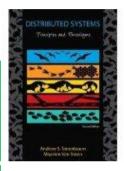
Distributed Computer Systems = Making Computer Systems Scalable, Reliable, Performant, etc., Yet Able to Form an Efficient Ecosystem

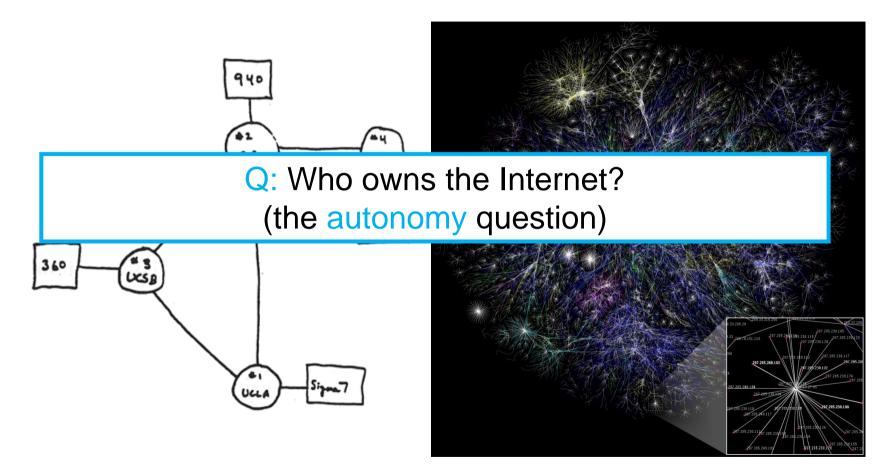


Prof. dr. ir. Alexandru Iosup

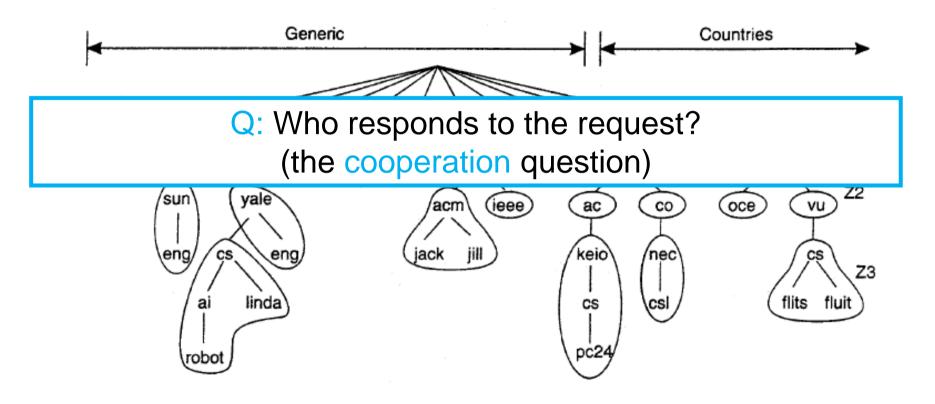
What is a Distributed System?

"You know you have a distributed system when the crash of a computer you've never heard of stops you from getting any work done." - Leslie Lamport in Security Engineering, Ch.6

"A collection of independent computers that appears to its users as a single coherent system - **Steen and Tanenbaum** in Distributed Systems: Principles and Paradigms, 2nd Edition, 2006


"A collection of autonomous computing elements that appears to its users as a single coherent system - **Steen and Tanenbaum** in Distributed Systems: Principles and Paradigms, 3nd Edition, 2017

"an application that executes a collection of protocols to coordinate the actions of multiple processes on a network, such that all components cooperate together to perform a single or small set of related tasks."- Google University, Introduction to DS Design http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html


The Internet Is a Distributed System

The Domain Name System (DNS)

The Google Data Centers

Q: How to compile the query answer? (the communication question)

View our data centers in a larger map

Americas

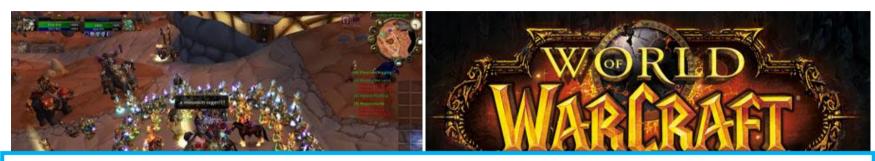
Quilicura, Chile

UNIVERSITEIT AMSTERDAM

RIIE

Berkeley County, South Carolina Council Bluffs, Iowa Douglas County, Georgia

Mayes County, Oklahoma Lenoir, North Carolina The Dalles, Oregon


Asia Hong Kong Singapore Taiwan

Europe

- Hamina, Finland
- St Ghislain, Belgium
- Dublin, Ireland

The Online Gaming World

Q: What happens when the performance drops? (a non-functional question)

Q: What happens when the servers are unavailable? (another non-functional question)

Q: What other non-functional questions?

- 1.3PB storage
- 68 sysadmins (1/1,000 cores)

http://www.datacenterknowledge.com/archives/2009/11/25/wows-back-end-10-data-centers-75000-cores/

Agenda

- 1. What is a Distributed System?
- **2.** Distributed Systems, the Core Idea
- 3. Distributed Systems, the Main Challenges
- 4. Relationship with Other Paradigms
- 5. Distributed Systems, a Design Example
- 6. Reality Check
- 7. Conclusion

The Core Idea through An Example **BitTorrent: A Distributed System** Q: Autonomy? Cooperation? Communication? low download speed medium download speed Q: Does this system scale? Why? How? high download speed Q: What is the structure of this system? What is the state of each node? How do they synchronize? Q: How does the performance of this system change with the increase in the number of users? Q: When is this system available? What does it do to increase its reliability? Q: Is this system efficient? leecher Q: Which parts of this system need consistency? Achieved?

Main Characteristics of Distributed Systems

- 1. Scalability
- 2. Predictable high performance
- 3. Reliability and availability
- 4. Efficiency (resource sharing)
- 5. Consistency of (distributed) state
- 6. Closeness-to-users
- 7. Transparency

So many other concerns: Security, Inter-operability, ...

Agenda

- 1. What is a Distributed System?
- 2. Distributed Systems, the Core Idea
- **3. Distributed Systems, the Main Challenges**
- 4. Relationship with Other Paradigms
- 5. Distributed Systems, a Design Example
- 6. Reality Check
- 7. Conclusion

Main Challenges Raised by DS (1)

Q: Do DS have a regular, homogeneous Q: Do DS have a commonly known state?

- 1. There is not necessarily a regular structure
 - common protocols for system components to cooperate
- 2. There is no directly accessible common state

(this precludes shared-memory multiprocessors):

• the system and applications need to maintain a

logical common state by exchanging messages

Main Challenges Raised by DS (2)

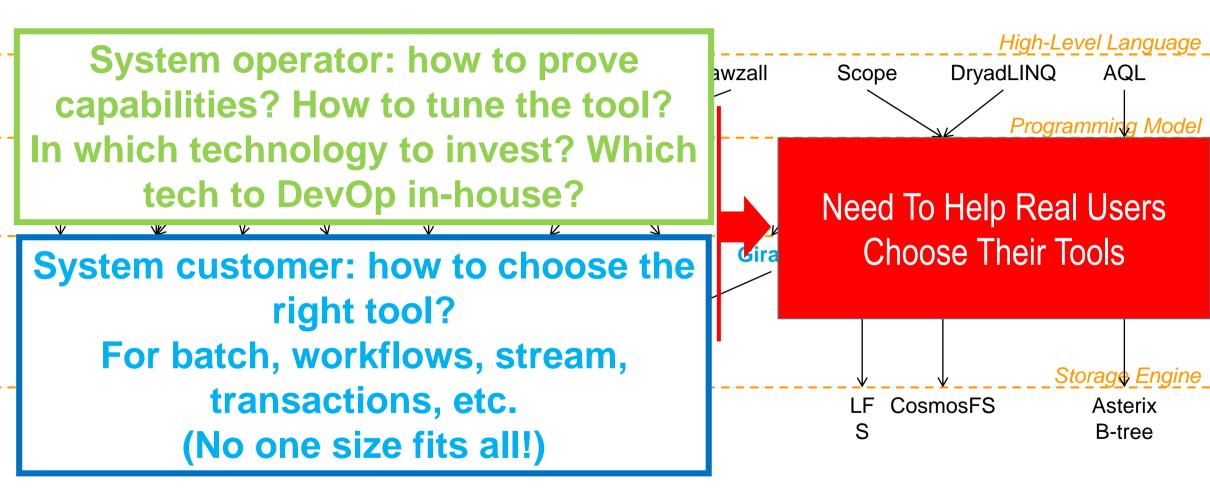
Q: Do DS have a common clock? Q: Are DS deterministic (no randomness)?

- 1. There is no common clock:
 - synchronization through the exchange of messages
- 2. There is non-determinism:
 - components make progress independently, often with users in the loop
 - operations can have side-effects on remote nodes
- 3. There are independent failure modes:
 - · components may fail independently, and in many ways
 - failures are not observed immediately

Q: How do DS fail?

The Dependability* Challenge * Availability, Reliability, etc.

Google goes dark for 2 minutes, kills 40% of


world's net traffic 🗅 www.theregister.co.uk/2013/08/17/google_outage/

Systemwide outage knocks every service offline

Need Dependable Systems

The Ecosystem Navigation Challenge

The Scheduling Challenge

"30—70% scheduler decisions incorrect in datacenters"

Source: IEEE Computer'15

"current schedulers not efficient for many users, diverse services"

Source: Dutch industry, CCGRID'15

"new schedulers not used in datacenters, fear of failure"

Source: EuroPar'13,'14

Need Smarter Schedulers

Need to Select Schedulers

Agenda

- 1. What is a Distributed System?
- 2. Distributed Systems, the Core Idea
- 3. Distributed Systems, the Main Challenges

4. Relationship with Other Paradigms

- 5. Distributed Systems, a Design Example
- 6. Reality Check

7. Conclusion

Distributed vs Parallel Computing

 Multiple tasks, one job or multiple jobs 	 Multiple tasks, one job
 Throughput or Speed-up 	 Speed-up
 Horizontal scaling 	 Vertical scaling
 Infrequent communication 	 Frequent communication
 Synchronized execution 	 Simultaneous execution
 Heterogeneous hardware 	 Homogenous hardware
 Multiple owners with mutual interests Single owner 	
Q: High Performance Computing?	Q: Cluster of GPUs?
Q: GPU processing?	Q: Cluster computing?

Distributed Variants

- Most grid computing
- Most cloud computing
- Peer-to-Peer computing
- Most Big Data processing (MapReduce/Hadoop2, Pregel/Giraph, Spark, etc.)
- Cluster computing
- Some High-Performance Computing

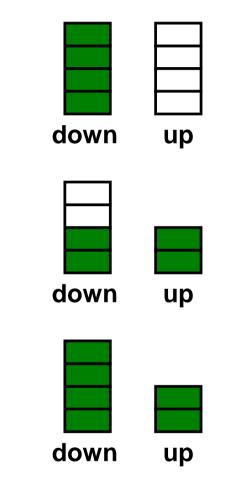
Agenda

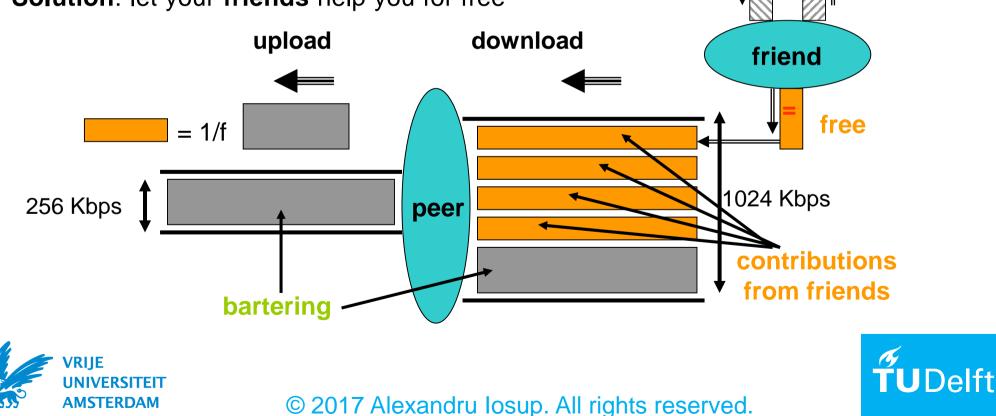
- 1. What is a Distributed System?
- 2. Distributed Systems, the Core Idea
- 3. Distributed Systems, the Main Challenges
- 4. Relationship with Other Paradigms
- **5. Distributed Systems, a Design Example**
- 6. Reality Check

7. Conclusion

Distributed Systems, a Design Example 2Fast: Collaborative Downloading

"In two years time we will all have petabytes on our key chains and will not need BitTorrent at all" (anonymous, for the sake of this course, 2005)


P. Garbacki, A. Iosup, D.H.J. Epema, and M. van Steen, "2Fast: Collaborative Downloads in P2P Networks," 6-th IEEE International Conference on Peer-to-Peer Computing, 2006 (best-paper award).


Peer-to-peer data transfer protocols

- Gnutella, Kazaa
 - no incentives for bandwidth sharing
 - free-riders sensitive
 - poor utilization of upload bandwidth
- BitTorrent (BT), Slurpie
 - tit-for-tat enforces fairness
 - temporal fairness cannot handle asymmetric links
 - poor utilization of download bandwidth
- 2Fast: BT+collaborative downloads
 - no tit-for-tat within a single session
 - cross-session bandwidth sharing
 - full utilization of upload AND download links

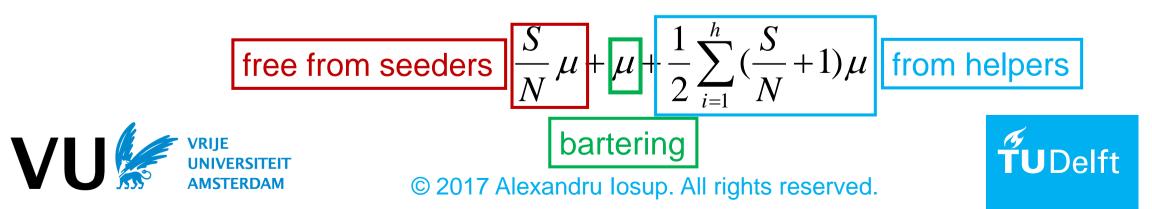
Cooperative downloads: basic idea

- Problem:
 - most users have **asymmetric** upload/download links
 - **tit-for-tat** mechanism of Bittorrent -> limited download speed
- Solution: let your friends help you for free

bartering

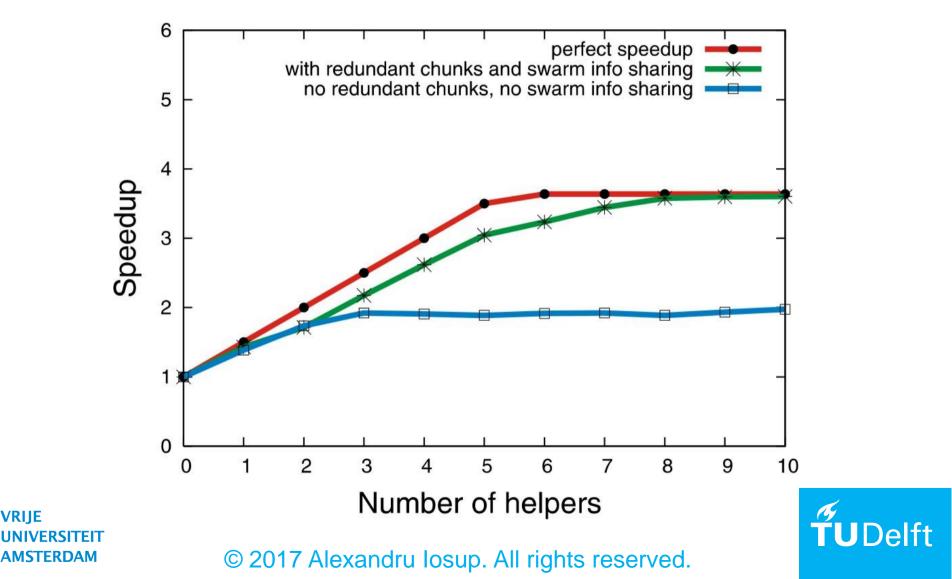
Two protocol extensions

Redundant chunks download

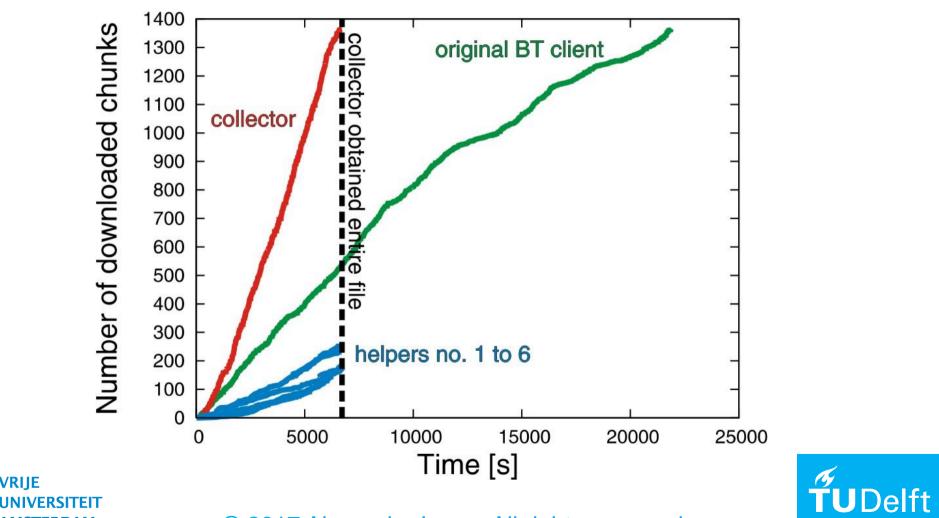

- **problem**: discrimination of helpers; more restrictive chunk selection + fewer chunks to offer, so limited bartering possibilities
- **solution**: the same chunk may be downloaded by different helpers
- Sharing of swarm information
 - **problem**: slow start; finding suitable bartering partners takes time
 - **solution**: collaborating peers exchange information on other peers in the swarm

Download speed-up: analytical model

- Every helper equally splits its upload capacity between bartering and helping the collector
- So every additional helper increases the download speedup of the collector by 0.5, up to a point
- The maximum number of useful helpers (and so the maximum speedup) can easily be computed
- **Download bandwidth** of the collector with **h helpers**:
 - N, S: the numbers of leechers and seeders in the system
 - c, μ: the download/upload capacity of all peers (homogeneous model)


Experimental setup: DAS + real-world

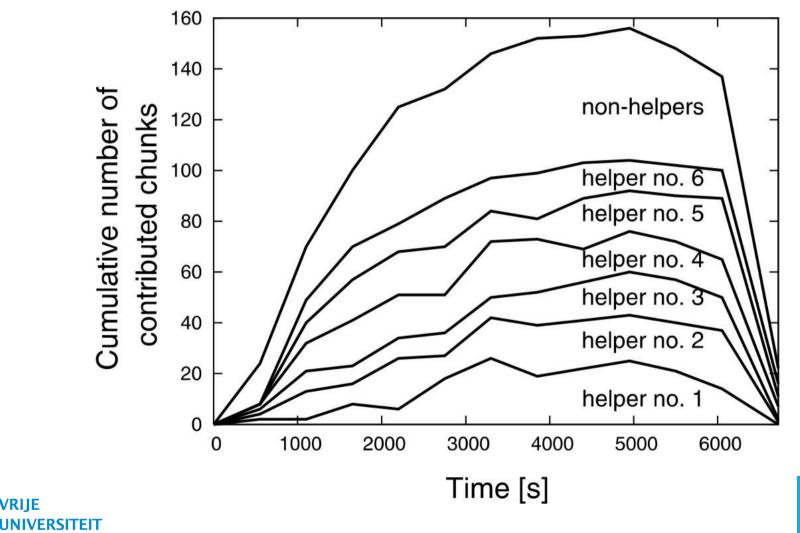
- Experiments performed in a real environment collaborating peers connect to existing BitTorrent swarms
- Collaborating peers connected through ADSL links: 256kbps up / 1024kbps down
- Downloaded file size: 700 MB
- Swarm size: 100 leechers, 10 seeders


Speedup vs number of helpers

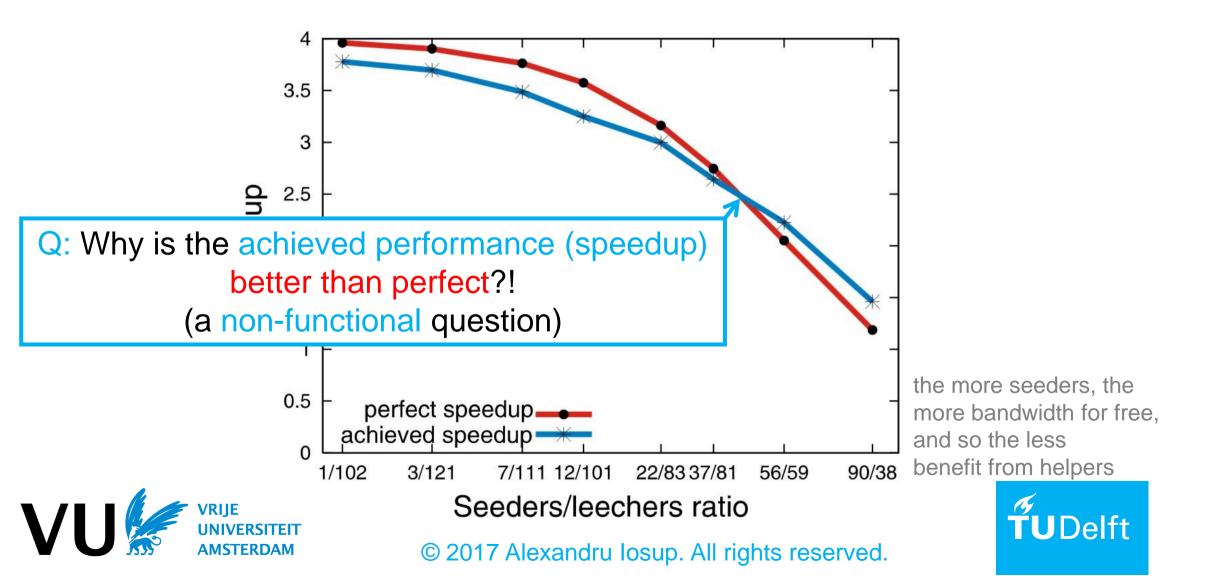
VU

Download progress

AMSTERDAM



Helper contributions over time


VI

AMSTERDAM

Speedup vs. seeders/leechers ratio

Agenda

- 1. What is a Distributed System?
- 2. Distributed Systems, the Core Idea
- 3. Distributed Systems, the Main Challenges
- 4. Relationship with Other Paradigms
- 5. Distributed Systems, a Design Example
- 6. Reality Check

7. Conclusion

Active Research Field

- **Research** in the Massivizing Computer Systems group: www.atlarge.science
- Symposium on High Performance Distributed Computing (HPDC)
 - www.informatik.uni-trier.de/~ley/db/conf/hpdc/index.html
- Symposium on Networked Systems Design and Implementation (NSDI)
 - www.informatik.uni-trier.de/~ley/db/conf/nsdi/
- Symposium on Cluster Computing and the Grid (CCGRID)
 - www.informatik.uni-trier.de/~Ley/db/conf/ccgrid/index.html
- IEEE Transactions on Parallel and Distributed Systems

www.informatik.uni-trier.de/~ley/db/journals/tpds/ VRIJE UNIVERSITEIT AMSTERDAM © 2017 Alexandru Iosup. All rights reserved.

Fundamental Research in Massivizing Comp. Sys.

Scheduling Bags-Of-Tasks Workflows Portfolio

Dependability

Failure Analysis* Space-/Time-Correlation Availability-On-Demand

New World+

Workload Modeling Business-Critical Online Gaming

Ecosystem Navigator+ Scalability/Elasticity+ Socially Aware+ Performance Variability **Delegated Matchmaking* Collaborative Downloads*** Grid*, Cloud, Big Data BTWorld*, POGGI*, AoS Groups in Online Gaming Benchmarking* **Toxicity Detection*** Auto-Scalers Longitudinal Studies **Interaction Graphs** Heterogeneous Systems Software Artifacts Education **Data Artifacts** Social Gamification* Graphalytics, OpenDC Distributed Systems Memex*

Fundamental Problems/Research Lines+ Please ask for a definitionMy Contribution So FarPersonal grants* Award-level

Agenda

- 1. What is a Distributed System?
- 2. Distributed Systems, the Core Idea
- 3. Distributed Systems, the Main Challenges
- 4. Relationship with Other Paradigms
- 5. Distributed Systems, a Design Example
- 6. Reality Check

7. Conclusion

Kondunion Take-Home Message

- Distributed Systems = autonomy + cooperation + communication
- Core idea = autonomous nodes using communication to cooperate
 - Scalability, Resource sharing, Reliability and availability, Predictable high performance, Consistency, Close-to-Users, ...
- Reality Check: we are all users Google, Facebook, Twitter, netflix, ...

http://www.flickr.com/photos/dimitrisotiropoulos/4204766418

Entry Quiz

(closes after class)

- You choose if you want to do this quiz
 - Not mandatory
 - 500p at stake

The images used in this lecture courtesy of the Computer History Museum, Mountain View, California, USA, http://www.computerhistory.org/; the German Museum of Technology (Deutsches Technikmuseum Berlin, Germany, http://www.computerhistory.org/; the German Museum of Technology (Deutsches Technikmuseum Berlin, Germany, http://www.sdtb.de/Englisch.55.0.html; the Science Museum, London, UK, http://www.sciencemuseum.org.uk/; and many anonymous contributors via Google Images. Many thanks!

