GRAPHALYTICS

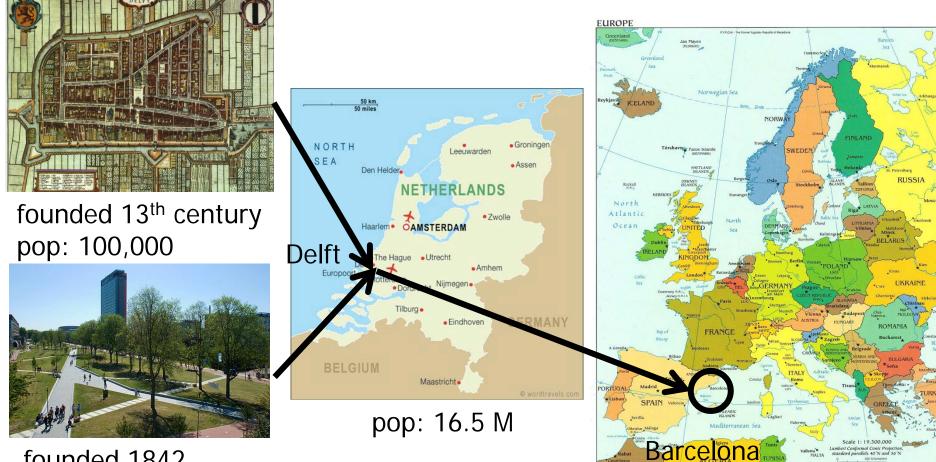
A Big Data Benchmark for Graph-Processing Platforms

LDBC TUC Meeting Barcelona, Spain, March 2015

Delft University of Technology

ORACLE

(TU) Delft – the Netherlands – Europe



founded 1842 pop: 13,000

The Parallel and Distributed Systems Group at TU Delft

Alexandru losup

Grids/Clouds P2P systems **Big Data/graphs** Online gaming

Grids/Clouds P2P systems Video-on-demand e-Science

Dick Epema

Ana Lucia Varbanescu (now UvA) HPC systems Multi-cores Big Data/graphs

tribler

Noala

Henk Sips

HPC systems Multi-cores P2P systems

@large

Johan Pouwelse

P2P systems File-sharing Video-on-demand

GRENCHMARK

- Home page
 - www.pds.ewi.tudelft.nl

Publications

see PDS publication database at publications.st.ewi.tugem.ni

Winners IEEE TCSC Scale Challenge 2014

Delft University of Technology

Graphs at the Core of Our Society: The LinkedIn Example The State of LinkedIn

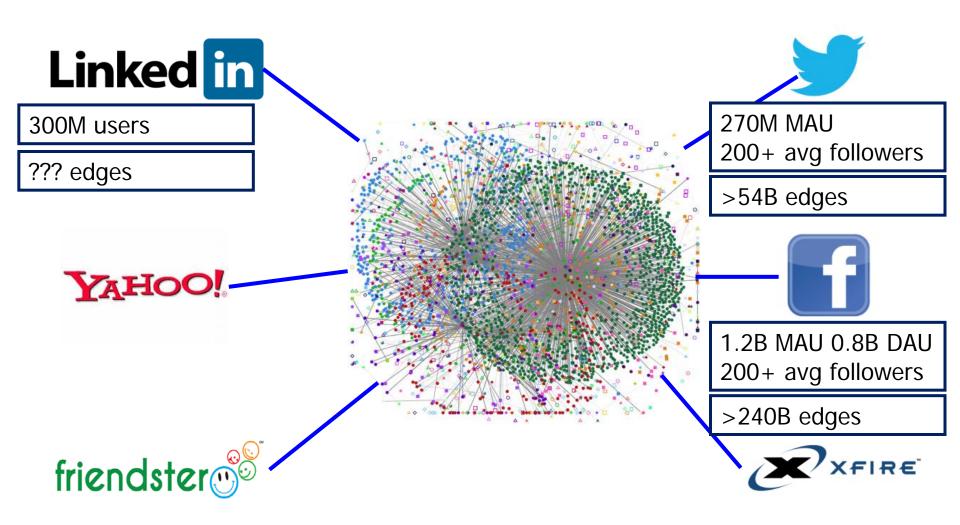
Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u>via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

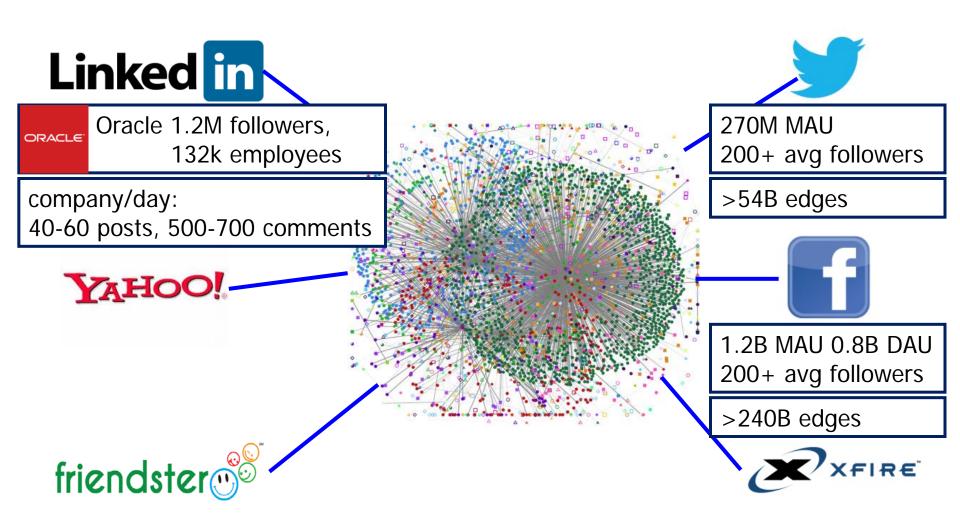
4

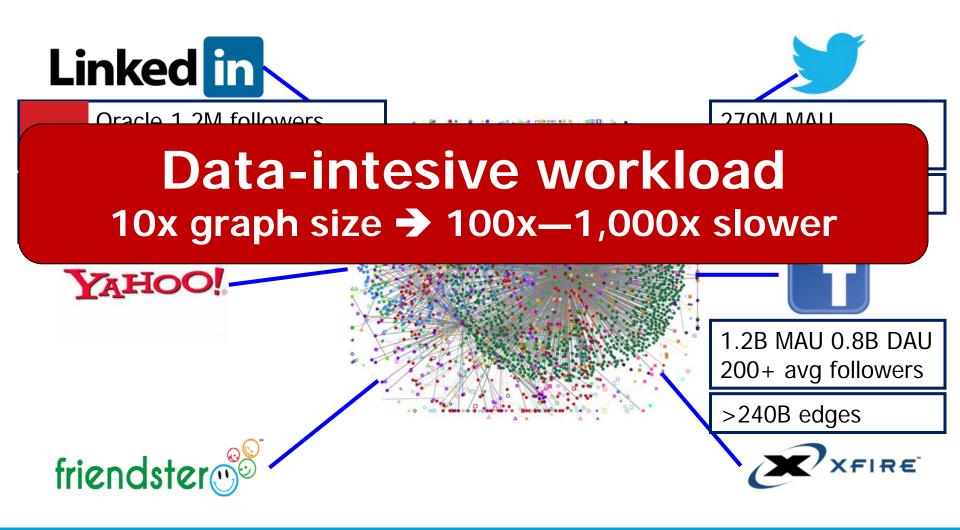
Graphs at the Core of Our Society: The LinkedIn Example The State of LinkedIn

Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u>via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

5







Oracle 1 2M followers

Data-intesive workload 10x graph size → 100x—1,000x slower

Compute-intesive workload more complex analysis → ?x slower

>240B eddes

Oracle 1 2M followers

Data-intesive workload 10x graph size → 100x—1,000x slower

Compute-intesive workload more complex analysis → ?x slower

Dataset-dependent workload unfriendly graphs → ??x slower

Delft University of Technology

10

Graphs at the Core of Our Society: The LinkedIn Example The State of LinkedIn

3-4 new users every second

but fewer visitors (and page views)

11

FUDelft

Graphs at the Core of Our Society: The LinkedIn Example The State of LinkedIn but fewer visitors (and

3-4 new users every second

16

21'12

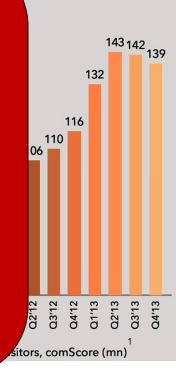
Membe

Q4'1.

02'11 03'11

21'1

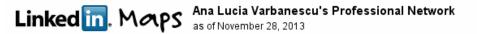
Periodic and/or continuous analytics at full scale

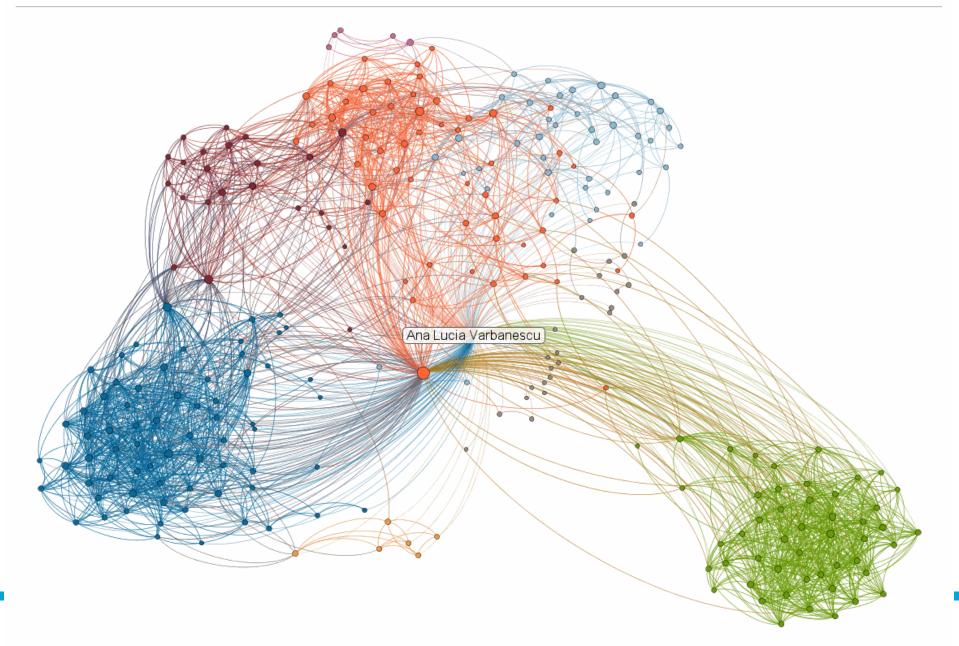


<u>page</u> views)

Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u> via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

12

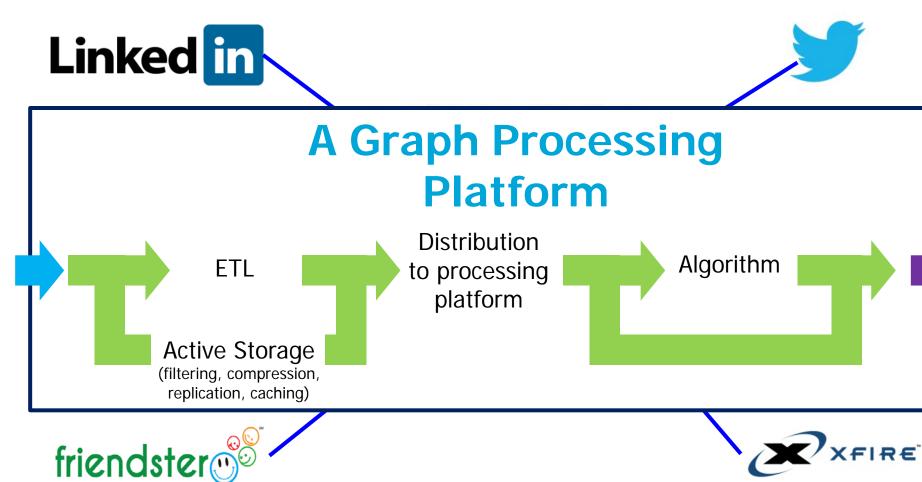




The "sorry, but..." moment

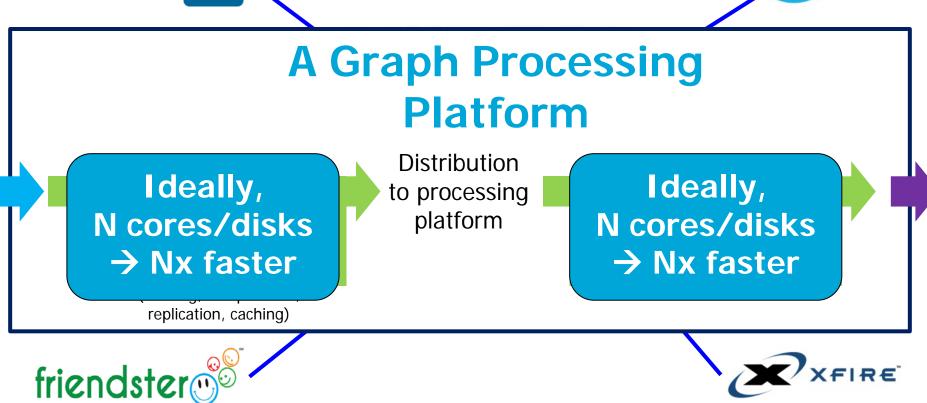
Supporting multiple users 10x number of users → ???x slower

Graph Processing @large



Interactive processing not considered in this presentation. Streaming not considered in this presentation.

Graph Processing @large



Interactive processing not considered in this presentation. Streaming not considered in this presentation.

Graph-Processing Platforms

 Platform: the combined hardware, software, and programming system that is being used to complete a graph processing task

Graphalytics = comprehensive benchmarking suite for graph processing across all platforms

Graphalytics = A Challenging Benchmarking Process

- Methodological challenges
 - Challenge 1. Evaluation process
 - Challenge 2. Selection and design of performance metrics
 - Challenge 3. Dataset selection and analysis of coverage
 - Challenge 4. Algorithm selection and analysis of coverage
- Practical challenges
 - Challenge 5. Scalability of evaluation, selection processes
 - Challenge 6. Portability
 - Challenge 7. Result reporting

Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke: Benchmarking graph-processing platforms: a vision. ICPE 2014: 289-292

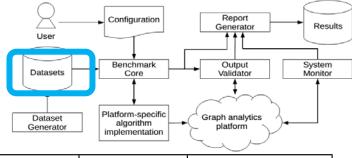
Graphalytics = Many Classes of Algorithms

- Literature survey of of metrics, datasets, and algorithms
 - 10 top research conferences: SIGMOD, VLDB, HPDC
 - Key word: graph processing, social network
 - 2009–2013, 124 articles

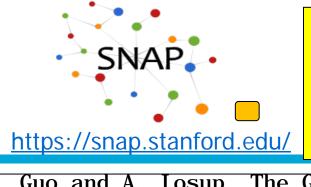
Class	Examples	%					
Graph Statistics	Diameter, PageRank	16.1					
Graph Traversal	BFS, SSSP, DFS	46.3					
Connected Component	Reachability, BiCC	13.4					
Community Detection	Clustering, Nearest Neighbor	5.4					
Graph Evolution	Forest Fire Model, PAM	4.0					
Other	Future work						
. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L.							
Willke. How Well do Graph-Processing Platforms Perform? An Empirical							

Performance Evaluation and Analysis, IPDPS' 14.

Graphalytics = Real & Synthetic Datasets



	Graphs	#V	#E	d	D	Directivity	
G 1	Amazon	262,111	1,234,877	1.8	4.7	directed	
) G2	WikiTalk	2,388,953	5,018,445	0.1	2.1	directed	
G3	KGS		Interaction graphs (possible work)				
G 4	Citation						
G5	DotaLeague						
G6 G6	Synth	2,374,330	07,152,015	۲.2		undirected	
G 7	Friendster	65,608,366	1,806,067,135	0.1	55.1	undirected	



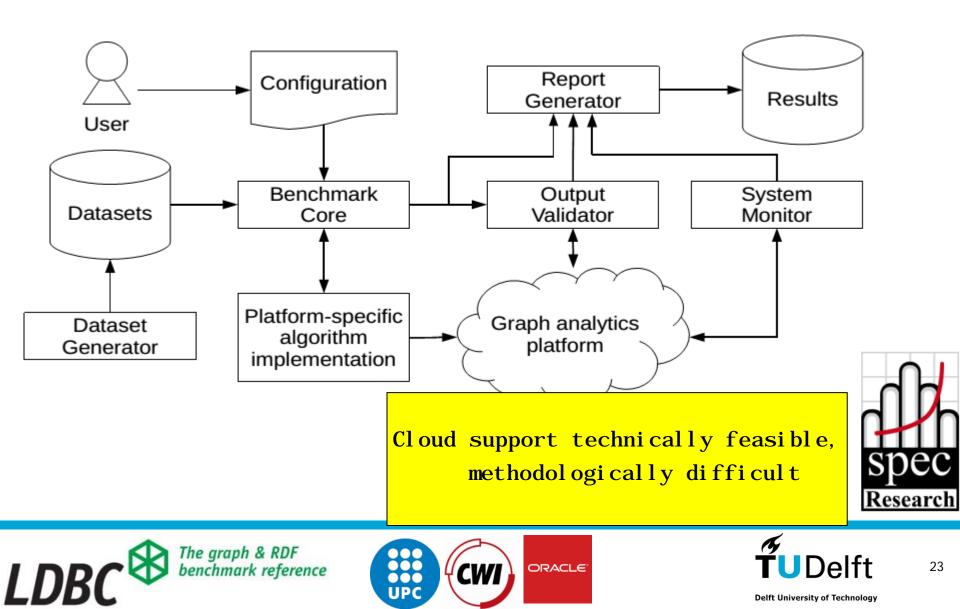
Y. Guo and A. Iosup. The Game Trace Archive, NETGAMES 2012.

LDBC Social Network Generator

The Game Trace Archive

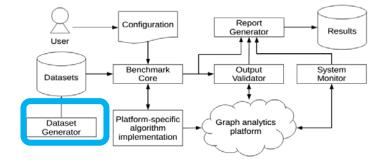
Delft University of Technology

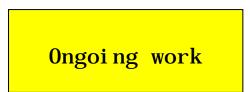
Graphalytics = Advanced Harness



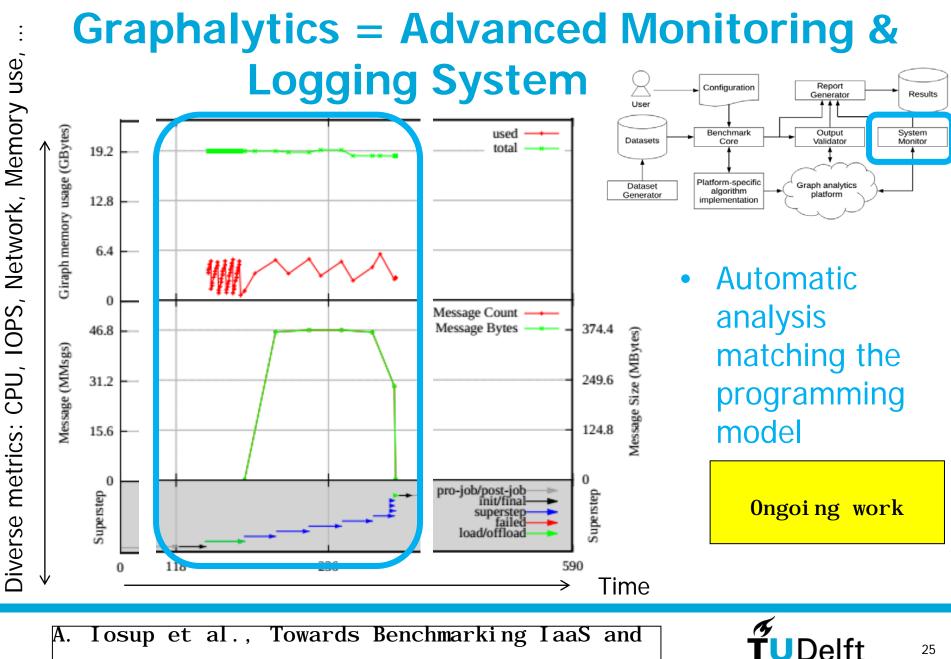
Graphalytics = Enhanced LDBC Datagen

- A battery of graphs covering a rich set of configurations
- Datagen extensions to
 - More diverse degree distributions
 - Clustering coefficient and assortativity





LDBC D3.3.34 <u>http://ldbcouncil.org/sites/default/files/LDBC D3.3.34.pdf</u> and Orri Erling et al. The LDBC Social Network Benchmark: Interactive Workload, SIGMOD'15



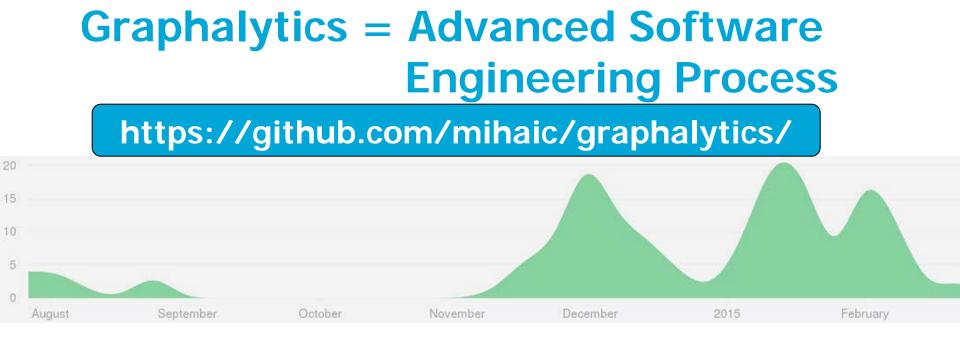
PaaS Clouds for Graph Analytics. WBDB 2014

Delft University of Technology

Graphalytics = Choke-Point Analysis

- Choke points are crucial technological challenges that platforms are struggling with
- Examples
 - Network traffic
 - Access locality
 - Skewed execution
- Challenge: Select benchmark workload based on real-world scenarios, but make sure they cover the important choke points

near-future work

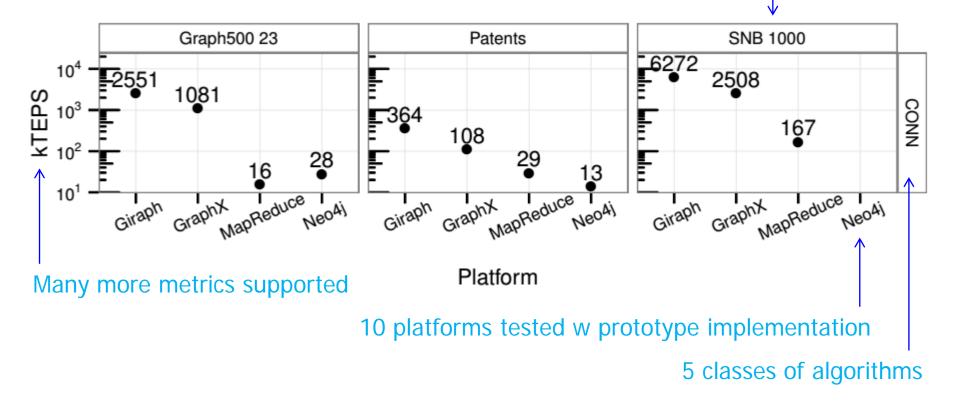


- All significant modifications to Graphalytics are peer-reviewed by developers
 - Internal release to LDBC partners (Feb 2015)
 - Public release, announced first through LDBC (Apr 2015*)
- Jenkins continuous integration server
- SonarQube software quality analyzer

Graphalytics in Practice

6 real-world datasets + 2 synthetic generators

Data ingestion not included here!



• Missing results = failures of the respective systems

Key Findings So Far

- Performance is function of (Dataset, Algorithm, Platform, Deployment)
 - Previous performance studies lead to tunnel vision
- Platforms have their specific drawbacks (crashes, long execution time, tuning, etc.)
 - Best-performing system depends on stakeholder needs
- Some platforms can scale up reasonably with cluster size (horizontally) or number of cores (vertically)
 - Strong vs weak scaling still a challenge—workload scaling tricky
 - Single-algorithm is not workflow/multi-tenancy
- Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do Graph-Processing Platforms Perform? An Empirical <u>Performance Evaluation and Analysis, IPDPS'14.</u>

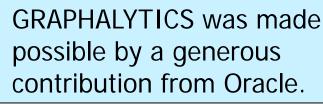
Thank you for your attention! Comments? Questions? Suggestions?

http://graphalytics.ewi.tudelft.nl https://github.com/mihaic/graphalytics/

PELGA 2015, May 15 http://sites.google.com/site/pelga2015/

Alexandru Iosup

A.losup@tudelft.nl



Contributors

30

A few extra slides

31

Discussion

- How much preprocessing should we allow in the ETL phase?
- How to choose a metric that captures the preprocessing?

http://graphalytics.ewi.tudelft.nl

Discussion

- How should we asses the correctness of algorithms that produce approximate results?
- Are sampling algorithms acceptable as trade-off time to benchmark vs benchmarking result?

http://graphalytics.ewi.tudelft.nl

 How to setup the platforms? Should we allow algorithm-specific platform setups or should we require only one setup to be used for all algorithms?

http://graphalytics.ewi.tudelft.nl

Discussion

- Towards full use cases, full workflows, and inter-operation of big data processing systems
- How to benchmark the entire chain needed to produce useful results, perhaps even the human in the loop?

http://graphalytics.ewi.tudelft.nl

A. Iosup, T. Tannenbaum, M. Farrellee, D. H. J. Epema, M. Livny: Interoperating grids through Delegated MatchMaking. Scientific Programming 16(2-3): 233-253 (2008)