A TU Delft View on Big Data Processing and Preservation

Alexandru Iosup

Parallel and Distributed Systems Group Delft University of Technology The Netherlands

Our team: Undergrad Nassos Antoniou, Thomas de Ruiter, Ruben Verboon, ... Grad Siqi Shen, Nezih Yigitbasi, Ozan Sonmez Staff Henk Sips, Dick Epema, Collaborators Ion Stoica and the Mesos team (UC Berkeley), Thomas Fahringer, Radu Prodan (U. Innsbruck), Nicolae Tapus, Mihaela Balint, Vlad Posea (UPB), Derrick Kondo, Emmanuel Jeannot (INRIA), Assaf Schuster, Orna Ben-Yehuda (Technion), Ted Willke (Intel), Claudio Martella (Giraph), Ana Lucia Varbanescu (UvA, NL)...

June 4, 2013

Technion, Haifa, Israel

Delft University of Technology

Lectures at the Technion Computer Engineering Center (TCE), Haifa, IL

A TU Delft perspective on Big Data Processing and Preservation	June 6 T	10am aub 337
Scheduling in IaaS Clouds	Actually, HUJI June 5	
Lectures at IBM Haifa, Intel Haifa	June 2,3	
Gamification in Higher Education	May 27	
Massivizing Online Social Games	May 9	Alex
IaaS Cloud Benchmarking	May 7	

Grateful to Orna Agmon Ben-Yehuda, Assaf Schuster, Isaac Keslassy. **T**UDelft

Also thankful to Bella Rotman and Ruth Boneh.

(TU) Delft – the Netherlands – Europe

The Parallel and Distributed Systems Group at **TU Delft**

Alexandru Iosup

Grids/Clouds

P2P systems

Big Data

Online gaming

Dick Epema

Grids/Clouds P2P systems Video-on-demand e-Science

VEN

Ana Lucia Varbanescu

HPC systems Multi-cores **Big Data** e-Science

Henk Sips

HPC systems Multi-cores P2P systems

Johan Pouwelse

P2P systems **File-sharing**

Video-on-demand

GRENCHMARK tribler

Home page www.pds.ewi.tudelft.nl

Publications

see PDS publication database at publications.st.ewi.tudelft.nl

August 31, 2011

4

The Data Deluge

All human knowledge

- Until 2005: 150 Exa-Bytes
- 2010: 1,200 Exa-Bytes

Online gaming (Consumer)

- 2002: 20TB/year/game
- 2008: 1.4PB/year/game (only stats)

Public archives (Science)

- 2006: GBs/archive
- 2011: TBs/year/archive

2012-2013

The Data Deluge The Professional World Gets Connected

The State of LinkedIn

2012-2013

Source: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/

6

The Three "V"s of Big Data When you can, keep *and* process everything

- Volume
 - More data vs. better models
 - Data grows exponentially + iterative mod
 - Analysis in near-real time to extract value
 - Scalable storage and distributed queries
- Velocity
 - Speed of the feedback loop
 - Gain competitive advantage: fast recommendations
 - Identify fraud, predict customer churn faster
- Variety
 - The data can become messy: text, video, audio, etc.
 - Difficult to integrate into applications

2011-2012

Adapted from: Doug Laney, "3D data management", META Group/Gartner report, Feb 2001. <u>http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-</u> <u>Management-Controlling-Data-Volume-Velocity-and-Variety.pdf</u>

Too big, too fast, does not comply with traditional DB

7

Data Warehouse vs. Big Data

2011-2012

TUDelft

8

Source: <u>http://wikibon.org/</u>

1. Introduction to Big Data

2. Programming Models for Big Data

- 3. PDS Group Work on Big Data
- 4. Summary

9

Programming Models for Big Data: Systems of Systems (Why Big Data is Difficult)

Adapted from: Dagstuhl Seminar on Information Management in the Cloud, http://www.dagstuhl.de/program/calendar/partlist/?semnr=11321&SUOG

Agenda

- 1. Introduction
- 2. Programming Models for Big Data
- 3. PDS Group Work on Big Data
 - 1. MapReduce: Elastic MR and Time-Based Analytics
 - 2. Graph Processing
 - 3. Preservation
- 4. <u>Summary</u>

MapReduce Overview

- MR cluster
 - Large-scale data processing
 - Master-slave paradigm

• Components

- Distributed file system (storage)
- MapReduce framework (processing)

The DAS-4 Infrastructure

Why Dynamic MapReduce Clusters?

- Improve resource utilization
 - Grow when the workload is too heavy
 - Shrink when resources are idle
- Fairness across multiple MR clusters
 - Redistribute idle resources
 - Allocate resources for new MR clusters

Isolation

- Performance
- Failure
- Data
- Version

MR cluster

Ghit and Epema. Resource Management for Dynamic MapReduce Clusters in Multicluster Systems. MTAGS 2012. Best Paper Award.

MapReduce Clusters in Multicluster Systems. MTAGS 2012. Best Paper Award.

System Model

- Two types of nodes
 - Core nodes: TaskTracker and DataNode
 - Transient nodes: only TaskTracker

Ghit and Epema. Resource Management for Dynamic **T**UDelft MapReduce Clusters in Multicluster Systems. MTAGS 2012. Best Paper Award.

Resizing Mechanism

- Two-level provisioning
 - Koala makes resource offers / reclaims
 - > MR-Runners accept / reject request

Baseline Policies

• Greedy-Grow Policy (GGP)—only grow with transient nodes:

• Greedy-Grow-with-Data Policy (GGDP)—grow, core nodes:

Ghit and Epema. Resource Management for Dynamic MapReduce Clusters in Multicluster Systems. MTAGS 2012. Best Paper Award.

18

Setup

- 98% of jobs @ Facebook take less than a minute
- Google reported computations with TB of data
- DAS-4
- Two applications: Wordcount and Sort

<u>Workload 1</u>

- Single job
- 100 GB
- Makespan

Workload 2

- Single job
- 40 GB, 50 GB
- Makespan

Workload 3

- Stream of 50 jobs
- 1 GB \rightarrow 50 GB
- Average job execution time

Ghit and Epema. Resource Management for Dynamic MapReduce Clusters in Multicluster Systems. MTAGS 2012. Best Paper Award.

Transient Nodes

• Wordcount scales better than Sort on transient nodes

Performance of Resizing using Static, Transient, and Core Nodes

Ghit and Epema. Resource Management for Dynamic MapReduce Clusters in Multicluster Systems. MTAGS 2012. Best Paper Award.

21

Agenda

- 1. Introduction
- 2. Programming Models for Big Data
- 3. PDS Group Work on Big Data
 - 1. MapReduce: Elastic MR and Time-Based Analytics
 - 2. Graph Processing
 - 3. Preservation
- 4. <u>Summary</u>

2012-2013

Elastic MR Time-Based Graph Preservation 22

The BTWorld Project

"Observe the Global BitTorrent Network"

- Started 2009
 - Collect data from 1,000s of trackers
 - Over 30M shared files (swarms)
 - Over 100M BT clients
- Data set
 - 15TB of stored multi-files, 1 file/tracker/sample
 - Timestamped, multi-record files
 - Hash: unique id for file
 - Tracker: unique id for tracker
 - Information per file: seeders, leechers

Queries for the BTWorld Project

• Non-trivial algorithms

2012-2013

• SQL aggregations, joins, INPUT selections, projections (BitTorrent logs) Execution plan important Q10: TopKHashes Q8: TopKSwarms **O4: ActiveHashes** 01: TrackerOverTime PerTime PerTime Q11: TopKHashes Q5: TopKTrackers **O9: TopKSwarms** Q2: ActiveTrackers Q3: ActiveSwarms PerTime AllTime AllTime • 14 high-level queries Q6: TopKTrackersAllTime Pig -> 33 MapReduce jobs 07: NewDeadSwarms

Preliminary results

2012-2013

- (left) Up to 100GB: 14 hours for the workflow
- (right) Large variation in query response time
- Also profiled resource utilization (CPU, memory, disk, ...)

26

Agenda

- 1. Introduction
- 2. Programming Models for Big Data

3. PDS Gruoup Work on Big Data

- 1. MapReduce
- 2. Graph Processing
- 3. Preservation
- 4. <u>Summary</u>

Elastic MR Time-Based Graph Preservation 27

2012-2013

Big Data/Graph Processing: Our Team

Alexandru Iosup Ana Lucia Varbanescu TU Delft UvA

Yong Guo TU Delft

Cloud Computing Gaming Analytics Performance Eval. Benchmarking Variability

June 4, 2013

Parallel Computing Multi-cores/GPUs Performance Eval. Benchmarking Prediction Cloud Computing Gaming Analytics Performance Eval. Benchmarking

http://www.pds.ewi.tudelft.nl/graphitti/

Consultant for the project. Not responsible for issues related to this work. Not representing official products and/or company views.

Claudio Martella VU Amsterdam All things Giraph

Marcin Biczak TU Delft

Cloud Computing Performance Eval. Development

Ted Willke Intel Corp. All things graph-processing

Why "How Well do Graph-Processing Platforms Perform?"

- Large-scale graphs exists in a wide range of areas: social networks, website links, online games, etc.
- Large number of **platforms** available to developers
 - Desktop: Neo4J, SNAP, etc.
 - Distributed: Giraph, GraphLab, etc.
 - Parallel: too many to mention

Problem: Large differences in performance profiles across different graph-processing **algorithms** and **data sets**

June 4, 2013	29
Guo, Biczak, Varbanescu, Iosup, Martella, Willke.	
How Well do Graph-Processing Platforms Perform?	Granhitti
An Empirical Performance Evaluation and Analysis	Chapmeter.

Some Previous Work

Graph500.org: BFS on synthetic graphs

Performance evaluation in graph-processing (limited algorithms and graphs)

- Hadoop does not perform well [Warneke09]
- Graph partitioning improves the performance of Hadoop [Kambatla12]
- Trinity outperforms Giraph in BFS [Shao12]
- Comparison of graph databases [Dominguez-Sal10]

Performance comparison in other applications

- Hadoop vs parallel DBMSs: grep, selection, aggregation, and join [Pavlo09]
- Hadoop vs High Performance Computing Cluster (HPCC): queries [Ouaknine12]
- Neo4j vs MySQL: queries [Vicknair10]

Problem: Large differences in performance profiles across different graph-processing **algorithms** and **data sets**

Our Method

A benchmarking suite for the performance evaluation of graph-processing platforms

- 1. Multiple Metrics, e.g.,
 - Execution time
 - Normalized: EPS, VPS
 - Utilization
- 2. Representative graphs with various characteristics, e.g.,
 - Size, Density
 - Directedness
- 3. Typical graph algorithms, e.g.,
 - BFS

. . .

Connected components

June 4, 2013

http://bit.ly/10hYdIU

GTA

Guo, Biczak, Varbanescu, Iosup, Martella, Winke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis

Benchmarking suite Data sets

	Graphs	# V	# E	d (×10 ⁻⁵)	$\bar{\mathbf{D}}$	Size	Directivity
	Amazon	262.1 K	1.2 M	1.8	4.7	18 MB	directed
	WikiTalk	2.4 M	5.0 M	0.1	2.1	87 MB	directed
_ r	KGS	293.3 K	16.6 M	38.5	112.9	210 MB	undirected
	Citation	3.8 M	16.5 M	0.1	4.4	297 MB	directed
1	DotaLeague	61.2 K	50.9 M	2,719.0	1,663.2	$655 \mathrm{MB}$	undirected
	Synth	2.4 M	64.2 M	2.2	53.6	964 MB	undirected
	Friendster	65.6 M	^{1.8} B	0.1	55.1	31 GB	undirected

Benchmarking Suite Algorithm classes

- 1. General Statistics (STATS: # vertices and edges, LCC)
- 2. Breadth First Search (BFS)
- 3. Connected Component (CONN)
- 4. Community Detection (COMM)
- 5. Graph Evolution (EVO)

June 4, 2013	33
Guo, Biczak, Varbanescu, Iosup, Martella, Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis	Graphitti

Benchmarking suite Platforms and Process

• Platforms

- Process
 - Evaluate baseline (out of the box) and tuned performance
 - Evaluate performance on fixed-size system
 - Future: evaluate performance on elastic-size system
 - Evaluate scalability

Experimental setup

- Size
 - Most experiments take 20 working nodes
 - Up to 50 working nodes

- DAS4: a multi-cluster Dutch grid/cloud
 - Intel Xeon 2.4 GHz CPU (dual quad-core, 12 MB cache)
 - Memory 24 GB
 - 10 Gbit/s Infiniband network and 1 Gbit/s Ethernet network
 - Utilization monitoring: Ganglia
- HDFS used here as distributed file systems

BFS: results for all platforms, all data sets

- No platform can runs fastest of every graph
- Not all platforms can process all graphs
- Hadoop is the worst performer

June 4, 2013

Guo, Biczak, Varbanescu, Iosup, Martella, Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis 36

Grap

Giraph: results for all algorithms, all data sets

- Storing the whole graph in memory helps Giraph perform well
- Giraph may crash when graphs or messages become larger June 4, 2013

Guo, Biczak, Varbanescu, Iosup, Martella, Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis 37

GTA

Horizontal scalability: BFS on Friendster (31 GB)

- Using more computing machines can reduce execution time
- Tuning needed for horizontal scalability, e.g., for GraphLab, split input

June 4, 2013	38
Guo, Biczak, Varbanescu, Iosup, Martella, Willke.	
How Well do Graph-Processing Platforms Perform? 🦯 🌈	nhitti
An Empirical Performance Evaluation and Analysis	PHILOU

Additional Overheads Data ingestion time

- Data ingestion
 - Batch system: one ingestion, multiple processing
 - Transactional system: one ingestion, one processing
- Data ingestion matters even for batch systems

	Amazon	DotaLeague	Friendster
HDFS	1 second	7 seconds	5 minutes
Neo4J	4 hours	6 days	n/a

June 4, 2013	39
Guo, Biczak, Varbanescu, Iosup, Martella, Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis	Graphitti

GPUs vs CPUs: All-Pairs Shortest Path

Pender and Varbanescu. MSc thesis at TU Delft. Jun 2012. TU Delft Library, <u>http://library.tudelft.nl</u> .

	Dataset
WT	Wikipedia Talk Network
CR	California Road Network
1M	Graph 1M
SW	Stanford Web Graph
EU	EU Email Communication Network
СН	Chain 100K
ST	Star 100K
ES	Epinions Social Network
64K	Graph 64K
ww	Wikipedia Vote
4K	Graph 4K

GPUs vs CPUs: BFS vs Data Format, E/V-based

Pender and Varbanescu. MSc thesis at TU Delft. Jun 2012. TU Delft Library, <u>http://library.tudelft.nl</u> .

	Dataset
WT	Wikipedia Talk Network
CR	California Road Network
1M	Graph 1M
SW	Stanford Web Graph
EU	EU Email Communication Network
CH	Chain 100K
ST	Star 100K
ES	Epinions Social Network
64K	Graph 64K
wv	Wikipedia Vote
4K	Graph 4K

TUDelft

Q4

http://bit.ly/10hYdIL

Conclusion and ongoing work

- Performance is f(Data set, Algorithm, Platform, Deployment)
- Cannot tell yet which of (Data set, Algorithm, Platform) the most important (also depends on Platform)
- Platforms have their own drawbacks
- Some platforms can scale up reasonably with cluster size (horizontally) or number of cores (vertically)
- Ongoing work
 - Benchmarking suite
 - Build a performance boundary model
 - Explore performance variability

June 4, 2013

Guo, Biczak, Varbanescu, Iosup, Martella, Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis

Agenda

- 1. Introduction
- 2. Programming Models for Big Data

3. PDS Group Work on Big Data

- 1. MapReduce
- 2. Graph Processing
- 3. Preservation
- 4. <u>Summary</u>

TUDelft

The Personal Memex

- Vannevar Bush in the 1940s: record your life
- MIT Media Laboratory: The Human Speechome Project/TotalRecall, data mining/analysis/visio
 - Deb Roy and Rupal Patel "record practically every waking moment of their son's first three years" (20% privacy time...Is this even legal?! Should it be?!)
 - 11x1MP/14fps cameras, 14x16b-48KHz mics, 4.4TB RAID + tapes, 10 computers; 200k hours audio-video
 - Data size: 200GB/day, 1.5PB total

What is the Distributed Systems Memex ?

Data sets in Comp.Sci.

• 1,000s of scientists: From theory to practice

The Grid Workloads Archive Content

				Numb	er of ob	served		
ID	System	Period	Sites	CPUs	Jobs	Groups	Users	
GWA-T-1	DAS-2	02/05-03/06	5	400	602K	12	332	
GWA-T-2	Grid'5000	05/04-11/06	15	~ 2500	951K	10	473	
GWA-T-3	NorduGrid	05/04-02/06	~ 75	~ 2000	781K	106	387	
GWA-T-4	AuverGrid	01/06-01/07	5	475	404K	9	405	THE GRID WORKLOADS ARCHIVE
GWA-T-5°	NGS	02/03-02/07	4	${\sim}400$	632K	1	379	
$GWA-T-6^{\diamond}$							206	
$GWA-T-7^{\ddagger}$	http)://gw a	a.ev	vi.tuo	delf	t.nl	18	6.
$GWA-T-8^{\ddagger}$		1					19	o traces
$GWA-T-9^{\ddagger}$	TeraGrid	08/05-03/06	1*	96	1.1M	26	121	online
	Total	13.51 yrs	136	>10000	>7M	191	2340	
	Average	1.5 yrs	15	1151	>750	K 21	>250	

A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D. Epema, The Grid Workloads Archive, FGCS 24, 672–686, 2008.

The Failure Trace Archive Content

System	Туре	# of Nodes	Target Component	Period	Year
SETI@home	Desktop Grid	226,208	CPU	1.5 years	2007-2009
Overnet	P2P	3,000	host	2 weeks	2003
Microsoft	Desktop	51,663	host	35 days	1999
LANL	SMP, HPC Clusters	475°	host	9 years	1996-2005
HPC2	HPC Clusters	256	IO	2.5 years	1996-2005
PNNL NERSC Skype	htt	p://f	ta.inria.	fr	000
Web sites	Web servers	129	host	8 months	2001-2002
DNS	DNS servers	62,201	host	2 weeks	2004
PlanetLab	P2P	200-400	host	1.5 year	2004-2005
Grenouilleo3	DSL	4800	host	1 year	2003
Grenouilleo5	DSL	4800	host	1 year	2005
EGEE	Grid	2500 queues	CE queue	1 month	2007

D. Kondo, B. Javadi, A. Iosup, D. Epema, The Failure Trace Archive: Enabling Comparative Analysis of Failures in Diverse Distributed Systems, CCGrid 2010 (accepted) CPU

deugos Desktop Grid 40

||1 month ||2005

The Game Trace Archive Content

Name	Period	Size (GB)	Node (M)	Edge (M)	Category	
KGS	2002/02-2009/03	2	0.8	27.4	Chess Game	
FICS	1997/11-2011/09	168	0.4	144.2	Chess Game	
BBO	2009/11-2009/12	10	3.9	12.9	Card Game	
XFire	2009/05 2011/12	EO	77	247	OMGN	
Dot: htt	p://gta.st.e	wi.t	udelf	t.nl	RTS	
DotaLicious	2010/04 2012/02	<u> </u>	0.1	0.0	RTS 2 tra	aces onlin
Dota Garena	2009/09-2010/05	1	0.3	0.1	RTS 🕂	1/montl
and Iosu	p, The Game	Trac	e Arc	hive,	, ACM NETGA	MES 2012.

Share gaming traces and best-practices on using them

The Cloud Workloads Archive (ongoing)

Trace	System	Size	Period	Notes
CWA-01	Facebook	1.1M/-/-	5m/2009	Time & IO
CWA-02	Yahoo M	28K/28M/	20d/2009	~Full
CWA-03	Facebook	61K/10M/	10d/2009	Full detail
CWA-04	Facebook	?/?/-	10d/01-	Full detail
CWA-05	Facebook	?/?/-	3m/02+2	Full detail
CWA-06	Google 2			Future
CWA-07	eBay			Need
CWA-08	Twitter			Need
CWA-09	Google	9K/177K/4M	7h/2009	Coarse

- Own traces: 3+ years of observation of Amazon WS and Google AE
- Tools
 - Convert to CWA format
 - Analyze and model automatically → Report

Agenda

- 1. Introduction
- 2. Programming Models for Big Data
- 3. PDS Group Work on Big Data
 - 1. MapReduce
 - 2. Graph Processing
 - 3. Preservation

4. <u>Summary</u>

TUDelft

Korslav ov Take-Home Message

- Programming Models for Big Data
 - Big data programming models have ecosystems
 - Many trade-offs, many programming models
 - Models: MapReduce, Pregel, PACT, Dryad, ...
 - Execution engines: Hadoop, Koala+MR, Giraph, PACT/Nephele, Dryad, ...

PDS Group Work on Big Data

- Elastic Map Reduce
- Map Reduce for time-based analytics: a use case
- Towards a benchmarking suite for graph-processing platforms
- Archives: Grid, P2P, Failures, Online Games

Conclusion: a thousand flowers already bloomed, so much to do ... looking for collaborators

June 4, 2013

http://www.flickr.com/photos/dimitrisotiropoulos/5204766418/

Thank you for your attention! Questions? Suggestions? Observations?

More Info:

HPDC 2013

- http://www.st.ewi.tudelft.nl/~iosup/research.html
- http://www.st.ewi.tudelft.nl/~iosup/research_cloud.html
- http://www.pds.ewi.tudelft.nl/

Alexandru Iosup

A.Iosup@tudelft.nl http://www.pds.ewi.tudelft.nl/~iosup/ (or google "iosup") Parallel and Distributed Systems Group Delft University of Technology

52

Do not hesitate

to contact me.

Reading Material

- Workloads
 - Alexandru Iosup, Dick H. J. Epema: Grid Computing Workloads. IEEE Internet Computing 15(2): 19-26 (2011)
- The Fourth Paradigm
 - "The Fourth Paradigm", <u>http://research.microsoft.com/en-us/collaboration/fourthparadigm/</u>

• Programming Models for Big Data

- Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150
- Jeffrey Dean, Sanjay Ghemawat: MapReduce: a flexible data processing tool. Commun. ACM 53(1): 72-77 (2010)
- Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. 2008. Improving MapReduce performance in heterogeneous environments. In Proceedings of the 8th USENIX conference on Operating systems design and implementation (OSDI'08). USENIX Association, Berkeley, CA, USA, 29-42.
- Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, Ion Stoica: Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. EuroSys 2010: 265-278
- Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, Russell Sears: MapReduce Online. NSDI 2010: 313-328
- Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski: Pregel: a system for large-scale graph processing. SIGMOD Conference 2010: 135-146
- Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, Daniel Warneke: Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. SoCC 2010: 119-130

Guo, Biczak, Varbanescu, Iosup, Martella, Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis

2012-2013

http://bit.ly/10hYdIU

53