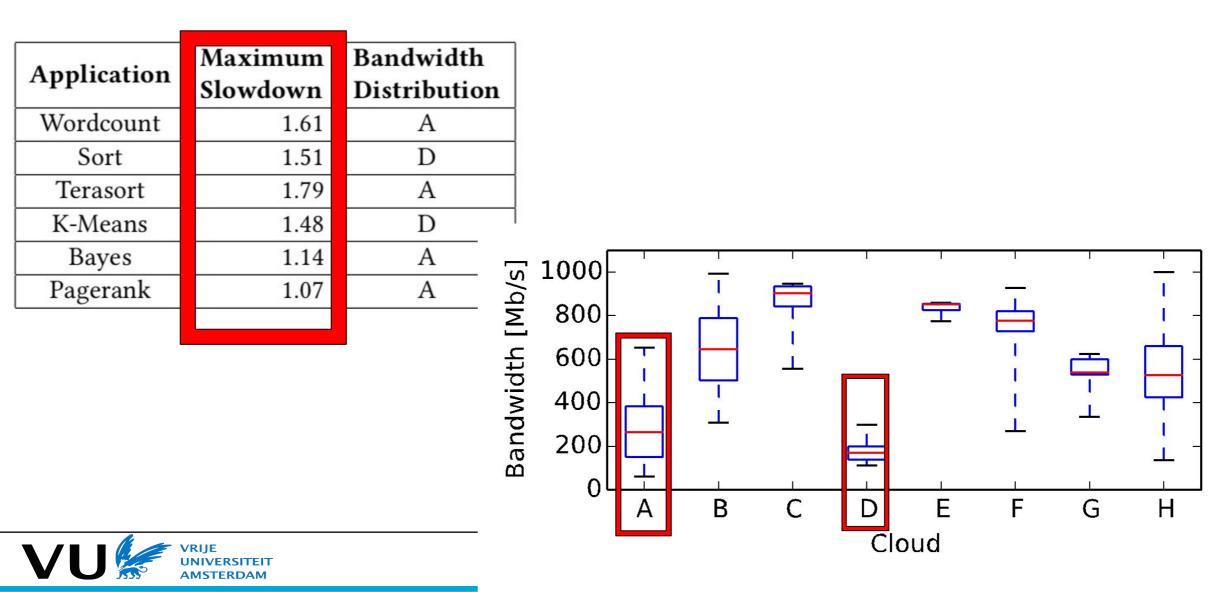
24

Surprisingly, non-network-intensive Wordcount slowed down



25

Most apps are slowed down on real clouds



Take-home message

- Network variability leads to high slowdown for big data in the cloud
- Network variability also affects performance portability
- Surprisingly, also apps not network-bound applications slow down

Future work:

- In-depth statistical analysis
- Performance modeling tools
- Control through better scheduling

Exploring Computing Infrastructure Convergence: HPC and Big Data Graph Processing on Multicores

Do you have experience with ... ?

OpenACC

More Science, Less Programming

HPC and Big Data Infrastructure

PATT

Highly divergent in both hardware and software!

Divergence is expensive and unsustainable: energy, computation, human resources!

Divergence - unsustainable and expensive!

How does the hardware and software landscape look for these paradigms?

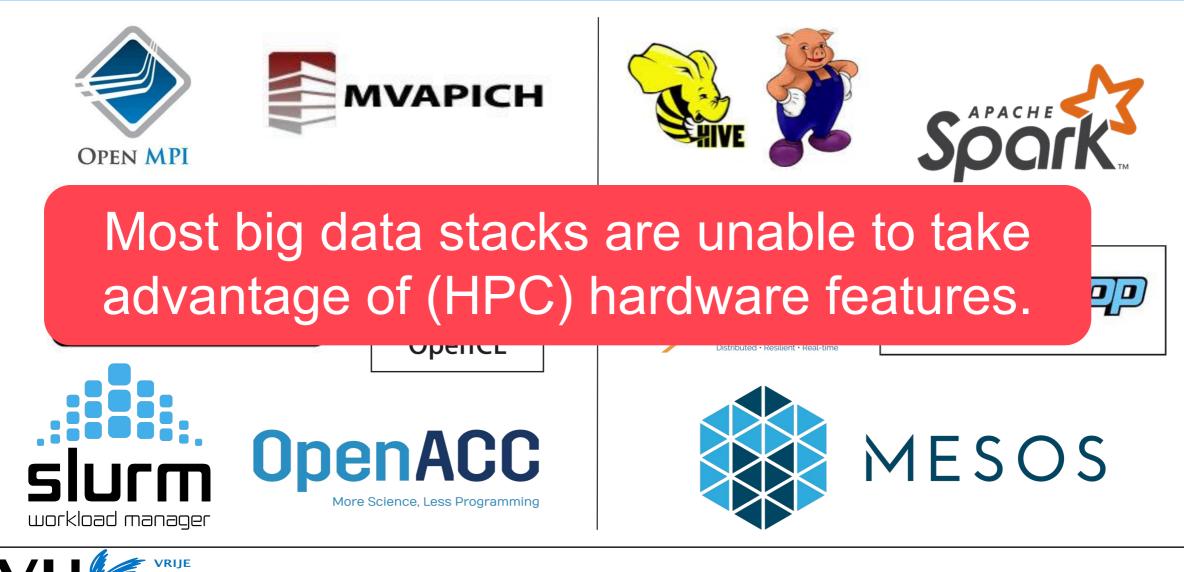
HPC Infrastructure

- Large numbers of (thinner, low-power) cores
- Intricate NUMA topologies
- Fast interconnects (InfiniBand, 40+ Gb Ethernet)
- Accelerators (GPUs, FPGAs, TPUs)
- Compute-intensive workloads (simulations)

Big Data Infrastructure

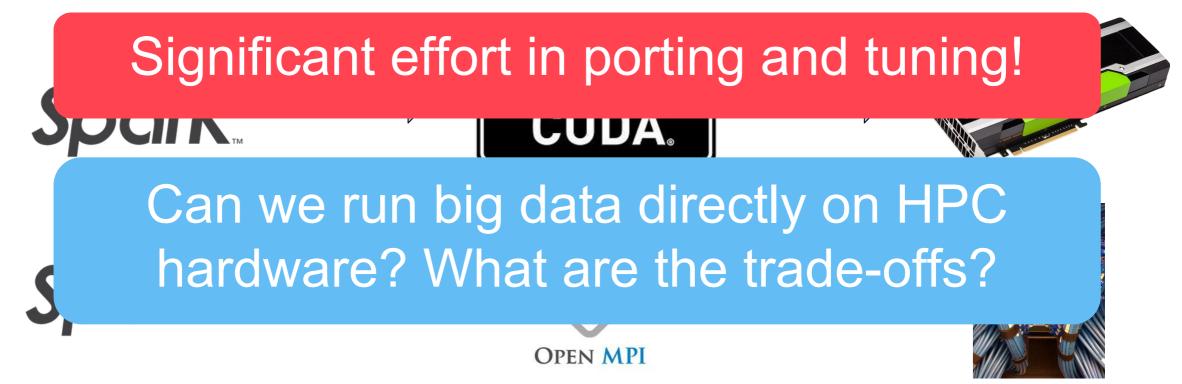
- (generally) commodity hardware
- Fat-core CPUs
- large memory (and caches) per core
- Large storage
- Less emphasis on fast networks
- Often virtualized clusters (cloud)
- Data-intensive workloads

HPC vs. Big Data Software



Addressing the HPC and Big Data Convergence

• Only in software: porting big data to HPC hardware



Big Data on HPC-capable Many-cores

Representative:

•Intel KNL – 2nd generation Xeon Phi

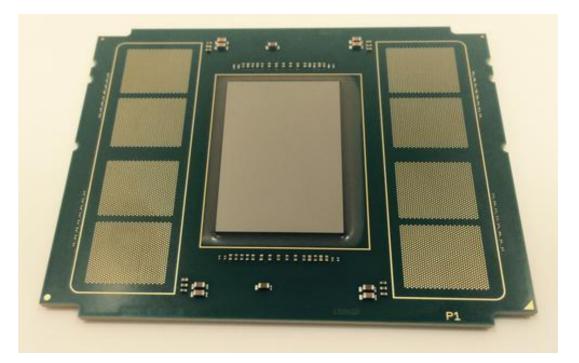
Can run Big Data: •Accelerator-like self-booting CPU

•Full x86_64 compatibility

HPC Features:

•(up to) 72 low-power Intel Atom cores

•Wide vector instructions (512B)



Intel KNL – Highly Representative for HPC

Representative for Top500:

•3 clusters in top 10 of top500.org contain KNL

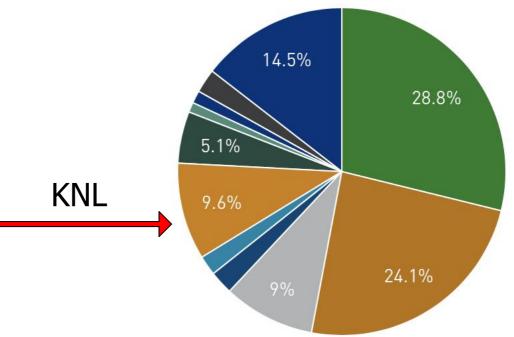
•~3% of the share of CPUs in top500

•~10% of the performance share of top500

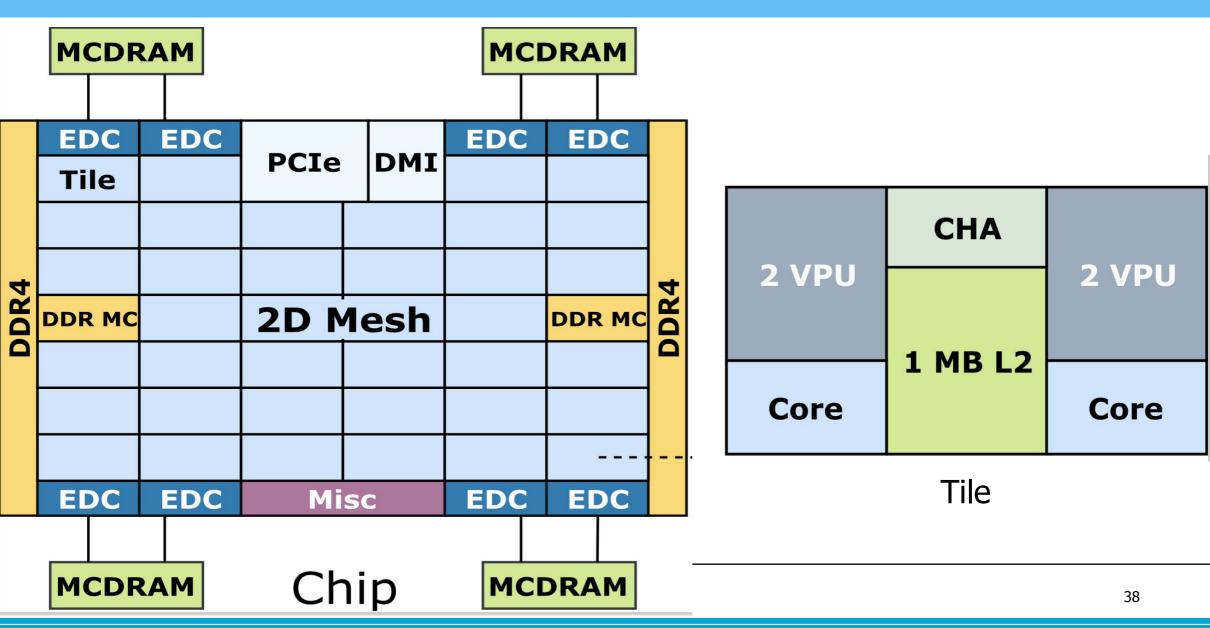
Many performance facets:

•Highly configurable at boot time

•Works as many different machines (due to configurable clustering and **Processor Generation Performance Share**

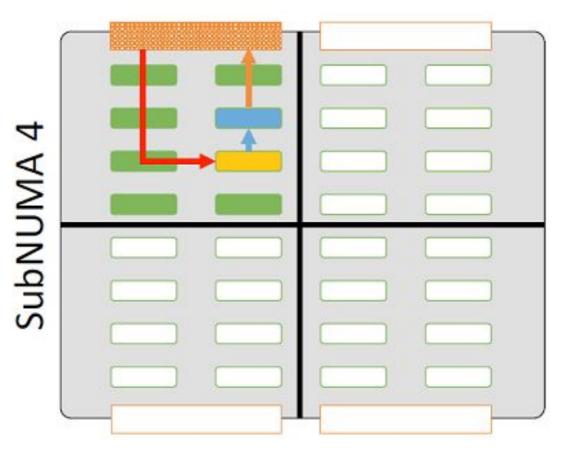


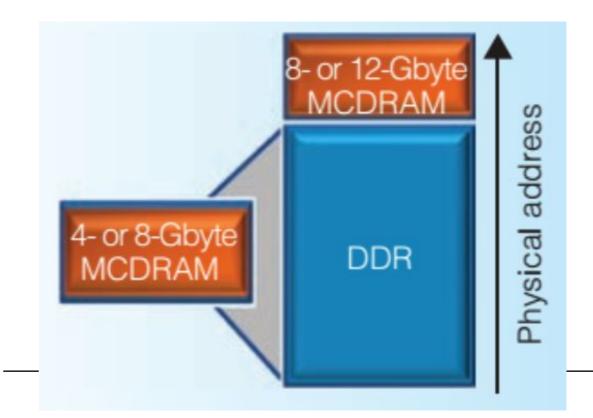
KNL Architecture



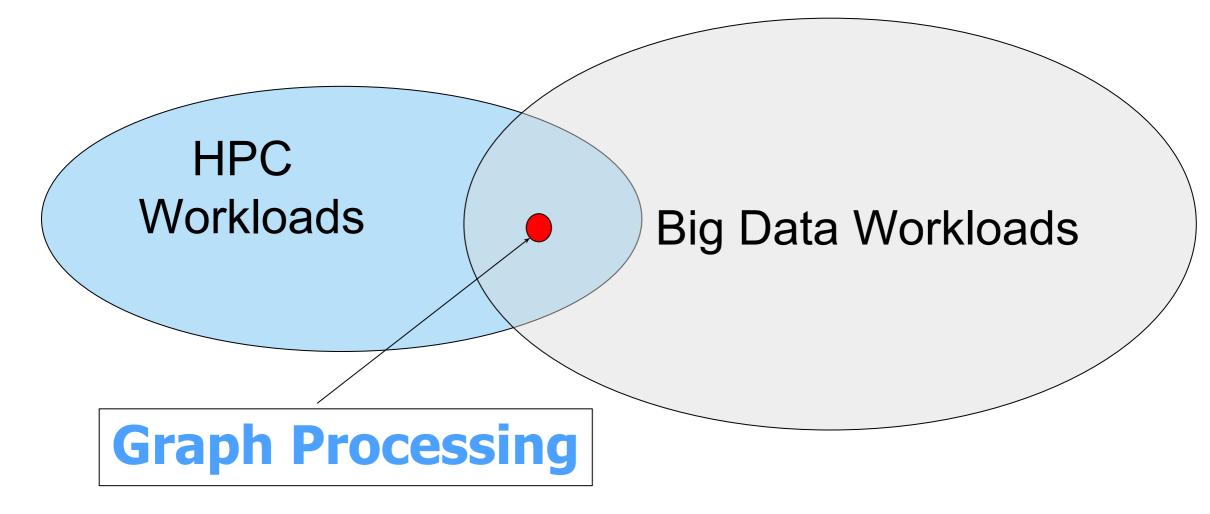
KNL – Hardware Parameter Space

- Clustering modes: (L2 cache miss latency)
 - All2All
 - Quadrant/Hemisphere
 - NUMA



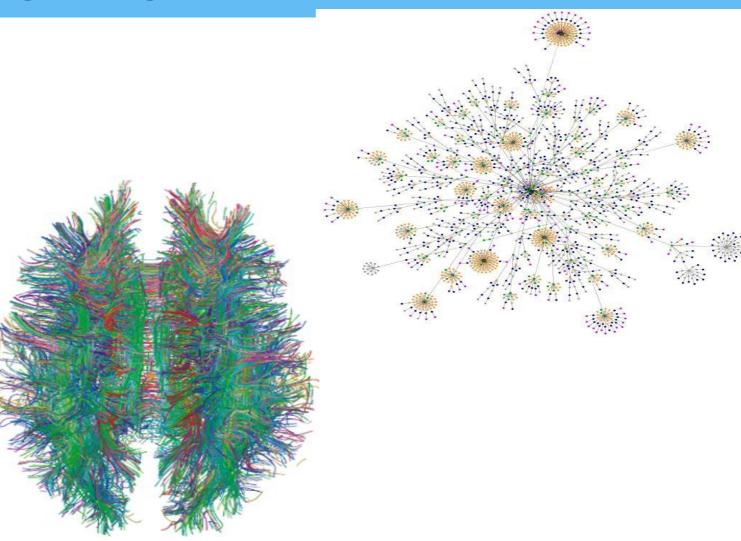


Graph Processing – HPC and Big Data



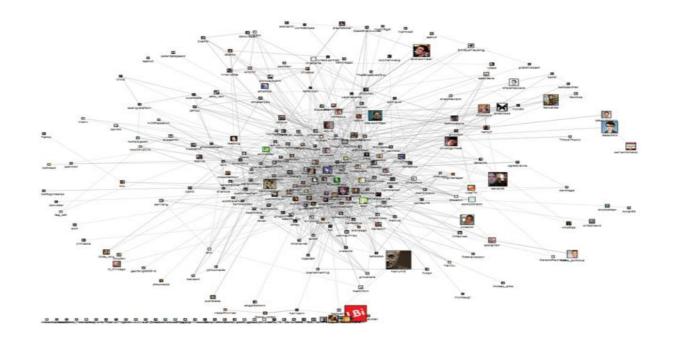
Graph Processing – High-impact Domain

- Social networks
- Drug discovery
- Monitoring wildfires
- Combating human-trafficking
- Studying the human brain



Graph Processing – Highly Challenging

- Mostly traversing links between entities
- Little computation
- Mostly memory bound
- Highly irregular workloads
- Cache misses

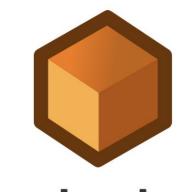


Performance = f(platform, algorithm, dataset)

[1] Guo et al., IPDPS '14 ; [2] Iosup et al., VLDB '16

How to study the convergence?

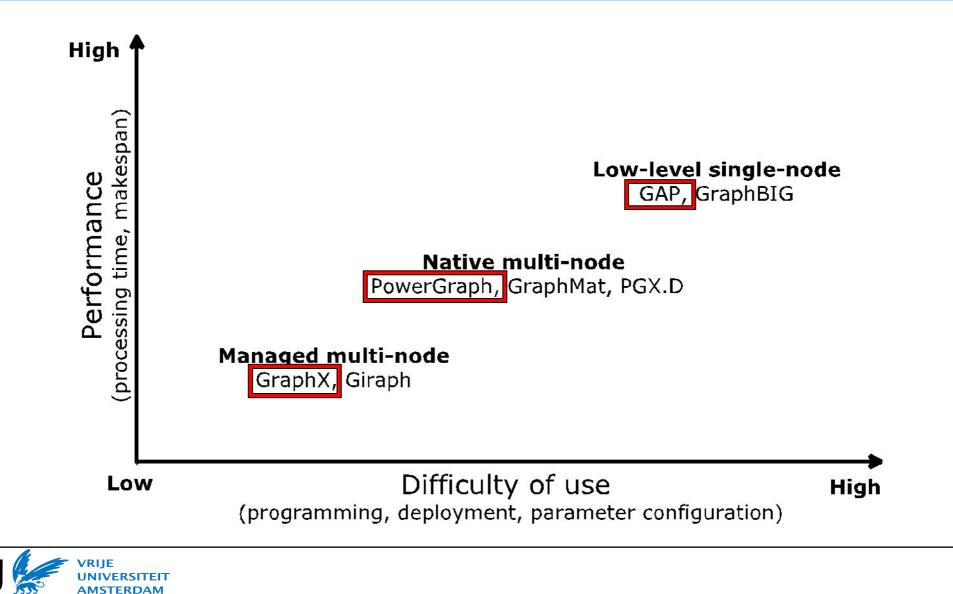
- Benchmark using Graphalytics
- Multiple classes of algorithms
- Multiple datasets (scale-free and non-scale free)
- Multiple classes of graph analytics platforms
- Comparison between KNL and de-facto big data hardware (Intel Xeon family)



Graphalytics

Open-source Graph Processing Benchmark Suite

Graph Analytics Platforms



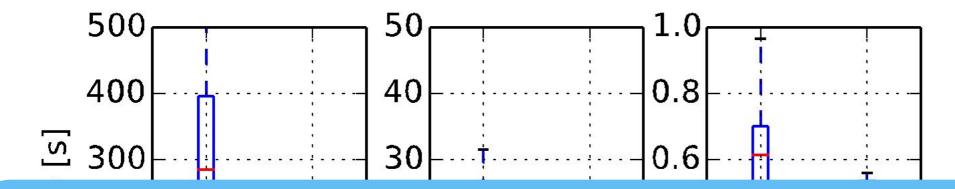
Quantifying the Convergence

- Large-scale study over 300,000 compute core-hours
- Experiments run in DAS-5, Cartesius cluster*, Intel Academic cluster*
- Q1: How does the KNL parameter space influence performance?
- Q2: How (difficult it is) to tune the platforms on KNL?

• Q3: Is KNL faster than Xeon		Xeon E5-2630v3	Xeon Phi 7230
• Q4: Does it scale?	Cores	16 (32 hyperthreads)	64 (256 hyperthreads)
	Frequency (GHz)	2.4	1.3
	Network	56Gbit FDR InfiniBand	56Gbit FDR InfiniBand
	Memory	64GB DDR4	96GB DDR4
	OS	Linux 3.10.0	Linux 3.10.0

* Thanks to grants from NWO and Intel

Hardware + Software Parameters

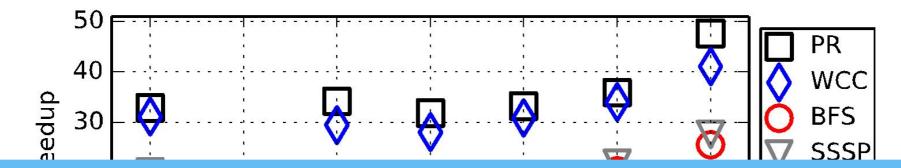


MF1: Much larger performance range due to KNL configurability and interactions with software!

(a) GraphX (b) Powergraph (c) GAP

Pagerank + Datagen-7_9

KNL Hardware + Platform Interaction and Tuning

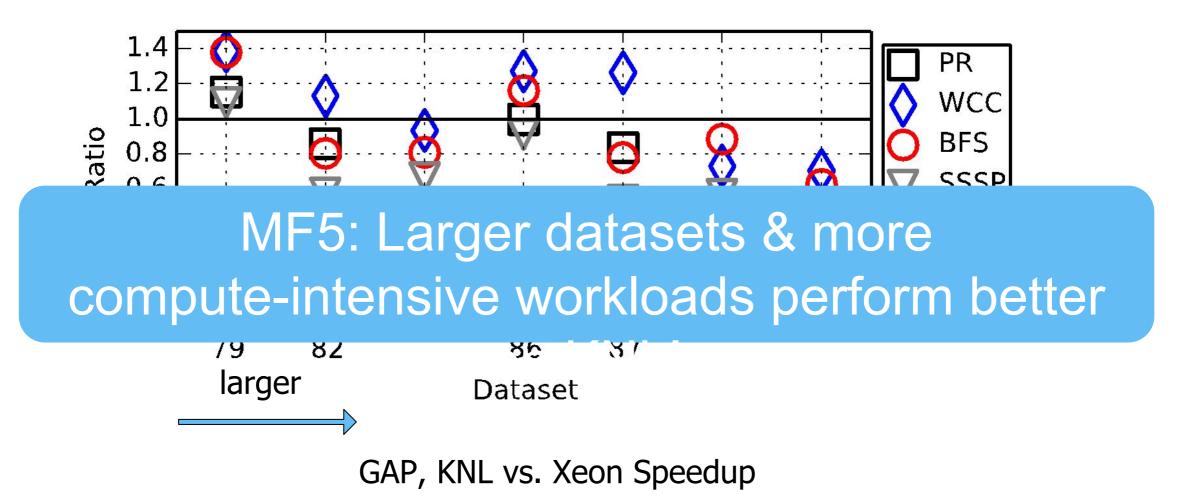


MF2: On KNL, tuning (thread pinning) is important!

Number of Workers (w) and Threads (t=256/w)

Powergraph, Datagen_7-9 – thread pinning speedup (pinning on Xeon – 5% improvement)

KNL outperforms Xeon



Take-home Message: Main Findings

- HPC & Big Data can converge at a hardware level! But...
- MF1: **HPAD** hardware adds an extra complexity layer
- MF2: **Tuning** good performance entails significant tuning for KNL
- MF3: **Scaling** KNL scales well vertically, but cannot scale horizontally
- MF4: H-P interaction platforms closer to hardware perform better on KNL
- MF5: Convergence KNL outperforms Xeon
- Future work: adapt software to KNL
 - Use wide vectors

VU USette son-chip memory

Further Reading

- A. Uta et al., A Performance Study of Big Data Workloads in Cloud Datacenters with Network Performance Variability
- A. Uta et al., Exploring HPC and Big Data Convergence: a Graph Processing study on the Intel KNL

