A Little History of Computers

Lecturer: Alexandru Iosup

The images used in this lecture courtesy of the Computer History Museum, Mountain View, California, USA, http://www.computerhistory.org/ ; the German Museum of Technology (Deutsches Technikmuseum Berlin, Germany, http://www.computerhistory.org/ ; the German Museum of Technology (Deutsches Technikmuseum Berlin, Germany, http://www.sdtb.de/Englisch.55.0.html ; the Science Museum, London, UK, http://www.sciencemuseum.org.uk/; and many anonymous contributors via Google Images. Many thanks!

A History of Computers = A History of Performance

• Improving speed of operation by mechanical means

- Multiplication of two <u>10</u> figure numbers, e.g., 5,678,912,343 x 9,876,543,217
 - by hand: <u>10</u> minutes
 - by computer: 100 nanosec (10 o.m.)
- Predicting weather? (accurately)

ŤUDelft

Exercise: The Super-Computer Game

Q: How fast is the fastest computer and why?

- Team work, first 5 minutes
 - 1. Form team of 2-3 persons
 - 2. Think about own experience
 - 3. Convince your team before proposing an answer
 - 4. Formulate an answer (!)
- Open discussion, next 5 minutes
 - Tell everyone the answer
 - <u>I</u> will nominate the team member who explains

Vote on best answer (+50p each in team)

Top500 in November 2014

Q: How much in Jun 2017?

Pnoak

Power

Delft

Q: How much is **33,862.7 Tera-FLOPS**, vs. your laptop's performance?

Traditional HPC

	Rank	Site	System	Cores	(TFlop/s)	(TFlop/s)	(kW)
	1	National University of Defense Technology China Parallel computing: (195 cores/node!	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3120000 A	33862.7	54902.4 ated!	17808
	2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5 ated!	8209
	3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	17173.2	20132.7	7890
	4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
\/ 6	5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8586.6	10066.3	3945
	2) 1	AMSTERDAM © 20	17 Alexandru Iosup. All rights re	serve	d.		

It Depends! Graph500 ≠ Top500 !

Graph processing

Rank	Machine	Installation Site	Number of nodes	Number of cores	Problem scale	GTEPS
1	- K computer (Fujitsu - Custom supercomputer)	RIKEN, Japan	65536	524288	40	17,977
2	DOE/NNSA/LLNL Sequoia (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	LLNL, USA	65536	1048576	40	16,599
3	DOE/SC/Argonne National Laboratory Mira (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	ANL, USA	49152	786432	40	14,328
Z	JUQUEEN (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	FZJ, Germany	16384	262144	38	5,848
5	Fermi (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	CINECA	8192	131072	37	2,567
e	Tianhe-2 (MilkyWay-2) (National University of Defense Technology - MPP)	Changsha, China	8192	196608	36	2,061
7	Number 1 in Ton500	CNRS/IDRIS- ENCI	4096	65536	36	1,427
٤		aresbury Laboratory, UK	4096	65536	36	1,427
ç	DIRAC (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	University of Edinburgh, UK	4096	65536	36	1,427
10	Zumbrota (IBM - BlueGene/Q, Power BQC 16C 1.60 GHz)	EDF R&D	4096	65536	36	1,427

Exercise: The Super-Computer Game

Q: How fast is the fastest computer and why?

- Team work, first 5 minutes
 - 1. Form team of 2-3 persons
 - 2. Think about own experience
 - 3. Convince your team before proposing an answer
 - 4. Formulate an answer (!)
- Open discussion, next 5 minutes
 - Tell everyone the answer
 - <u>I</u> will nominate the team member who explains

Always start with "It depends"

(Slide adapted from Andy Tanenbaum)

MIPS index: http://www.roylongbottom.org.uk/mips.htm

TUDelft

(Slide adapted from Andy Tanenbaum)

MIPS index: http://www.roylongbottom.org.uk/mips.htm

[#]UDelft 8

(Slide adapted from Andy Tanenbaum)

Computer	IBM	Apple	Improvement
Component	PC MESSIONE	MacBook Pro	Ratio
CPU speed	.420 MIPS	~320,000 MIPS	800,000x
Main Memory	.625 MB	16 GB	>25,000x

MIPS index: http://www.roylongbottom.org.uk/mips.htm

(Slide adapted from Andy Tanenbaum)

Computer Component	IBM PC	Apple MacBook Pro	Improvement Ratio
CPU speed	.420 MIPS	~320,000 MIPS	800,000x
Main Memory	.625 MB	16 GB	>25,000x
External Storage	.360 MB	512 GB	>1,450,000x

MIPS index: http://www.roylongbottom.org.uk/mips.htm

(Slide adapted from Andy Tanenbaum)

Computer Component	IBM PC	Apple MacBook Pro	Improvement Ratio
CPU speed	.420 MIPS	~320,000 MIPS	800,000x
Main Memory	.625 MB	16 GB	>25,000x
External Storage	.360 MB	512 GB	>1,450,000x
Volume	1 m ³	.001 m ³	1,000x

MIPS index: http://www.roylongbottom.org.uk/mips.htm

(Slide adapted from Andy Tanenbaum) Compound improvement ratio ~ 10²⁰ x better

Computer Component	IBM PC	Apple MacBook Pro	Improvement Ratio
CPU speed	.420 MIPS	~320,000 MIPS	800,000x
Main Memory	.625 MB	16 GB	>25,000x
External Storage	.360 MB	512 GB	>1,450,000x
Volume	1 m ³	.001 m ³	1,000x
Cost (2017 \$)	8,000 \$	3,250 \$	~2.5x
VRIJE UNIVERSITEIT AMSTERDAM	MIPS index: <u>http://www.roy</u>	<u>/longbottom.org.uk/mips.ht</u>	m YUDelft 12

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-ete

MIPS index: http://www.roylongbottom.org.uk/mips.htm

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-et

Computer	Train	Improvement	Train
Component	Component	Ratio	AMS-Paris
CPU speed	Ride speed	800,000x	<1 s

MIPS index: http://www.roylongbottom.org.uk/mips.htm

TUDelft 14

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-et

Computer Component	Train Component	Improvement Ratio	Train AMS-Paris
CPU speed	Ride speed	800,000x	<1 s
Main Memory	Passenger Capacity	>25,000x	7,900,000 people

MIPS index: http://www.roylongbottom.org.uk/mips.htm

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-et

Computer Component	Train Component	Improvement Ratio	Train AMS-Paris
CPU speed	Ride speed	800,000x	<1 s
Main Memory	Passenger Capacity	>25,000x	7,900,000 people
External Storage	Range	>1,450,000x	>18,000x Earth

MIPS index: http://www.roylongbottom.org.uk/mips.htm

[#]UDelft 16

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-et

Computer	Train	Improvement Ratio	Train
Component	Component	Παίο	
CPU speed	Ride speed	800,000x	<1 s
Main Memory	Passenger Capacity	>25,000x	7,900,000 people
External Storage	Range	>1,450,000x	>18,000x Earth
Cost (2017 \$)	Ticket Cost	~2.5x	<15 \$

MIPS index: http://www.roylongbottom.org.uk/mips.htm

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-ete

Train Component	Improvement Ratio	Train AMS-Paris
Ride speed	800,000x	<1 s
Passenger Capacity	>25,000x	7,900,000 people
Range	>1,450,000x	>18,000x Earth
Ticket Cost	~2.5x	<15 \$
	Train Component Ride speed Passenger Capacity Range Ticket Cost	Train ComponentImprovement RatioRide speed800,000xPassenger Capacity>25,000xRange>1,450,000xTicket Cost~2.5x

But 1:50 train rides would crash catastrophically

MIPS index: http://www.roylongbottom.org.uk/mips.htm

Source: http://www.kelbillet.com/blog/thalys-2/thalys-billets-train-paris-bruxelles-bas-prix-ete

19

Computer Component	Train Component	Improvement Ratio	Train AMS-Par	is	
CPU speed	Ride speed	800,000x	<′	ls	
Main Memory	Passenger Capacity	>25,000x	7,900,000) people	
External Storage	Range	>1,450,000x	>18,000x	Earth	
Cost (2017 \$)	Ticket Cost	~2.5x	<15	5\$	
B	ut 1:50 train rides v	would crash ca	tastrophi	cally	
Yet train engineers would say it's a great success!					
VRIJE UNIVERSITEIT AMSTERDAM	MIPS index: <u>http://www</u> © 2017 Alexandru	v.roylongbottom.org.uk/u losup. All rights reserve	<u>mips.htm</u> ed.	ŤU Delft	

A History of Computer Invention

- The computer is not a single invention
- Ideas from *mathematics, physics, mechanical engineering,* and *electrical engineering*

Outline

A History of Computer Architectures

- 1. Pre-History (to 1930s)
 - Many approaches, first programmable devices
- 2. 1st Generation: Electro-Mechanical (1930s-1950s)
- 3. 2nd Generation: Transistors (1955—1975)
- 4. 3rd Generation: Microprocessors (1960s—today)
- 5. 4th Generation: Multi-Computing (1969—today)

Calculators

- Machines of Pascal and Leibnitz were mechanical calculators
 - No memory or program
 - Leibniz used binary system (1705)
 - A single operation at a time
 - Only simple operations (+,-,x,/)

Programmable devices

- Devices that could execute a program in different areas:
- Mechanical Music Instruments
 - Bagdad, <u>9-th</u> Century
 - Carillons
- Chess / Mechanical Turk (1770)?
- Punch Cards for weaving machines
 - Jaquard (end 18-th Century)

23

IDelft

The Jaquard Loom (actually, Head, 1801)

• Programmable

Difference Engine

(never built)

Analytical Engine

- Arith. Unit
- Memory
- I/O
- Control (IF)
- Stored program

- Invented by Johann Helfrich von Müller (1786)
- Extended by Charles Babbage (1822)
- First algorithm proposed by Ada Lovelace (1840s)

TUDelft

25

Mathematical Influence

- George Boole (1854) showed that logic could be reduced to a simple algebraic system
- Work remained a curiosity until rediscovered by Whitehead and Russell in Principia Mathematica (1910-3)
- Then, formal logic developed resulting in Gödel and the work of Alan Turing

Analog Computers

- Analog computers predated
 digital computers
 - Slide rule
 - Mechanical integrators (Vannevar Bush, 1931)
- First systems that enabled significant reduction of calculation times

A History of Computer Architectures

- 1. Pre-History (to 1930s)
- 2. 1st Generation: Electro-Mechanical (1930s-1950s)
- 3. 2nd Generation: Transistors (1955-1975)
- 4. 3rd Generation: Microprocessors (1960s—today)
- 5. 4th Generation: Multi-Computing (1969—today)

Spying—A Killer App for Computers Since the 1940s

- COLOSSUS, in the UK (1944)
 - App specific, fully electronic, storage, binary system
 - 5,000 characters processed per second, Lorenz cypher
 - Used during the D-Day, instrumental for VE-Day

 All records destroyed 1970s (natsec), so no IP claims possible

Electro-Mechanical Devices ASCC

"Only six electronic digital computers would be required to satisfy the computing needs of the entire United States."

- 1937-1944, Howard Aiken builds the Automatic Sequence Controlled Calculator (ASCC)
 - First general-purpose digital computer
 - 750,000 components, 5 tons
- Goal: 100 times faster than by hand
- Reality: only *3-5* times faster, due to component failures

Electro-Mechanical Devices ENIAC

- 1943-1947, John Mauchly and John Presper Eckert started building the Electronic Numerical Integrator and Calculator (ENIAC).
 - First all-electronic computer (*)
 - 18,000 tubes (5-10cm each), 150 kilowatt dissipation, 30 tons
 - Large office space
 - 1,000 bits of memory
 - From 20 hours to 20 seconds
- (*) The first computer IP lawsuit: vs John Atanasoff
 VRIJE UNIVERSITEIT

© 2017 Alexandru

31

Electro-Mechanical Devices
Problems with ENIAC

- Each time switched on: ~ 10 tubes failed
- Difficult to program
- Not very flexible
- Technologically too complex
- Memory too small
- Bugs

Electro-Mechanical Devices EDVAC

- Problems analyzed by Mauchly + Eckert
- Proposed new design: Electronic Discrete Variable Automatic Computer (EDVAC)
- Basis of so-called Von Neumann Architecture

von Neumann or Harvard Architecture?

Von Neumann Architecture

- Single Instruction and Data memory
- Single memory-CPU pathway = simple + bottleneck Von Neumann

Q: Which is used today and why?

Harvard Architecture

- Separate Instruction and Data memories (word size)
- Separate memory-CPU pathways = complex + perf.

A History of Computer Architectures

- 1. Pre-History (to 1930s)
- 2. 1st Generation: Electro-Mechanical (1930s-1950s)
- 3. 2nd Generation: Transistors (1955–1975)
- 4. 3rd Generation: Microprocessors (1960s—today)
- 5. 4th Generation: Multi-Computing (1969—today)

Transistors (1955—1975) and Microprocessors (1960s—today)

- Transistors
 - Reliable, Smaller, Less power
- U. Manchester (1953)/ Bell Labs (1948)
- DEC PDP-1 (1959)
 - Hacker culture, first game (Spacewar), text-ed, dbg

- Integrated Circuits
 - Enabled small, low-cost microprocessors
- MOS Tech (ATARI)
- Apple & Apple][
- Current technology
 - 1971 Intel 4004 @108KHz: 1st uproc.
- First supercomputer: Cray's CDC 6600, 10MFLOPS VRIJE UNIVERSITEIT AMSTERDAM © 2017 Alexandru Josup. All rights reserved.

Devices in the Transistor and Microprocessor eras

- The first monitor (1951) US Army's display system, part of WHIRLWIND
- The first mouse (1968) Doug Engelbart's "X-Y Position Indicator for a Display System"

37

© 2017 Alexandru Iosup. All righ

The IBM Personal Computer

- Released in the 1980s
 - The blueprint for today's PCs
 - Changed the market

JDelft

38

 Open standards and friendliness to third-party hardware and software developers

> Q: How much is third-party hardware allowed today? (e.g., by Apple)

Q: How much is third-party software allowed today? (e.g., in App Stores of Apple, Google, Microsoft)

Moore's and Rock's Laws

Also read: http://spectrum.ieee.org/semiconductors/materials/5-commandments/

- Moore's Law

 (# of transistors/chip):
 density of silicon chip
 2x every 1.5 (2) years
- Rock's Law

 (cost to produce chips):
 cost of equipment to produ
 (\$12k in 1968, \$14M in 201

Transistors

cost of equipment to produce chips 2x every 4 years (\$12k in 1968, \$14M in 2012's 193-nm wavelength stepper)

1: <u>http://www.nytimes.com/2012/01/13/science/smaller-magnetic-materials-push-boundaries-of-nanotechnology.html</u> 2: http://www.nytimes.com/2012/02/20/science/physicists-create-a-working-transistor-from-a-single-atom.html

Is Moore's Law Dead? Maybe Just Not Needed...

Outline

A History of Computer Architectures

- 1. Pre-History (to 1930s)
- 2. 1st Generation: Electro-Mechanical (1930s-1950s)
- 3. 2nd Generation: Transistors (1955–1975)
- 4. 3rd Generation: Microprocessors (1960s—today)
- 5. 4th Generation: Multi-Computing (1969—today)

Multi-Computing The Internet: Early History

• 1965-1969 ARPANET

- Leonard Kleinrock develops the Queueing Theory (theoretical properties of the Internet)
- 4 computers at UC Santa Barbara, UC Los Angeles, U. of Utah, Stanford Research Inst.
- 1972 ARPANET public + Email
- 1974 TCP/IP at Stanford
- 1982 ARPANET + TCP/IP = the (early) Internet

JDelft

UTAH

PDPID

Drawing

by Alex

43

940

SRE

UCSA

Multi-Computing The Internet Today

net, ca, us

com, org mil, gov, edu asia de, uk, it, fr, pl br, kr, nl

Source: <u>http://www.opte.org/maps/</u>

⁴ TUDelft ⁴⁴

Multi-computing

Internet-Based Applications

• Metcalfe's Law: usefulness of a network ~ n^2 , n objects/users

Multi-computing Research http://meetings.ripe.net/ripe-48/presentations/ripe48-ipv6-lsr.pdf ABILENE: Backbone Research Network

• TCP/IP Land Speed Record

VI

 ~ 7 Gb/s in single TCP stream from Geneva to Caltech

46

Multi-computing Grids ('00s) and Cloud/Datacenter Computing ('10s)

Modern computing when everyone's connected A Computer In Your Pocket (or Hand)

Not tech, apps + mobility Internet everywhere (?) PC killers (?!) iPhone and relatives (2007—) Initially music device++ iPad and relatives (2010—) **Small format**

High resolution

Source: <u>http://www.imore.com/history-iphone-2g</u> + <u>http://www.imore.com/history-ipad-2010</u>

Take-Home Message

- 1. Digital Computers are not a single invention
 - Math, Mechanical Engineering, Electrical Engineering
- 2. Empirical laws of computing
 - Are Moore's and Rock's Laws still valid?
 - Koomey's Law for energy efficiency
 - Metcalfe's Law for network usefulness
- 3. Evolutionary trends
 - The von Neumann and/or Harvard architectures?
 - Single and/or distributed computers?

PC+/-Mobile computing? Always connected?
 © 2017 Alexandru Iosup. All rights reserved.

