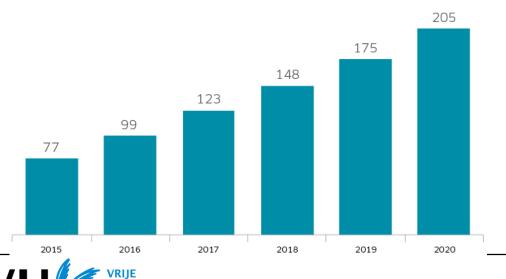
A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

Mihai Neacşu, BSc.

Prof.dr.eng. Alexandru Iosup

Ir. Laurens Versluis Massivizing Computer Systems @Large research, https://atlarge-research.com

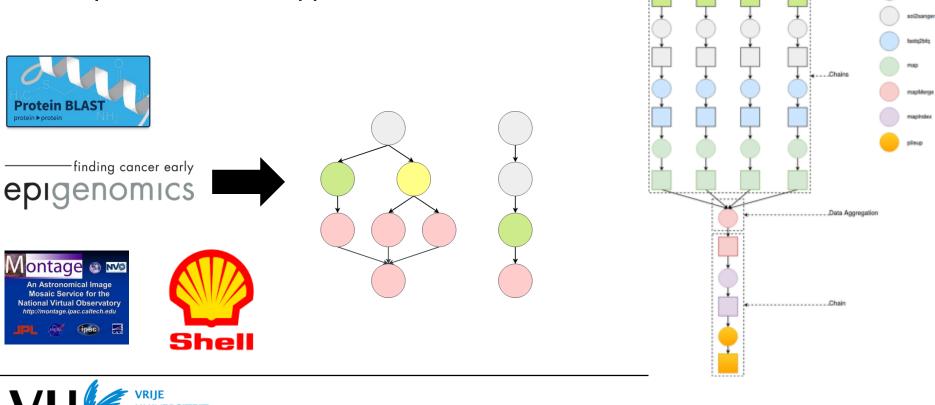

1

Cloud popularity and usage at all-time high

- Surveys: >\$200B market by 2020, 86% of companies use >1 cloud service
- Resource utilization increasingly important

Public IT Cloud Spending (\$Billions)

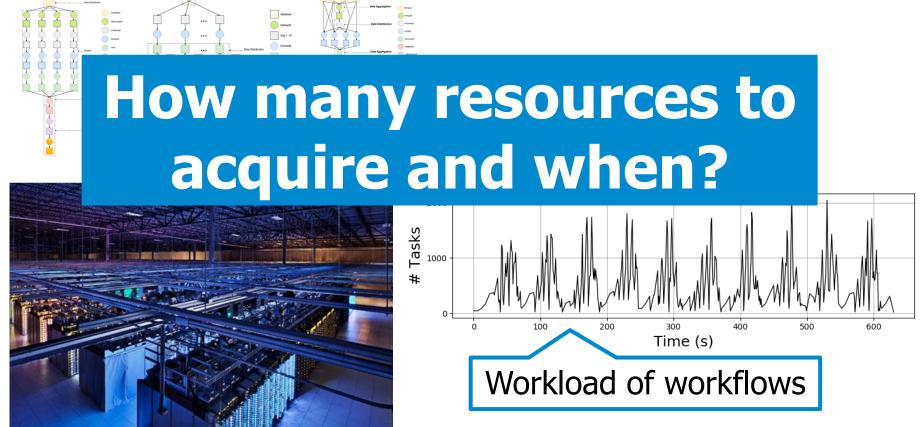
- Competitive position for companies
- Reduce costs for customer & provider



AMSTERDAN

Workflow execution is gaining popularity

- Workflows = set of tasks with precedence constraints
 - Usually represented as a Directed Acyclic Graph (DAG)
 - Used to model applications in many domains
- Today: thousands of applications in use


Data Distribution

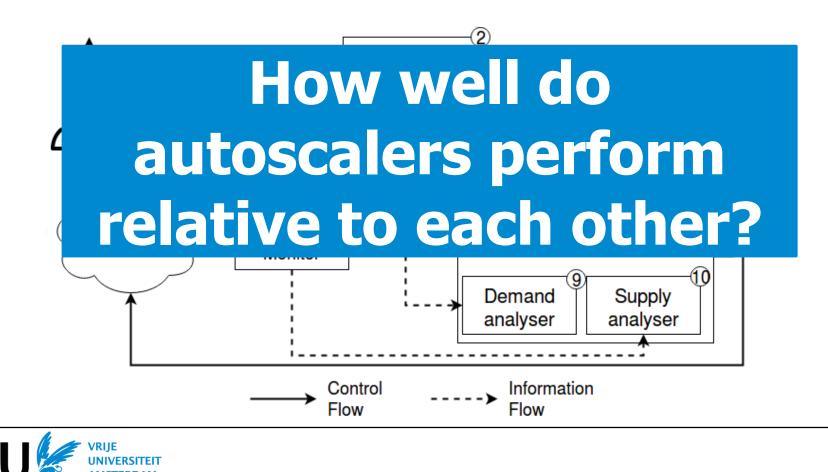
FastQ8pilt

filterContam

Executing workflows in the cloud

- 1. Workflows are submitted to the cloud, executed in datacenters
- 2. Workflow resource demand changes over time due to their complex structures

A problem for cloud providers


- Minimize overprovisioning (allocating too many resources)
 - Reduces costs
- Adhere to the Quality-of-Service (QoS) requirements of the client
 - Minimize underprovisioning
- Automate this process
 - Poor user estimates of resource requirements
- Solution: Autoscalers
 - Scale resources on demand
 - Forecast resource demand in the near-future
 - Deal with sudden flash-crowds/peaks

Autoscaler operations

- 1. Monitor current workload (9) and available resources (10)
- 2. Attempt to predict future utilization (8)
- 3. Scale resources up or down according to prediction (4)

In this work: Compare autoscalers in simulation

- Four distinct workload traces
 - A workload is a set of workflows (applications)
- Use a rich set of metrics
 - 10+ forms of elasticity
- Four experiments
 - 1. Different workload domains (new)
 - 2. Bursty workloads (deeper understanding)
 - 3. Impact of the allocation policy (new)
 - 4. Different resource environments (new)

Medium scale

ID	Source	Domain	Workflows	# Tasks
T1	SPEC Cloud Group	Scientific	200	$13,\!876$
T2	Chronos	Industrial	$1,\!024$	$3,\!072$
T3	Askalon EE	Engineering	757	45,786
T4	Askalon EE2	Engineering	$3,\!551$	$122,\!105$

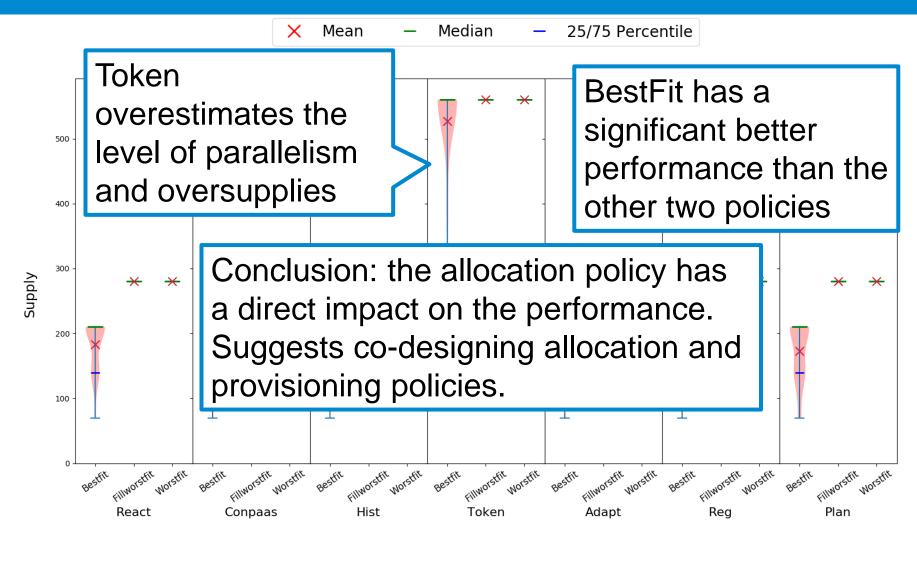
Experiment: different workload domains

- Investigate the performance of autoscalers while processing workloads of different domains
- Three workloads:
 - Scientific (T1)
 - Industrial (T2)
 - Engineering (T3)
- Use the Chronos (Shell) industrial resource setup
 - 70 resources per cluster
 - At start, the number of clusters is scaled to reach 70% resource utilization

ID	Source	Domain	Workflows	# Tasks
T1	SPEC Cloud Group	Scientific	200	$13,\!876$
T2	Chronos	Industrial	$1,\!024$	$3,\!072$
T3	Askalon EE	Engineering	757	45,786
 T4	Askalon EE2	Engineering	$3,\!551$	$122,\!105$

Results: significant differences per domain

AS	Workload	A_U	A_O	\bar{A}_U	\bar{A}_O	T_U	T_O	k	k'	M_U	\bar{V}	$ar{h}$	\bar{C}
	Chronos	70.7	17.6	27	For	com	ne m	notr	rice	suc	h ^{2.3}	3,467.9	21.0
React	Askalon EE	211.5	16.1	52							9.9	2,121.3	58.9
	SPEC	54.8	38.9	15	as	ove	rpro	ovis	sion	ing,	8.8	3,538.9	784.0
	Chronos	70.7	17.6	27			-			••••	2.3	3,467.9	21.0
ConPaaS	Askalon EE	211.5	50.4	31	C	onP	a a5	an	аг	IISL	8.1	3,355.9	93.2
	SPEC 52.9 40.2 perform worse for the 0.0 3,59								3,597.6	797.0			
	Chronos	70.7	17.6		pen						2.3	3,467.9	21.0
Hist	Askalon EE	211.5	56.2	31		EE	WO	rklo	bad		8.3	3,565.2	99.0
	SPEC	53.9	40.2	14							0.0	3,597.6	797.0
	Chronos	70.7	17.6	27.8	17.6	45.9	50.5	0.0	0.0	36.0	202.3	3,467.9	21.0
Adapt	Askalon EE	211.5	17.6	32.4	47.5	40.0	56.0	4.0	1.0	18.2	1,353.6	2,175.4	60.4
	SPEC	54.9	38.8	15.7	38.8	33.6	64.6	1.6	0.8	70.9	68.8	3,538.9	784.0
	Chronos	70.7	17.7	27.8	17.7	45.9	50.5	0.0	0.0	36.0	202.3	3,467.9	21.0
Plan	Plan Askalon EE		17.8	33.1		A L .			_	8.4	1,350.0	2,169.6	60.7
	SPEC	54.2	38.1	15.7	1	Autoscalers					68.2	3,507.3	777.0
	Chronos	70.7	17.6	27.8	ı ır	nder	nro	visi	on	6.0	202.3	3,467.9	21.0
Reg	Askalon EE	210.0	16.1	33.1						6.7	1,312.4	2,109.2	59.0
	SPEC	53.9	39.7	15						1.6	69.4	3,570.5	791.0
	Chronos	70.7	17.6	21		all	-	•	-	6.0	202.3	3,467.9	21.0
Token	Askalon EE	211.5	16.8	31.4		an	VVUI	NIU	aus	7.4	1,335.3	2,146.1	59.6
	SPEC	53.4	40.3	14.8	40.3	32.7	66.1	2.6	0.0	72.5	70.0	3,597.6	797.0



Experiment: different allocation policies

- Inspect the performance of autoscalers using different allocation policies
- One workload:
 - Engineering (T4)
- Three allocation policies
 - WorstFit
 - FillWorstFit
 - BestFit
- Use the Chronos (Shell) industrial setup
 - 70 resources per cluster
 - At start, the number of clusters is scaled to reach 70% resource utilization
- Metrics
 - Supplied resources

Results

VU SS VRIJE UNIVERSITEIT AMSTERDAM Autoscaler

Conclusion and future work

• We compared seven autoscalers using four distinct traces

In this work four experiments:

- 1. The performance differs significantly per application domain
- 2. The allocation policy has a direct impact on performance
- 3. All autoscalers perform similar on bursty workloads in terms of NSL
- 4. Some autoscalers overprovision more while yielding no better NSL

Future work:

- Study the impact of heterogeneity
- Apply several cost metrics by using e.g. cost models
- Experiment with job and task migrations
- Improve our simulations by including resource boot-up times

Interested in the other two experiments or the paper? Let me know!

A Trace-Based Performance Study of Autoscaling Workloads of Workflows in Datacenters

Mihai Neacşu, BSc.

Prof. Dr. Ir. Alexandru Iosup

Ir. Laurens Versluis Massivizing Computer Systems @Large research, https://atlarge-research.com

