Scalable High Performance Systems

dr. ir. Alexandru losup

Parallel and Distributed Systems Group

Won IEEE Scale Challenge 2014!

Datacenters = commodity high performance systems

- Large-scale infrastructure
- High-tech automated software to manage
- Inter-connected computer clusters
- High-end computation, storage, network
- Large memory capacity

"my other computer is a datacenter"

Scientific Challenges

How to massivize datacenters?

- Super-scalable, super-flexible, yet efficient ICT infrastructure
- End-to-end automation of large-scale processes
- Dynamic, compute- and data-intensive workloads
- Evolving, heterogeneous hardware and software
- Strict performance, cost, energy, reliability, and fairness requirements

Societal Challenges

ŤUDelft

The quadruple helix: prosperous society & blooming economy & inventive academia & wise governance depend on datacenters

- Enable data access & processing as a fundamental right in Europe
- Enable big science and engineering (2020: €100 bn., 1 mil. jobs)
- "To out-compute is to out-compete", but with energy footprint <5%
- Keep Internet-services affordable yet high quality in Europe
- The Schiphol of computation: Netherlands as a world-wide ICT hub

 10^{10}

Interactive Masterclass

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

 10^{10}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

 10^{10}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

Joe Has an Idea (\$\$\$)

Solution #1

ŤUDelft

Buy then Maintain

- Big up-front commitment
- Load variability: NOT supported

Inside a Cloud Datacenter: Infrastructure as a Service

ŤUDelft

MusicWave

User C

User B

 10^{10}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

The Pizza-Box Stack

• The 1U server

The Pizza-Box Stack

• The 1U server

The Pizza-Box Stack

- The 1U server
- The 19" server rack (42U is now standard)

The Data Center Network

- Network bandwidth per rack
 - 1 x 48-port GigE switch = 40 UP-, 8 DOWN-links

- Network bandwidth per socket
 - (fast) 1 Gbps for 10 GigE rack switch
 - (slow) 100 Mbps for 1 GigE rack switch
 - (exorbitant) 10 GBps for ncHT3 (supercomputing class)

TUDelft Source: Dennis Abts (Google, Inc.) and John Kim (KAIST), High Performance Data Center Networks, 20

Servers + Server Racks + Intra-Rack Network + Inter-Rack Network

An Entire Floor in a Google Datacenter

Virtualization

 10^{10}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

The Ecosystem Navigation Challenge

The "Big Cake" Challenge In the Datacenter

Online Social Networks

Financial Analysts

(Source: B. Ghit et al., SIGMETRICS 2014)

Jevon's Effect: More Efficient, Less Capable

Over 500 YouTube videos have at least 100,000,000 viewers each.

If you want to help kill the planet: https://www.youtube.com/playlist?list=PLirAqAtl_h2r5g8xGajEwdXd3x1sZh8hC

PSY Gangnam consumed ~500GWh

more than entire countries* in a year (*41 countries),
over 50MW of 24/7/365 diesel, 135M liters of oil,

= 100,000 cars running for a year, ...

ŤUDelft

Source: Ian Bitterlin and Jon Summers, UoL, UK, Jul 2013. Note: Psy has now >3 billion views (Jun 2015).

The New "Jevon's Effect": The "Data Deluge" vs Capability

To be capable of processing Big Data, address Volume, Velocity, Variety of Big Data*

* Other Vs possible: ours is "vicissitude"

Data Deluge = data generated by humans and devices (IoT)

ZETTABYTES

- Interacting
- Understanding
- Deciding
- Creating

2020

 10^{3}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

Our Industry Collaborators

 10^{10}

Interactive Masterclass

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Portfolio Scheduling, In A Nutshell

- Create a set of scheduling policies
 - Resource provisioning and allocation policies for datacenters
- Online selection of the active policy, at important moments

Portfolio Scheduling: Process

JDelft

tbrains

Promising Results for Scientific Computing, Business-Critical, and Online Gaming

 10^{10}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

The Ecosystem Navigation Challenge

Platform Diversity

Graphalytics: The first comprehensive benchmark for big data graph processing A PAD triangle explorer for Graph Processing

- Advanced benchmarking harness
- Choke-point analysis
- Realistic graph generator
- Co-sponsored by Oracle
- Supported by LDBC, partially developed through SPEC RG

DRACLE I DR

Runtime: the Platform has large impact

Runtime: The Dataset has large impact

Neo4j can fail

TUDelft

Throughput: The Dataset structure matters!

 10^{10}

Interactive Masterclass

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

The "Big Cake" Challenge In the Datacenter

Online Social Networks

Financial Analysts

Fawkes in a Nutshell [1/2]

Because workloads may be time-varying:

- Poor resource utilization
- Imbalanced service levels

Fawkes in a Nutshell [2/2]

Performance of dynamic MapReduce

10 core +10xTR 10 core +10xTC vs. 20 core nodes (baseline)

- **TR good** for compute-intensive workloads.
- TC needed for disk-intensive workloads.

Dynamic MapReduce: < 25% overhead

Fawkes also reduces imbalance

Delft

 10^{10}

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science
 - Towards a KIVI Taskforce on Data Science as a

Interactive Masterclass

The New "Jevon's Effect": The "Data Deluge"

Need to address Volume, Velocity, Variety of Big Data*

Vicissitude of Big Data = dynamic mix of big data issues (Vs) that lead in big data systems to different bottlenecks over time

ZETTABYT 2020

Data Deluge = data generated by humans and devices (IoT)

- Interacting
- Understanding
- Deciding
- Creating

Observing BitTorrent: Managing A Typical Globally Distributed System

Most used protocol on Internet, by upload volume [1] One third (US) to half (EU) of residential upload Over 100 million users [2]

[1] https://sandvine.com/downloads/general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-report.pdf
[2] http://www.bittorrent.com/company/about/ces_2012_150m_users

BTWorld: a Typical Big Data Project (and Our Use Case)

- Ongoing longitudinal study, 5 YEARS
- Data-driven project to understand BitTorrent: data first, ask questions later
 - Over 15 TB of structured and semi-structured data added during the project
 - Queries added during project, e.g., How does the BitTorrent population vary? How does BitTorrent change over time?

The MapReduce ecosystem (a big problem in big data)

- Widely used in industry and academia
 - Similar to other big data stacks
- Complex software to tune
 - 100s of parameters
 - Non-linear effects common
- Lots of issues cause crashes [1]
- Focus on Small and Medium Enterprises (60% GPD)
 - No resources or even competence to fix issues
 - Difficult to make stack work for own problems

KIVI [1] Ewen et al., "Spinning Fast Iterative Data Flows", PVLDB 2012

The Abstract BTWorld Workflow

The BTWorld Workload

cineering Society

May 2014

62

- HDFS: reduced replication, concatenate small files
- MapReduce: memory per task vs number of tasks, mappers then reducers
- Pig: specialized joins, multistage adaptive joins
- Workflow: reuse data between stages, common queries

General Problem

Domain	Data Collection	Entities	Identifiers
BitTorrent	Trackers	Swarms	Hashes
Finance	Stock markets	Stock listings	Stocks
Tourism	Travel agents	Vacation packages	Venues

Interactive Masterclass

Scalable High Performance Systems

- 5' Pitch on Scalable High Performance Systems
- 5' The Golden Age of Datacenters
- 20' A Delft Data Science View on Datacenters
 - The core idea of datacenter computing
 - The main enabling technologies for datacenter computing
 - The main challenges and techniques
- 35' Delft Data Science Makes Datacenters Tick
 - Addressing the Scheduling challenge
 - Addressing the Ecosystem Navigation challenge
 - Addressing the Big Cake challenge
 - Addressing Jevon's Effect in Data Science

— Towards a KIVI Taskforce on Data Science as a

10

TUDelft

The Golden Age of datacenters

Cloud computing + Big Data

Important New Challenges

- 1. The scheduling challenge
- 2. The ecosystem navigation challenge
- 3. The big cake challenge
- 4. Jevon's Effect for Big Data

Research Agenda for Datacenter-based Data Science

- 1. "Data Science as a Service" as functional goal.
- 2. Compute- & data-intensive models can coexist in the datacenter.
- 3. Non-functional targets: high performance and availability, elasticity, etc.
- 4. Fundamental models of data science platforms.
- 5. Fundamental knowledge on Platform-Algorithm-Data interaction.
- 6. New generation of resource management techniques, including scheduling.

Next? A New KIVI Taskforce on Data Science as a Service

Identify industry needs in the Netherlands

• Stakeholders: datacenter operators, ICT designers, ICT analysts, ICT researchers, governance, ICT media

Establish a joint research agenda, between fundamental and applied research

- Groundbreaking ideas for important challenges
- Prototypes and Proof-of-Concepts, not only ideas

Build a solid, pragmatic collaboration

- Relevant recommendations for relevant problems
- Embedding of human resources, joint networking, etc.

More?

to out-compute is to out-compete—Collaborate with

Delft Data Science on datacenter infrastructure

- Work together on complex engineering problems
- Two-way transfer of knowledge and expertise
- With impact on society, industry, academia, and governance

Attend ICT with Industry

- "direct and rapid interaction between the ICT researchers and Industrial partners"
- Dutch doctoral schools in ICT
- Co-organized with NWO and STW
- 7—11 December 2015

Contact Me or Our Team

Collaboration or discussion about:

- Leveraging open-source cloud computing and big data systems in your organization
- Introducing MapReduce and graph-processing, and distributed computing systems in your organization
- Optimizing your high performance and high throughput clusters

https://www.linkedin.com/in/aiosup

Delft

Recommended Reading

Elastic Big Data and Computing

- B. Ghit, N. Yigitbasi (Intel Research Labs, Portland), A. Iosup, and D. Epema. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. SIGMETRICS 2014
- L. Fei, B. Ghit, A. Iosup, D. H. J. Epema: KOALA-C: A task allocator for integrated multicluster and multicloud environments. CLUSTER 2014: 57-65
- K. Deng, J. Song, K. Ren, A. Iosup: Exploring portfolio scheduling for long-term execution of scientific workloads in IaaS clouds. SC 2013: 55

Time-Based Analytics

- B. Ghit, M. Capota, T. Hegeman, J. Hidders, D. Epema, and A. Iosup. V for Vicissitude: The Challenge of Scaling Complex Big Data Workflows. Winners IEEE Scale Challenge 2014

Graph Processing / Benchmarking

- Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke: How Well Do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis. IPDPS 2014: 395-404
- A. L. Varbanescu, M. Verstraaten, C. de Laat, A. Penders, A. Iosup, H. J. Sips: Can Portability Improve Performance?: An Empirical Study of Parallel Graph Analytics. ICPE 2015: 277-287

Disclaimer: images used in this presentation obtained via Google Images.

- Images used in this lecture courtesy to many anonymous contributors to Google Images, and to Google Image Search.
- Many thanks!

