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Data-intensive Scientific Discovery
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Science paradigms
• Thousand years ago: empirical/experimental science
The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.
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Science paradigms

• Last few centuries: theoretical science
The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.



5

Science paradigms
• Last few decades: computational science

The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.
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Science paradigms

• Today: data exploration (eScience)
– Data captured by instruments/generated by a generator

– Processed by software

– Information/knowledge stored on a computer

– Analysis of data

The Fourth Paradigm - Data-Intensive Scientific Discovery. T. Hey, S. Tansley and K. Tolle. 2009.
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What is Big Data?

Big Data is data that is difficult to 
process and extract value from.

Why is it difficult?
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Volume: The “Data Deluge”
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Many Vs of Big Data:

• Volume: the amount of data to process
• Velocity: the rate at which new data arrives
• Variety: different forms of data
• Veracity: uncertainty of data

How do we explore and extract value from 
big data?
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Wide variety of frameworks

Image courtesy of mattturck.com

What happens when everybody runs big 
data in the cloud?
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 Co-location induces (resource) performance variability

How does resource interference 
affect performance?

Resource contention produces 
performance variability in clouds!
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 Co-location induces (resource) performance variability

How does workload variability 
affect performance?

U
til

iz
at

io
nWorkload variability produces 

performance variability!
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Cloud (resource) performance is highly variable!

• Due to:
• Co-location

• Virtualization

• Workload variability

• Network congestion

• Affects all possible resources:

Ballani et al., SIGCOMM 2011

Emergent behavior in large-scale 
ecosystems!

Iosup et al., CCGrid 2011
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• Poor performance predictions

• Poor scheduling decisions
• Over-provisioning

• Extra costs
How to study performance variability? 

How to control the variability?

Convenient to use big data + cloud, but...

Variability entails:
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How to study performance variability?

Traditional performance analysis:

•(1) Trace analysis

•(2) Benchmarking

•(3) Performance modeling

Current models, 
benchmarks do not 
consider resource 

variability!
• No study on resource performance variability and big data
• Variability within clouds and between clouds (performance portability 

issues)
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A Framework for Studying Performance Variability

•Fallback to empirical evaluation based on previous observations

•Controlled environment that emulates real-world variability scenarios

•Multiple classes of big data applications

•Statistical analysis and performance modeling to understand correlations

1

2

3

(2) Benchmark (3) Modeling(1) Traces
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Benchmarking Performance Variability
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Quantifying network variability impact on Big Data

•Systematic study using A-H cloud bandwidth distributions
•Run a series of big data applications
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Cloud network bandwidth emulation

Cluster

Vary 
bandwidth

•For each distribution:
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Big Data Workloads

• HiBench suite, MapReduce-style apps
• 6 real-world applications from various domains
• Each app having different resource usage

Application

Wordcount ++ -- 0 0

Sort -- ++ 0 ++

Terasort ++ 0 ++ ++

Naïve Bayes 0 0 ++ --

K-means ++ -- 0 --

PageRank 0 -- 0 --
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Variable network = Variable Runtime (Terasort)



22

Variable network = Variable Runtime (Terasort)
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Variable network = Variable Runtime (Terasort)
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Variable network = Variable Runtime (Terasort)
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Surprisingly, non-network-intensive Wordcount slowed down



26

Most apps are slowed down on real clouds
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Take-home message

• Network variability leads to high slowdown for big data in the cloud

• Network variability also affects performance portability

• Surprisingly, also apps not network-bound applications slow down

Future work:
• In-depth statistical analysis

• Performance modeling tools

• Control through better scheduling
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Exploring Computing Infrastructure Convergence: 
HPC and Big Data Graph Processing on Multicores



29

Do you have experience with ... ?
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HPC and Big Data Infrastructure

Highly divergent in both hardware and 
software!

Divergence is expensive and 
unsustainable: energy, computation, 

human resources!
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Divergence - unsustainable and expensive!

How does the hardware and software 
landscape look for these paradigms?
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HPC Infrastructure

• Large numbers of (thinner, low-power) 
cores

• Intricate NUMA topologies

• Fast interconnects (InfiniBand, 40+ Gb 
Ethernet)

• Accelerators (GPUs, FPGAs, TPUs)

• Compute-intensive workloads (simulations)
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Big Data Infrastructure

• (generally) commodity hardware

• Fat-core CPUs

• large memory (and caches) per core

• Large storage

• Less emphasis on fast networks

• Often virtualized clusters (cloud)

• Data-intensive workloads
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        HPC vs. Big Data Software

Most big data stacks are unable to take 
advantage of (HPC) hardware features.
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Addressing the HPC and Big Data Convergence

• Only in software: porting big data to HPC hardware

Significant effort in porting and tuning!

Can we run big data directly on HPC 
hardware? What are the trade-offs?
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Big Data on HPC-capable Many-cores
Representative:

•Intel KNL – 2nd generation Xeon Phi

Can run Big Data:
•Accelerator-like self-booting CPU

•Full x86_64 compatibility

HPC Features:
•(up to) 72 low-power Intel Atom cores

•Wide vector instructions (512B)

•16GB high-bandwidth on-chip memory

• 3 TFLOPS + 400 GB/s (on-chip) memory bandwidth
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Intel KNL – Highly Representative for HPC

Representative for Top500:
•3 clusters in top 10 of top500.org contain KNL

•~3% of the share of CPUs in top500

•~10% of the performance share of top500

Many performance facets:
•Highly configurable at boot time

•Works as many different machines
(due to configurable clustering and
memory modes)

KNL
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KNL Architecture

Tile
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KNL – Hardware Parameter Space
• Clustering modes: (L2 cache miss latency)

• All2All
• Quadrant/Hemisphere
• NUMA

• Memory modes: (on-chip memory)
• Flat
• Cache
• hybrid
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Graph Processing – HPC and Big Data

    HPC
Workloads      Big Data Workloads

Graph Processing
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Graph Processing – High-impact Domain

• Social networks

• Drug discovery

• Monitoring wildfires

• Combating human-trafficking

• Studying the human brain
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Graph Processing – Highly Challenging
• Mostly traversing links between entities

• Little computation

• Mostly memory bound

• Highly irregular workloads

• Cache misses

• PAD Triangle [1,2]

Performance = f(platform, algorithm, dataset)

[1] Guo et al., IPDPS ’14 ; [2] Iosup et al., VLDB ‘16
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How to study the convergence?

• Benchmark using Graphalytics

• Multiple classes of algorithms

• Multiple datasets (scale-free and non-scale free)

• Multiple classes of graph analytics platforms

• Comparison between KNL and de-facto big data 
hardware (Intel Xeon family)
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Graph Analytics Platforms
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Quantifying the Convergence
• Large-scale study – over 300,000 compute core-hours

• Experiments run in DAS-5, Cartesius cluster*, Intel Academic cluster*

• Q1: How does the KNL parameter space influence performance?

• Q2: How (difficult it is) to tune the platforms on KNL?

• Q3: Is KNL faster than Xeon?

• Q4: Does it scale?

* Thanks to grants from NWO and Intel
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 Hardware + Software Parameters

Pagerank + Datagen-7_9

MF1: Much larger performance range due to 
KNL configurability and interactions with 

software!
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KNL Hardware + Platform Interaction and Tuning

Powergraph, Datagen_7-9 – thread pinning speedup
(pinning on Xeon – 5% improvement)

MF2: On KNL, tuning (thread pinning) is 
important!
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KNL outperforms Xeon

larger

GAP, KNL vs. Xeon Speedup

MF5: Larger datasets & more 
compute-intensive workloads perform better 

on KNL!
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Take-home Message: Main Findings
• HPC & Big Data can converge at a hardware level! But...

• MF1: HPAD – hardware adds an extra complexity layer

• MF2: Tuning – good performance entails significant tuning for KNL

• MF3: Scaling – KNL scales well vertically, but cannot scale horizontally

• MF4: H-P interaction – platforms closer to hardware perform better on KNL 

• MF5: Convergence – KNL outperforms Xeon 

• Future work: adapt software to KNL
• Use wide vectors

• Use the on-chip memory

• Multithreaded I/O and networking
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Further Reading

• A. Uta et al., A Performance Study of Big Data Workloads in Cloud 
Datacenters with Network Performance Variability

• A. Uta et al., Exploring HPC and Big Data Convergence: a Graph Processing 
study on the Intel KNL


